

209

Index

#include
and using, 108
vs. forward declaration, 40

#include guards, 27, 33
internal vs. external, 43

#undef
as soon as possible, 33

&&
preferable to nested ifs, 38

?:, 36
[]. See operators, []
++C, 50

A
Abelson, Harold, 13
Abrahams, Dave, xv
abstraction, 20

and dependency
management, 11

and get/set, 20, 72, 73
and interfaces, 62

abstractions
build higher-level from

lower-level, 12
depending upon instead of

details, 41
vs. details, 128

accumulate, 125
Acyclic Visitor, 41
ADL, 104, 105, 106, 107, 122

and template customization,
122

disabling unwanted, 124

aggregates, 20
Albaugh, Tyrrell, xv
algorithmic complexity, 14

and STL, 14
exponential, 15
linear-looking that is really

quadratic, 15, 156
algorithms

and design patterns, 162
are loops, 159
binary_search, 165
count, 165
count_if, 165
equal_range, 165
find, 165
find_if, 165
lower_bound, 165
nth_element, 166
partial_sort, 166
partial_sort_copy, 166
partition, 166
searching, 165
sort, 166
sorting, 166
stable_partition, 166
stable_sort, 166
upper_bound, 165
vs. loops, 38, 162

alignment, 176
Allison, Chuck, xv
allocation, 111

never allocate more than
once per statement, 25

allocator

example use of, 5
ambiguities, 77
ambiguities,

avoiding declaration, 13
amortized constant time, 155
append, 135
arithmetic operators. See

operators, arithmetic
arrays

fixed-size, 15
inferior to containers, 152

assert, 33, 130, 135
example of, 5, 98, 175
macro needed for, 33
only for internal

programming errors, 132,
134

prefer instead of logic_error,
131

assertions. See assert
assignment

copy. See copy assignment
self, 99, 138

assignment operators. See
operators, assignment

asymptotic complexity. See
algorithmic complexity

at
vs. [], 136

atomic operations, 21
auto_ptr, 94, 154

210 Index

B
Bajaj, Samir, xv
BankAccount, 72
Barbour, Marc, xv
base classes. See classes, base
base two, 176
basic_string, 12, See also

containers
append, 135
find_first_of, 136
insert, 135
monolithic, 79

behavior
undefined. See undefined

behavior
Bell, Gordon, 13
Bentley, Jon, 13, 16
BetweenValues, 164
Big Four, 55, 85, 94, See also

default constructor; copy
construction; copy
assignment; destructor

Big-Oh. See algorithmic
complexity

binary compatibility, 116, 120
binary_function, 172
binary_search, 165
bind2nd, 162, 163

example use of, 163, 164
Bird, 67
bloat, 112
Boedigheimer, Kim, xv
Boost, 3, 147, See also

shared_ptr
discriminated unions library,

121
format library, 184
Lambda library, 4, 162, 163,

164
Lambda library, example use

of, 163
preprocessor library, 33

bounds checking, 29, 152
brace placement, 2
braces. See brace placement

matching, 38
branch prediction, 16

Bridge, 162
buffer overruns. See security
bugs. See insects
build

breaking, 8
unit tests, 8

build system
automated, 7

build times, 76

C
C, 36, See also C, obsolete uses

of
C, obsolete uses of, xi

arrays, 37, 152, 186
casts, 180, 181
global namespace, 108
Hungarian notation, 3
implicit cast from const

char[] to (non-const) char*
hole in the type system,
179

macros, 32, 33
manual memory

management, 24, 152
manual resource

management, 24, 152
memcpy/memcmp (except

for PODs), 182
null-terminated character

array strings, 37, 152
pointer arithmetic, 152
printf, 184
realloc, 12
sprintf, 184
switching on a type flag, 174,

