
160 C++ Coding Standards

83. Use a checked STL implementation.

Summary
Safety first (see Item 6): Use a checked STL implementation, even if it’s only available
for one of your compiler platforms, and even if it’s only used during pre-release testing.

Discussion
Just like pointer mistakes, iterator mistakes are far too easy to make and will usually
silently compile but then crash (at best) or appear to work (at worst). Even though
your compiler doesn’t catch the mistakes, you don’t have to rely on “correction by
visual inspection,” and shouldn’t: Tools exist. Use them.

Some STL mistakes are distressingly common even for experienced programmers:

• Using an invalidated or uninitialized iterator: The former in particular is easy to do.

• Passing an out-of-bounds index: For example, accessing element 113 of a 100-
element container.

• Using an iterator “range” that isn’t really a range: Passing two iterators where the
first doesn’t precede the second, or that don’t both refer into the same container.

• Passing an invalid iterator position: Calling a container member function that takes
an iterator position, such as the position passed to insert, but passing an iterator
that refers into a different container.

• Using an invalid ordering: Providing an invalid ordering rule for ordering an as-
sociative container or as a comparison criterion with the sorting algorithms. (See
[Meyers01] §21 for examples.) Without a checked STL, these would typically
manifest at run time as erratic behavior or infinite loops, not as hard errors.

Most checked STL implementations detect these errors automatically, by adding ex-
tra debugging and housekeeping information to containers and iterators. For exam-
ple, an iterator can remember the container it refers into, and a container can re-
member all outstanding iterators into itself so that it can mark the appropriate itera-
tors as invalid as they become invalidated. Of course, this makes for fatter iterators,
containers with extra state, and some extra work every time you modify the con-
tainer. But it’s worth it—at least during testing, and perhaps even during release
(remember Item 8; don’t disable valuable checks for performance reasons unless and
until you know performance is an issue in the affected cases).

Even if you don’t ship with checking turned on, and even if you only have a
checked STL on one of your target platforms, at minimum ensure that you routinely
run your full complement of tests against a version of your application built with a
checked STL. You’ll be glad you did.

 STL: Algorithms 161

Examples
Example 1: Using an invalid iterator. It’s easy to forget when iterators are invalidated
and use an invalid iterator (see Item 99). Consider this example adapted from
[Meyers01] that inserts elements at the front of a deque:

deque<double>::iterator current = d.begin();

for(size_t i = 0; i < max; ++i)
 d.insert(current++, data[i] + 41); // do you see the bug?

Quick: Do you see the bug? You have three seconds.—Ding! If you didn’t get it in
time, don’t worry; it’s a subtle and understandable mistake. A checked STL imple-
mentation will detect this error for you on the second loop iteration so that you
don’t need to rely on your unaided visual acuity. (For a fixed version of this code,
and superior alternatives to such a naked loop, see Item 84.)

Example 2: Using an iterator range that isn’t really a range. An iterator range is a pair of
iterators first and last that refer to the first element and the one-past-the-end-th ele-
ment of the range, respectively. It is required that last be reachable from first by re-
peated increments of first. There are two common ways to accidentally try to use an
iterator range that isn’t actually a range: The first way arises when the two iterators
that delimit the range point into the same container, but the first iterator doesn’t ac-
tually precede the second:

for_each(c.end(), c.begin(), Something); // not always this obvious

On each iteration of its internal loop, for_each will compare the first iterator with the
second for equality, and as long as they are not equal it will continue to increment the
first iterator. Of course, no matter how many times you increment the first iterator, it
will never equal the second, so the loop is essentially endless. In practice, this will, at
best, fall off the end of the container c and crash immediately with a memory protec-
tion fault. At worst, it will just fall off the end into uncharted memory and possibly
read or change values that aren’t part of the container. It’s not that much different in
principle from our infamous and eminently attackable friend the buffer overrun.

The second common case arises when the iterators point into different containers:

for_each(c.begin(), d.end(), Something); // not always this obvious

The results are similar. Because checked STL iterators remember the containers that
they refer into, they can detect such run-time errors.

References
[Dinkumware-Safe] • [Horstmann95] • [Josuttis99] §5.11.1 • [Metrowerks] • [Meyers01]
§21, §50 • [STLport-Debug] • [Stroustrup00] §18.3.1, §19.3.1

