
IN THIS CHAPTER

Introduction to <CFFILE> 129

Accessing the Server’s Filesystem 131

Uploading Files 135

Manipulating Folders on the Server
with <CFDIRECTORY> 146

Building an Application to Manage Files 152

Protecting File Accesses with <CFLOCK> 161

Executing Programs on the Server
with <CFEXECUTE> 161

Interacting with the System Registry
Using <CFREGISTRY> 165

Summary 170

CHAPTER 33
Interacting with
the Operating
System

ColdFusion provides the developer with many tools with which to interact with the operating sys-
tem. These tools include functions and tags to manipulate files and directories using <CFFILE> and
<CFDIRECTORY>, execute applications on the server using the <CFEXECUTE> tag, and manipulate the
system Registry using the <CFREGISTRY> tag. This chapter shows how these tags can be used to
interact with the file system and operating system.

Introduction to <CFFILE>
<CFFILE> permits local file access through CFML templates. Files can be moved, copied, renamed, or
deleted by using various action attributes for the <CFFILE> tag. Additionally, <CFFILE> provides
mechanisms for reading and writing ASCII files with ColdFusion. Taking advantage of the <CFFILE>
tag provides you with the ability to produce complex applications with file manipulation using a sin-
gle interface. The templates in which the <CFFILE> tag is used can be protected using native server
security when the templates are stored in directories below the document root defined for the HTTP
server. In addition to the ability to access the local file system, <CFFILE> provides the ability to upload
files using the HTTP protocol.

The Varied Faces of <CFFILE>

The <CFFILE> tag performs different operations depending on the value of its ACTION attribute.

For moving, copying, or renaming files on the server’s drives, it looks like this:

<CFFILE
ACTION=”Copy or Move or Rename”
SOURCE=”c:\LocationOnServer\MySourceFile.txt”
DESTINATION=”c:\AnotherLocationOnServer\MyNewFile.txt”>

130 CHAPTER 33 Interacting with the Operating System

For deleting a file on the server’s drive, it looks like this:

<CFFILE
ACTION=”Delete”
FILE=”c:\LocationOnServer\MyFileToDelete.txt”>

For creating or adding to existing files on the server’s drives, it looks like this:

<CFFILE
ACTION=”Write or Append”
FILE=”c:\LocationOnServer\MyFile.txt”
OUTPUT=”#ContentToSaveInFile#”>

For reading a file on the server on the server’s drive, it looks like this:

<CFFILE
ACTION=”Read or ReadBinary”
FILE=”c:\LocationOnServer\MyFile.txt”
VARIABLE=”VariableNameToHoldContent”>

Finally, for uploading a file from the browser machine to the server, it looks like this:

<CFFILE
ACTION=”Upload”
FILEFIELD=”MyFormInput”
DESTINATION=”c:\LocationOnServer”>

NOTE

Because ColdFusion operates on the server, it has no direct access to the client file system, so it can’t read, copy, delete, or do any-
thing else to the files on the browser machine. The only file-related thing it can do is to accept file uploads from the browser, which
must be explicitly initiated by the user. Keep this in mind when developing your applications.

As you can see, the <CFFILE> tag’s attributes can be set to various values depending on the task at hand.
Of course, each of the attributes can be set dynamically using variables created via the <CFSET> tag
or with the values of query or form fields. (When using form fields, extreme care should be taken to
ensure that security restrictions are in place to prevent malicious action as a result of dynamic file
action.) Table 33.1 indicates the attributes and the valid values permitted for specific values of the
ACTION attribute.

NOTE

When using FORM fields, URL variables, or other user-entered data to set the attributes for the <CFFILE> tag, extreme caution
should be used to ensure only valid entries are processed.

Table 33.1 <CFFILE> Tag ACTION Attributes

ACTION DESCRIPTION

COPY Copies a file from the location specified in SOURCE to the location specified in
DESTINATION.

MOVE Moves a file from the location specified by SOURCE to the location specified in
DESTINATION.

DELETE Deletes the file specified by the FILE attribute.

RENAME Renames the file specified in SOURCE, giving it the new name specified in
DESTINATION.

131Accessing the Server’s Filesystem

Table 33.1 (continued)

ACTION DESCRIPTION

READ Reads the contents of the text file specified by FILE to into the string variable
specified by VARIABLE.

READBINARY Reads the contents of the binary file specified by FILE into a binary object
variable specified by VARIABLE.

WRITE Writes the contents of the string specified in OUTPUT to the file specified by
FILE. If the file already exists, the existing file is completely replaced by the
new one.

APPEND Writes the contents of the string specified in OUTPUT to the file specified by
FILE. If the file already exists, the new content is appended to the end of the
existing content.