175
unions to reinterpret

representation, 183
unsafe functions

(strcpy/strncpy, strcmp,
sprintf, gets, etc.), 185

varargs, 46, 184
variable definition at

beginning of scope, 35, 36
C++

vs. ++C, 50

caching, 16
caffeine

lack of, 96
callback functions, 133

and exceptions, 114
instead of locking, 23

Carlson, Richard
reference to, 2, 144, 155

casts, 180
and not const, 179
explicit preferred, 6

catch
..., 81, 93, 114, 115, 133, 140

Catch-22, 127
cerr, 19, 113
char_traits, 125
check in. See version control

system
check out. See version control

system
checked STL implementation,

160
checked_cast, 178
cin, 19, 113
clarity

prime importance of, 13
class templates. See also

templates
specialization, 127

classes
and namespaces, 104
and nonmember functions,

104
and portability, 116
base, 56, 69, 90, 91, 96, 101
composition vs. inheritance,

58, 61
concrete, 60, 91
data members, 72
derived. See polymorphism

and substitutability
exception, 56
kinds of, 56
minimal vs. monolithic, 57
mixin, 65
policy, 56, 65, 91
traits, 56
unions, 183

 Index 211

value, 56, 101, 154
clean compiles. See compiler

warnings
clear

better than cute, 13
cliff, 85
Cline, Marshall, xv
clog, 113
Clone, 96, 97

vs. copy construction, 97
Cobol, 36
code reviews, 9

this book's table of contents
as checklist, 9

coding style
vs. design style, 11

cohesion, 12, 38
COM, 7, 63, 91, 115, 133
Command, 41, 121
comments, 2
CompareThings, 171
compatibility

source vs. binary, 73
compile

cleanly. See compiler
warnings

compile time
and errors, 28

compiler firewall. See Pimpl
compiler warnings, 4
compiler-generated functions,

85, See copy construction;
copy assignment; destructor

compile-time
conditions, 29
errors, 27
polymorphism, 29

complex
simple better than, 13

complexity
algorithmic. See algorithmic

complexity
asymptotic. See algorithmic

complexity
compose, 163
compose2

example use of, 164
composition

vs. inheritance, 58, 61
concurrency, 19, 21, See also

locking
vast majority of objects not

shared, 22
conditional compilation, 33
conditions

compile-time, 29
const, 27, 30

and pointers, 30
avoid on pass-by-value

parameters, 31
instead of magic numbers,

34
not deep, 30
simplifies code, 30
viral, 30

const_cast, 179
const-correctness, 31, 128, 179
construction

copy. See copy construction
construction order

of member variables, 86
ConstructionWasOK

not recommended, 141
constructor parameters

prefer named variables
instead of temporaries, 13

constructors
and virtual functions, 88
copy. See copy construction
default. See default

constructor
initialization list, 87
initialization list ordering

not significant, definition
order significant, 86

post-constructors, 88
prefer initializer list instead

of assignment, 18
reporting errors from, 141,

142
virtual constructors, 88

containers
and copy

construction/assignment,
95

and smart pointers, 95

and thread safety, 21
choosing, 150
default, 150
hash-based, 15, 150, 181
heterogeneous, 154
index, 154
map, and optional values,

154
of non-value types, 154
range vs. single-element

functions, 155, 156
shrink-to-fit, 157
store values, 154
string, 152
vector, 150, 152, 153
vector vs. list, 151
vector, advantages of, 150

conversion sequences, 70
conversions

implicit, 70, See implicit type
conversions

named functions, 70
copy, 107
copy assignment, 25, 55, 85, 87,

99
and containers, 95
and copy construction, 94, 95
and destructor, 94
and swap, 101
not virtual, 99

copy construction, 25, 55, 85
copy constructors

and containers, 95
and copy assignment, 94, 95
and destructor, 94
vs. Clone, 97

copy-on-write, 23
CORBA, 7, 63, 91, 115, 133
correct

better than fast, 13
correctness

prime importance of, 13
corruption, 21
count, 165
count_if, 165
coupling, 19
cout, 19, 113
covariance, 69

212 Index

COW. See copy-on-write
CPU-bound, 17
Create, 89
curly braces. See brace

placement
CustomAllocator, 80
customization

and C++ standard library,
125

of templates, 122
CustomString, 117
cute

clear better than, 13
cvs, 8
cyclic dependencies, 40

breaking, 41

D
dangling pointers, 185
data

exposing, 20
global. See global variables

data validation, 29
data volumes

growth of, 14
database-bound, 17
Date, 72
deadlock, 21
deallocation, 111
deallocation functions

never fail, 92
Dechev, Damian, xv
declaration

vs. definition, 40
declaration ambiguities

avoiding, 13
default, 175
default arguments

and virtual functions, 66
default constructor, 55, 85, 87,

156
default container

vector, 150
definition

of member variables, 86
vs. declaration, 40

delete. See also operators, delete

and polymorphism, 91
with new, 80

dependencies, 103
and templates, 42
compile-time, 58
cyclic. See cyclic

dependencies
managing, 20
upon abstractions instead of

details, 41
dependency cycles

across modules, 41
Dependency Inversion

Principle, 41, 62
dependency management, 74,

See also encapsulation and
information hiding
broad importance of, 11
member vs. nonmember

functions, 79
dependent names, 125
deployment

ease of, 57
design patters

and algorithms, 162
design style

design vs. coding style, 11
destructor, 55, 85

and copy assignment, 94
and copy construction, 94
nonvirtual, 61, See also

slicing
public and virtual, 63

destructors, 68, See also RAII
and exceptions, 115
and virtual functions, 88
in base classes, 90
never fail, 92

details
vs. abstractions, 128

Dewhurst, Steve, xv
Diamond, Norman, 85
Dimov, Peter, xv
dint

gratuitous use of odd word,
162

disabling warnings. See
warnings

disk capacity
growth of, 14

disk-bound, 17
distance, 107, 156, 165
divide and conquer. See

minimal vs. monolithic
DLLs, 103
DoClone, 98
downcasts, 29
Draw, 175
dusty corners, 13
dynamic_cast, 69, 178

downcasting with, 29
dynamically checked errors. See

errors, dynamic checking

E
EBO. See empty base class

optimization
ECO. See empty base class

optimization
efficiency. See performance
empty base class optimization,

59, 63
empty()

vs. size() == 0, 128
encapsulation, 20, 57, 72, 74, 76

member vs. nonmember
functions, 79

enums, 29, 175
instead of magic numbers,

34
equal_range, 165
ER units

comparison with, xiii
errno, 140, See also error codes
error code

overuse, 142
error codes

translating to/from
exceptions, 115

vs. exceptions, 140
error handling policy. See

errors, policy for handling
error messages

and macros, 33
error safety, 57, 59, 77

 Index 213

and RAII, 24
errors

and modules, 133
and operators, 141
assert, 130
categorizing, 133
compile-time, 28
constructors, 141
detection, 133
dynamic checking, 28
handling, 133, 145
identifying, 132
ignoring, dangers of, 140
internal assumptions, 130
invariants to test for. See

invariants
link-time, 28
policy for handling, 132
prefer compile- and link-

time to run-time, 27, 28
propagating, 140
propagation, 133
reporting, 133, 145
retrying, 138
run-time, 132
severity, 133
static checking, 28
translating, 144, 145
vs. non-errors, 134

error-safety, 150
basic guarantee, 137
copy construction, 99
no-fail guarantee, 137
not penalizing code that

doesn't need stronger
guarantees, 137

strong guarantee, 137
evil

root of all, 11
exception

what, 147
exception classes. See classes,

exception
exception handling. See also

errors; error-safety
catch by reference, 144
overuse, 142
throw by value, 144

warning against disabling,
143

exception safety. See error
safety

exception specifications, 93, 146
avoid, 146
static vs. dynamic checking,

147
exceptions

and callback functions, 114
and destructors, 115
and main, 114
and modules, 114
and slicing, 144
and threads, 114
not across module

boundaries, 114
translating to/from error

codes, 115
vs. error codes, 140

explicit, 70, 97
explicit loops

fewer in STL-using
programs, 162

explicit qualification, 77, 110
expression templates, 50, 53
external locking, 22