UPLOAD Used to upload files. Accepts a file from the browser machine and saves it
to the location on the server specified in DESTINATION. The FILEFIELD
attribute must correspond to the name of an <INPUT> form field of
TYPE=”File”. The NAMECONFLICT attribute controls what happens a file
with the same name already exists on the server.

NOTE

For all the actions that create files (Write, Append, Move, Copy, Rename, and Upload), you can also specify an ATTRIBUTES
attribute to control the file’s attributes on disk. For instance, when using ACTION=”Write” to create a new file, you could use
ATTRIBUTES=”ReadOnly” to make the new file be considered read-only. For details, see Appendix B, ColdFusion Tag Reference.

NOTE

For UNIX servers, you can also provide a MODE attribute for actions that create completely new files (Write, Append, and Upload).
This attribute gives you a way to control the chmod-style values for files. For details, see Appendix B, ColdFusion Tag Reference.

Accessing the Server’s Filesystem
During application development you might need to perform local filesystem operations (local here
refers to the Web server’s file system). This need might manifest itself in the requirement to read or
write ASCII files or to copy, move, rename, or delete various application files.

Reading and Writing Files
Using <CFFILE> to read and write ASCII files is fairly straightforward. For example, to read the con-
tents of the README.txt file in the C:\CFusionMX\runtime\jre folder, you could use code such
as Listing 33.1.

Listing 33.1 SimpleFileRead.cfm—<CFFILE> usage for reading README.txt into a variable
<!---
Filename: SimpleFileRead.cfm
Edited By: Nate Weiss (NMW)
Purpose: Exhibits how to read and display the contents of a text file

--->

132 CHAPTER 33 Interacting with the Operating System

Listing 33.1 (continued)
<!--- Read the contents of the text file into a string variable --->
<CFFILE
ACTION=”Read”
FILE=”C:\CFusionMX\runtime\jre\README.txt”
VARIABLE=”ReadmeContent”>

<!--- Display the value --->
<CFOUTPUT>
<TABLE BORDER=”0” CELLPADDING=”5” CELLSPACING=”0”>
<TR>
<TD STYLE=”background:navy;color:white;font-weight:bold”>
The first 1000 characters of the README.txt file are:

</TD>
</TR><TR>
<TD BGCOLOR=”Silver”>
#HTMLCodeFormat(Left(ReadmeContent, 1000))#

</TD>
</TR>

</TABLE>
</CFOUTPUT>

NOTE

<CFFILE> can read both ASCII and binary files. To read a binary file, the ACTION attribute must be set to ReadBinary.

This is a simple yet powerful feature. The example in Listing 33.1 is trivial (it simply reads the
contents of the README file on the server’s drive, then displays the first 1000 characters on a web
page), but it serves as the basis for the power of reading files using <CFFILE>. After the <CFFILE>
operation is completed, the contents of the file are available in the variable specified during the call
(in this case, ReadmeContent). If this file contained delimited data, it could be parsed using <CFLOOP>
and various string functions.

Writing a file using <CFFILE> is just as easy. Listing 33.2 shows an example of writing a modified
version of the CFDIST.INI file back out to disk.

Listing 33.2 SimpleFileWrite.cfm—<CFFILE> Usage to Alter the Contents of a Text File
<!---
Filename: SimpleFileWrite.cfm
Author: Nate Weiss (NMW)
Purpose: Exhibits how to read, change, and re-write a text file

--->

<!--- Read the contents of the text file into a string variable --->
<CFFILE
ACTION=”Read”
FILE=”C:\CFusionMX\runtime\jre\README.txt”
VARIABLE=”ReadmeContent”>

<!--- Modify the contents of the variable --->
<CFSET header = “File Modified using ColdFusion MX on: “>
<CFSET header = header & DateFormat(Now(),”mm/dd/yyyy”) & “ at “>
<CFSET header = header & TimeFormat(Now(),”h:mm:ss tt”) & Chr(13) & Chr(10)>
<CFSET RevisedContent = header & ReadmeContent>

133Accessing the Server’s Filesystem

Listing 33.2 (continued)
<!--- Write the contents of the variable back out to disk --->
<CFFILE
ACTION=”WRITE”
FILE=”C:\CFusionMX\runtime\jre\README.txt”
OUTPUT=”#RevisedContent#”
ADDNEWLINE=”Yes”>

<HTML>
<HEAD>
<TITLE><CFFILE> read/write Example</TITLE>

</HEAD>
<BODY>

<!--- Display the file’s revised contents --->
<CFOUTPUT>
<TABLE BORDER=”0” CELLPADDING=”5” CELLSPACING=”0”>
<TR>
<TD STYLE=”background:navy;color:white;font-weight:bold”>
C:\CFusionMX\runtime\jre\README.txt was modified, as shown below:

</TD>
</TR><TR>
<TD BGCOLOR=”Silver”>
#HTMLCodeFormat(RevisedContent)#

</TD>
</TR>

</TABLE>
</CFOUTPUT>

</BODY>
</HTML>

The code in Listing 33.2 builds on the example in Listing 33.1. First, it uses <CFFILE> to read the
contents of CFDIST.INI into a variable. Next, a new line is added to the beginning of the variable by
concatenating a remark statement coupled with a date/time stamp to the contents of the variable.
Lastly, <CFFILE> is called again to write the contents of the variable back out to disk. The resulting
file output is displayed as it would be seen on disk.