F
facets

mistakes of, 121
factory

example use of, 89
Factory, 162
factory functions, 19
fast

correct better than, 13
File, 72, 136
find, 18, 165
find_first_of, 136, 142
find_if, 165, 169
FlagNth, 169
Fly, 67
fools, 11
for_each, 15, 162

example use of, 161
formatting, 2

Fortran, 36
forward declaration

vs. #include, 40
French

grauitous use of, 51
friend, 55
fudgeFactor, 112
full build, 7, See also build

system
Fuller, John, xv
function

to avoid uninitialized
variables, 37

unit of work, 134
function arguments

order of evaluation, 54
function objects, 162, See also

predicates
example use of, 164
vs. functions, 170
writing correctly, 172

function parameters, 45
and binders, 162
and compile-time

dependencies, 76
and const, 31, 46
and conversions, 48
and copying, 46
and null, 46
and preconditions, 134
and primitive types, 46
and smart pointers, 46
and

unary_function/binary_fu
nction, 170

and user-defined types, 46
and varargs, 46
in constructors, 89
input, 46
output, 46
pass by value vs. pass by

reference, 46
unary and binary operators,

48
function templates, 113

and not specialization, 126
and overload resolution, 126

functions

214 Index

compiler-generated, 85
deallocation, 92
length, 38
member vs. nonmember, 48,

79
nesting, 38
vs. function objects, 170

functions,compiler-generated.
See default constructor; copy
construction; copy
assignment; destructor

G
Gaffney, Bernard, xv
generic programming. See

templates
geniuses, 11
get/set, 73

and abstraction, 20, 72, 73
GetBuffer, 75
GetBuilding, 66
GetLastError, 140
getstr, 53
global data. See global variables
global state. See global

variables
global variables, 19, 39

and dependency
management, 11

initialization of, 19
limit parallelism, 19

Gordon, Peter, xv
greater

example use of, 164
grep, 181
Griffiths, Alan, xv
guarantees

for error safety. See error-
safety

H
handles

to internal data, 74
hash-based containers. See

containers, hash-based
Haskell, 28

header files
self-sufficient, 42
wrapping third-party

headers, 4
header guards. See #include

guards
headers

and linkage, 112
and not unnamed

namespaces, 113
and static, 113
precompiled, 42

Henney, Kevlin, xv
Henning, Michi, xv
heterogeneous containers, 154
hide information. See

information hiding
hiding

names, 66, 82
hijacking

and macros, 32
Hinnant, Howard, xv
Hoare, C.A., 16
Hungarian notation, 3
hygiene

and not macros, 32
Hyslop, Jim, xv

I
implicit conversions, 70

benefits of, 71
dangers of, 71

implicit interface, 122
and customization, 122

implicit type conversions
avoided by overloading, 51

import this, xv
incremental build, 7, See also

build system
indentation, 2
index containers, 154
indexing

vs. iterators, 128
information hiding, 72

and dependency
management, 11

inheritance

and dependency
management, 11

and reuse, 64
misuse of, 64
not from concrete base

classes, 60
public, 64
vs. composition, 58, 61

initialization
and constructors, 87
default, 87
of global variables, 19
of member variables, 86
of variables, 35, 36
static vs. dynamic, 39
variables. See variable, not

initialized
zero, 39

initialization dependencies, 39
inline, 17, 113

and profiler, 17
in- XE "new" \t "See also

operators, new" XE "delete"
\t "See also operators, delete"
place new. See new

insects, 9, 12, 28, 30, 35, 36, 39,
52, 81, 137

insert, 135, 139, 156
at a specific location, 150

inserter
example use of, 163

interface
implicit. See implicit

interface
Interface Principle, 104
interfaces

abstract, 62
intermittent crashes, 36
internal locking, 22
internals

exposing, 20
invalid iterators, 185
invariants, 18, 20, 28, 64, 72, 73,

74, 130, 131, 132, 134, 135,
136, 137, 138, 140, 141, 142

iostreams, 113
is_in_klingon, 61

 Index 215

is-a. See substitutability, See
substitutability

IsHeavy, 170
iterator ranges, 161
iterator_traits, 125
iterators, 151

comparing with != instead of
<, 128

invalid, 161, 185
ranges, 161
vs. indexing, 128

J
Java, 28, 147
Johnson, Curt, xv
Josuttis, Nicolai, xv
juggling, 152

K
K&R style. See brace placement
Kalb, Jon, xv
Kanze, James, xv
Kernighan, Brian, 173
Khesin, Max, xv
KISS, 13
Knuth, Donald, 11, 16
Koenig lookup. See ADL

L
Lafferty, Debbie, xv
Lambda library. See Boost,

Lambda library
land mines, 27
Last Word

not this book, xii
Latin

gratuitous use of, 59, 141
LaunchSatellite, 139
Law of Second Chances, 63
leak

memory, 81
leaks, 137
Leary-Coutu, Chanda, xv
Leddy, Charles, xv
length

of lines, 2
less

example use of, 164
libraries

shared, 103
lifetime. See object lifetime
line length, 2
link time

and errors, 27, 28
linkage

and headers, 112
external, 19

Lippman, Stan, xv
Liskov Substitution Principle.

See substitutability
Lisp, 28
list. See also containers

vs. vector, 151
literals

and magic numbers. See
magic numbers

livelock, 21
locality of reference, 151
localized_string, 61
locking

external, 22
in increasing address order,

23
internal, 22
lock-free designs, 23
not needed for immutable

objects, 23
using callback functions

instead of, 23
logic_error

example of, 5
prefer assertions instead of,

131
lookup

two-phase, 125
loops

fewer explicit loops in STL-
using programs, 162

vs. algorithms, 162
lower_bound, 165

M
macros, 27, 32

and conditional compilation,
33

interfering with template
instantiations, 33

to enable/disable threading
support, 23

magic numbers, 34
main

and exceptions, 114
make, 7, See also build system
malloc, 131
managing dependencies, 103,

See dependency
management

Marcus, Matt, xv
Marginean, Petru, xv
Martin, Robert C., xv
Matrix, 57, 72
MAX_PATH, 37
McConnell, Steve, 13, 130
mem_fun, 170
mem_fun_ref, 170
member variables

public vs. private, 72
member vs. nonmember

functions, 79
memcmp, 182
memcpy, 182
memory leaks, 81
memory management

and containers, 152
memory-bound, 17
MemoryPool, 82
Meyers, Scott, xv
Ming vases, 152
minimal vs. monolithic, 55, 57
missing return. See return,

missing
mixin classes. See classes, mixin
ML, 28
modules

allocating and deallocating
memory in same, 111

and error handling, 133
and exceptions, 114

216 Index

and not exceptions, 114
defined, 103
interdependence between, 40
interfaces use only

sufficiently portable types,
116

monolithic classes, 79
monolithic vs. minimal, 55, 57
Moore's Law, 14
Mullane, Heather, xv
mutable, 30

N
name hiding, 66, 82
name lookup, 77

two-phase, 125
named variables

prefer as constructor
parameters, 13

names
dependent, 125
symbolic vs. magic numbers,

34
namespaces, 103

and using, 108
pollution of, 19, 108, 109, 110
type and its nonmember

functions in same, 104
type and unrelated functions

in separate, 106
unnamed. See unnamed

namespace
using, 108

naming
and macros, 33
variables. See Hungarian

notation
naming convention, 2
NDEBUG, 111, 130
Nefarious, 92, 93
nesting, 38
network-bound, 17
new, 141, See also operators,