NOTE

<CFFILE>with the ACTION attribute set to Write creates the file if it does not exist and overwrites the file if it exists. Care should
be taken to ensure that existing content is not deleted inadvertently. If the contents of an existing ASCII file are to be kept, <CFFILE>
should be used with the ACTION set to Append, which will concatenate the contents of the variable specified in the OUTPUT
attribute to the end of the disk file. The FileExists() function can be used to determine whether a Write or Append
operation should take place.

Copying, Moving, Renaming, and Deleting Files
The <CFFILE> tag provides the capability to perform local file operations, such as COPY, MOVE, RENAME,
and DELETE. Local in this example means local to the ColdFusion server—not local to the browser
machine. These actions have the potential for causing severe damage to the filesystem. Security
considerations should therefore be evaluated carefully before developing ColdFusion templates that
provide the ability to copy, rename, move, or delete files.

134 CHAPTER 33 Interacting with the Operating System

NOTE

Security measures can vary by operating system and from one Web server to another. Consult documentation specific to the config-
uration of your Web server for detailed information about security issues.

To provide local file access, the <CFFILE> tag is used with the ACTION attribute set to COPY, MOVE, RENAME,
or DELETE. The DESTINATION attribute is not required in the case of the DELETE action value; it is
required in all other cases.

Listing 33.3 shows ColdFusion’s capability to copy files on the local filesystem. The ACTION attribute
is set to COPY; the SOURCE attribute is set to the name of the file that is to be copied. The DESTINATION
attribute is set to the directory into which the file will be copied. The DESTINATION attribute also can
specify a filename in addition to the directory name, which enables you to copy one file to another
while changing the name in the process.

Listing 33.3 SimpleFileCopy.cfm—<CFFILE> Tag with ACTION Attribute Set to COPY
<!---
Filename: SimpleFileCopy.cfm
Author: Nate Weiss (NMW)
Purpose: Exhibits how to make a copy of a file on the server’s drive

--->

<!--- Copy a file from one location to another --->
<CFFILE
ACTION=”Copy”
SOURCE=”C:\CFusionMX\runtime\jre\README.txt”
DESTINATION=”C:\Inetpub\wwwroot\ows\README.txt”>

<CFOUTPUT>The file has been copied.</CFOUTPUT>

Listing 33.4 shows ColdFusion’s capability to move files on the local filesystem. The ACTION
attribute is set to MOVE; the SOURCE attribute is set to the name of the file that is to be moved. The
DESTINATION attribute is set to the directory into which the file will be moved.

Listing 33.4 SimpleFileMove.cfm—<CFFILE> Tag with ACTION Attribute Set to MOVE
<!---
Filename: SimpleFileMove.cfm
Edited By: Nate Weiss (NMW)
Purpose: Exhibits how to move a file from one

location to another on the server’s drives
--->

<!--- Move a file from one location to another --->
<CFFILE
ACTION=”Move”
SOURCE=”C:\CFusionMX\runtime\jre\README.txt”
DESTINATION=”C:\Inetpub\wwwroot\ows\README.txt”>

<CFOUTPUT>The file has been moved.</CFOUTPUT>

135Uploading Files

Listing 33.5 shows the use of the DELETE value of the ACTION attribute. The ACTION attribute is set to
DELETE, and the FILE attribute is set to the name of the file you want deleted.

Listing 33.5 SimpleFileDelete.cfm—<CFFILE> Tag with ACTION Attribute Set to DELETE
<!---
Filename: SimpleFileDelete.cfm
Author: Nate Weiss (NMW)
Purpose: Exhibits how to make a remove a file from the server’s drive

--->

<!--- Delete a file from the server’s drive --->
<CFFILE
ACTION=”Delete”
FILE=”C:\Inetpub\wwwroot\ows\README.txt”>

<CFOUTPUT>The file has been deleted.</CFOUTPUT>

NOTE

Use the DELETE action carefully. Access to templates that delete files should be carefully restricted.

Listing 33.6 shows <CFFILE> being used to RENAME an existing file.