new
immediately giving result to

an owning object, 25
in-place, 82

never allocate more than
once per statement, 25

nothrow, 82
with delete, 80

nifty counters, 113
Node, 73
nongeneric code

unintentionally, 128
Nonvirtual Interface pattern,

68, 69, 90, 98
not1, 170
nothrow new. See new
nth_element, 166

example use of, 167
NVI. See Nonvirtual Interface

pattern

O
object lifetime

minimizing, 35
objects

temporary. See temporary
objects

Observer, 162
obsolete practices, 2, See C,

obsolete uses of
external #include guards, 43
Hungarian notation, 3
SESE. See single entry single

exit
Occam, William of, 51
ODR. See one definition rule
offsetof, 176
ointment

fly in the, 81
one definition rule, 110
operator delete

never fails, 92
operator overloading

gratuitous, 13
preserve natural semantics,

47
operators, 45

&&, 52
(), 168
,, 52
[], 135, 136

[] vs. iterators, 128
||, 52
++, 17, 18, 50
and ADL, 105
and namespaces, 104, 105
arithmetic, 48
assignment, 48, 78, 93
binary, 48
const char* (on strings), 71
copy assignment. See copy

assignment
decrement, 50
delete, 80, 82, 93, 111
increment, 50
member vs. nonmember, 48
new, 80, 82, 111, 141
overloaded, 47
preserve natural semantics,

47, 48, 50
reporting errors from, 141

optimization. See also
temporary objects, See also
temporary objects, See also
temporary objects, See also
temporary objects
and exception specifications,

146
and inline, 17
and libraries, 17
by using STL, 18
compile-time evaluation, 121
copy-on-write outdated, 157
empty base class, 63
enabling compiler’s, 49, 99
encapsulate where possible,

17
in STL implementations, 94
indexing vs. iteration, 128
must be based on

measurement, 16
prefer improving

algorithmic complexity
over micro-optimizations,
17

premature, 13, 14, 15, 16, 17,
18, 50, 51, 59, 87, 171

range vs. single-element
functions, 156

 Index 217

self-assignment check, 138
static binding, 121

optional values
and map, 154

order dependencies, 19, 23, 25,
39, 52, 53, 54, 69, 86, 109, 110,
124, 169, 176

Ostrich, 67
out_of_range, 136
overload resolution, 77
overloading

and conversions, 70
and function templates, 126
of operators, 13
to avoid implicit type

conversions, 51
overriding, 66

P
pair, 56
parameters

pass by value vs. pass by
reference, 18

unused. See unused
parameters

partial specialization. See
specialization, partial

partial_sort, 166
example use of, 167

partial_sort_copy, 166
partition, 162, 166

example use of, 166
Pascal, 36
Peil, Jeff, xv
pejorative language

and macros, 32
performance, 28, 141
Perlis, Alan, xi, xv, 11, 27, 45, 60,

103, 129, 173
personal taste

matters of, 2
pessimization, 18
Pimpl, 30, 58, 69, 72, 76, 78, 101,

172, See also encapsulation
and dependency
management
and shared_ptr, 78

pipelining, 16
Pirkelbauer, Peter, xv
placement

of braces. See brace
placement

plain old data. See POD
platform-dependent operations

wrapping, 21
Plauger, P.J., 173
plus, 162, 163

example use of, 163
POD, 176, 183
pointer_to_unary_function, 170
pointers

and const, 30
and not static_cast, 178
dangling, 185

points of customization. See
customization

policy classes. See classes,
policy

policy-based design, 63
pollution (of names and

namespaces), 19, 35, 108, 109,
110

polymorphism, 66
ad-hoc, 120
and delete, 91
and destruction, 90
and not arrays, 186
and slicing, 96
compile-time vs. run-time,

29
controlled, 59
dynamic, 128
dynamic, 64, 120
inclusion, 120
static, 63, 120
static and dynamic, 120, 175
static vs. dynamic, 65
vs. slicing, 144
vs. switch on type tag, 38
vs. switching on type, 174

Port, 24
portable types

and module interfaces, 116

postconditions, 66, 69, 124, 130,
131, 134, 135, 136, 138, 140,
142
and virtual functions, 66

post-constructors, 88
PostInitialize, 89
pragmatists, 11
Prasertsith, Chuti, xv
precompiled headers, 42
preconditions, 66, 69, 132, 134,

135, 136, 142
and virtual functions, 66

predicates. See also function
objects
pure functions, 168

premature optimization. See
optimization, premature

pressure
schedule pressure, xiii

priority_queue, 166
processes

multiple, 21
profiler

and inline, 17
using. See optimization

proverbs
Chinese, 8
German, 177
Latin, 16, 156
level of indirection, 126
Romanian, 177

Prus, Vladimir, xv
ptr_fun, 170
public data, 20
push_back, 15, 155
Python, 28

Q
qualification

explicit, 77
qualification, explicit, 110
qualified

vs. unqualified, 123

R
race conditions, 21

218 Index

RAII, 5, 24, 38, 56, 94, 95
and copy assignment, 25
and copy construction, 25

range checking, 135
ranges

of iterators, 161
realloc, 12
Rectangle, 64
recursive search

not reporting result using
exception, 142

reference counting, 157
registry

factory and, 19
reinterpret_cast, 177, 180, 181,

183, 184, 185
release

unit of. See module
reliability, 27
remove_copy_if, 169
remove_if, 169
replace_if, 162
resource acquisition is

initialization. See RAII
resource management, 94, See

also RAII
and constructors, 87
and RAII, 24
and smart pointers, 24
never allocate more than

once per statement, 25
resources should be owned

by objects, 25
resources. See resource

management
responsibility

growth, 12
of an entity, 12

restricted values
of integers, 29

return
missing, 5

reuse
and inheritance, 64

reviews
of code. See code reviews

ripple effect, 20
root of all evil, 11

Ruby, 28
run time

and errors, 27, 28

S
safety, 27
Saks, Dan, xv
scalability

coding for, 14
schedule pressure, xiii
Schwarz counters, 113
Schwarz, Jerry, 113
Second Chances

Law of, 63
security, 15

and checked STL
implementation, 160

and exception handling
performance, 142

arrays and, 15
buffers, 152
pointers, 152
printf, 184
ssh, 8
strcpy, 185

Security, 72
self-assignment, 99, 138
self-sufficient header files, 42
serialization

of access to shared objects,
21

SESE. See single entry single
exit

shallow const, 30
Shape, 175
shared libraries, 103
shared state

and dependency
management, 11

shared_ptr, 111, 121, 149
and arrays, 186
and containers, 154
and modules, 111
and optional values in maps,

154
and overuse, 25
and Pimpl, 78

example use of, 24, 25, 76, 78,
89, 182

throwing, 144
shared_ptr, 149
shared_ptr, 172
sheep's clothing, 39
shrink-to-fit, 157
signed/unsigned mismatch, 6
simple

better than complex, 13
simplicity

prime importance of, 13
single entry single exit, 3
Singleton, 39
skins, 139
slicing, 61, 96

and polymorphism, 96
of exceptions, 144

Smalltalk, 28
smart pointers, 98

and containers, 95
and function parameters, 46
and overuse, 25
for resource management, 24

Socket, 74
sort, 18, 125, 166
spaces

vs. tabs, 3
spaghetti, 17
special member functions. See

default constructor; copy
construction; copy
assignment; destructor

specialization
and not function templates,

126
of class templates, not

function templates, 127
partial, 126

speculative execution, 16
Spencer, Henry, 173, 177
Square, 64
ssh, 8
stable_partition, 166
stable_sort, 166
stack unwinding, 92
standards, xi

advantages of, xii

 Index 219

what not to include, 2
Star Trek

gratuitous reference to, 61
state

global. See global variables
static

misuse of, 112
static type checking, 120
static_cast, 181

and not pointers, 178
downcasting with, 29

statically checked errors. See
errors, static checking

STL
algorithms. See algorithms
checked implementation

valuable, 160
containers. See containers
iterators. See iterators
searching, 165
sorting, 166
use leads to fewer explicit

loops, 162
using, 18

STL containers
and thread safety, 21

string. See basic_string, See
basic_string

String, 75
Stroustrup, Bjarne, xv, 32, 55,

119, 129, 149, 159
strtok, 54
style

design vs. coding, 11
substitutability, 59, 64, 66
subsumption, 120
SummarizeFile, 116
super_string, 60
surprises

programmers hate, 53
Sussman, Gerald Jay, 13
swap, 93, 100, 125, 126, 127

never fails, 92
swap trick, 157
switch

default case, 5

T
tabs

vs. spaces, 3
taste

matters of personal, 2
tautologies

perfect for assertions, 131
template customization. See

customization
Template Method, 68, 90
templates

and implicit interface. See
implicit interface

and source-level
dependencies, 42

function. See function
templates

function templates not in
same namespace as a
type, 106

macros interfering with, 33
unintentionally nongeneric

code, 128
temporaries

avoid as constructor
parameters, 13

temporary objects, 18, 51, 70, 98
Tensor, 47
terminate, 146
testing, 20
tests

unit tests, 8
TeX

The Errors of TeX, 11
this

import, xv
thread safely, 21
thread safety, 21

"just enough", 23
and STL containers, 21

threads, 133
and exceptions, 114
multiple, 21
vast majority of objects not

shared across, 22
thrill sports, 152
time pressure, xiii

traits classes. See classes, traits
transform, 162

example use of, 163
Translate, 117
Transmogrify, 54, 96
Transmogrify2, 97
Transubstantiate, 96
Tree, 25
TreeNode, 73
try, 38
two-phase lookup, 125
two's complement, 176
type checking

static, 120
type safety, 28, 173, 176
type switching

vs. polymorphism, 174
type system

and not macros, 32
and not memcpy/memcmp,

182
hole in, 179
making use of, 28, 29, 30,

131, 146, 173
type systems

static vs. dynamic, 28
typename

example use of, 122, 123, 125
types

vs. representations, 176

U
unary_function, 91, 170, 172
Uncle Bob, xv
undefined behavior, 19, 25, 27,

36, 39, 61, 71, 88, 90, 91, 93,
173, 179, 181, 182, 183, 184,
185

unexpected_handler, 146
uninitialized variables, 36
unintentionally nongeneric

code, 128
unions, 183
unit of work. See function
unit tests, 8
UnknownException, 146
unnamed namespace

220 Index

and not headers, 113
unqualified

vs. qualified, 123
unsigned

mismatch with signed. See
signed/unsigned
mismatch

unused parameters, 5
unwinding

stack, 92
upper_bound, 15, 165
using, 83

avoiding need for, 105
is good, 108
not before an #include, 108

V
validation

of input data, 29
value-like types. See classes,

value
Vandevoorde, Daveed, xv
varargs, 184
variable

defined but not used, 5
not initialized, 5

variable naming. See
Hungarian notation

variables
declaring, 35
global. See global variables
initialization of, 35
initializing, 36
uninitialized, 27

VCS. See version control system
vector. See also containers

by default, 150
insert, 139
vs. list, 151

version control system, 8
versioning, 103, 138

and get/set, 72
viral const, 30
virtual constructors, 88
virtual functions, 66

and constructors and
destructors, 88

destructors, 90
nonpublic preferred, 68

Visitor, 41, 121, 162, See also
Acyclic Visitor

volatile, 37

W
Wagner, Luke, xv
warnings

compiler. See compiler
warnings

disabling, 6
none on successful build, 7
spurious, dealing with, 6

Weinberg, Gerald, 1
what, 147
Wilson, Matthew, xv
works-like-a. See

substitutability , See
substitutability

wrapping
header files. See header files,

wrapping third-party
headers

platform-dependent
operations, 21

Wysong, Lara, xv

Z
zero initialization, 39
Zolman, Leor, xv