Listing 33.6 SimpleFileRename.cfm—<CFFILE> Tag with ACTION Attribute Set to RENAME
<!---
Filename: SimpleFileMove.cfm
Edited By: Nate Weiss (NMW)
Purpose: Exhibits how to rename a file on the server’s drive

--->

<!--- Rename a file on the server’s drive --->
<CFFILE
ACTION=”Rename”
SOURCE=”C:\Inetpub\wwwroot\ows\README.txt”
DESTINATION=”C:\Inetpub\wwwroot\ows\ReadMeAgain.txt”>

<CFOUTPUT>The file has been renamed.</CFOUTPUT>

Uploading Files
Browser-based file uploads in ColdFusion are provided through the <CFFILE> tag. This tag takes
advantage of features available in most Web browsers that support file uploads using the HTTP
protocol. The syntax of the <CFFILE> tag can be used with selected attributes to facilitate the
uploading of files to the server.

NOTE

The method by which files are uploaded to the server using HTTP is documented in the Internet Request for Comment (RFC) 1867,
which was available at http://www.faqs.org/rfcs/rfc1867.html at the time of this writing. RFC 1867 is the formal
documentation of the HTTP file upload process. It specifies the concepts related to file uploads using MIME file extensions.

136 CHAPTER 33 Interacting with the Operating System

NOTE

Netscape browsers have supported file uploading since version 2.0. Internet Explorer has supported it since version 4.0 (it was also
possible in IE 3.02 with a separate add-on). If your users have other browsers, you might want to double-check to make sure that file
uploading is supported.

To upload a file from the browser machine to the server, the <CFFILE> tag is used like this:

<CFFILE
ACTION=”Upload”
FILEFIELD=”MyFormInput”
DESTINATION=”c:\LocationOnServer”
NAMECONFLICT=”OVERWRITE”
ACCEPT=”image/gif”>

Briefly, the meaning of each of these attributes is as follows:

■ The FILEFIELD attribute must correspond to a special <INPUT> field on a HTML form
(you will see an example of this shortly, in Listing 33.7).

■ The DESTINATION is the folder on the server that you would like the file to be placed into
when the upload is complete.

■ The NAMECONFLICT attribute controls what happens if there is already a file in the
destination folder that has the same name as the file being uploaded.

■ The ACCEPT attribute allows you to control which types of files that the user is able to
upload (just images, just text files, and so on).

You must carefully examine a number of issues prior to writing the HTML/CFML necessary to
process a file upload. First and foremost is security. The directory to which the files will be uploaded
must be secure from outside view, and the templates used to perform the file operations must be
protected from unauthorized access. Because the threat of computer viruses is increasing, you must
take precautions to protect your system from malicious users. The second issue to examine is the
reason you are providing file operations to the users. Is it necessary? Can it be accomplished using
other means?

What If the File Already Exists on the Server?
It’s often important to be able for your server to be able to accept file uploads from multiple users
at the same time. If the users are uploading files with the same filenames (or filenames that already
exist on the server from prior uploads), you need to tell ColdFusion how to handle the situation
using the NAMECONFLICT attribute. Table 33.2 lists the values you can supply to the NAMECONFLICT
attribute.

Table 33.2 NAMECONFLICT Values for <CFFILE> ACTION=”Upload”

VALUE MEANING

NAMECONFLICT=”Error” If a file with the same name already exists on the server, an error
message is generated and page execution stops. Of course, you
can catch and recover from the error using the <CFTRY> and
<CFCATCH> tags (discussed in Chapter 31, Error Handling).

137Uploading Files

Table 33.2 (continued)

VALUE MEANING

NAMECONFLICT=”Skip” If a file with the same name already exists on the server, the file
upload operation is simply skipped. No error message is shown.
Your code can examine the value of the CFFILE.FileWasSaved
variable to detect whether the upload was actually skipped for this
reason (see Table 33.3).

NAMECONFLICT=”Overwrite” If a file with the same name already exists on the server, the existing
file is overwritten with the file being uploaded from the browser.
Your code can look at the value of CFFILE.FileWasOverwritten
to determine whether a file was actually overwritten when your
code is actually used.

NAMECONFLICT=”MakeUnique” If a file with the same name already exists on the server, the file
from the browser is saved with an automatically generated
filename. This ensures that an uploaded file can always be saved
without overwriting an existing file. Your code can use the
CFFILE.ServerFile variable to determine the actual filename
used (see Table 33.3).

Determining the Status of a File Upload
After a <CFFILE> operation is completed, information about the file is available in reference keys
of the CFFILE structure. Similar to the URL, FORM, and CGI structures, the CFFILE structure maintains
status information about the most recent file operation completed or attempted. Keys in the
CFFILE structure are referenced in the same manner as other ColdFusion variables (for example,
#CFFILE.ContentType#). Table 33.3 identifies the attributes maintained and their meanings.

NOTE

Hopefully this isn’t too confusing, but previous versions of ColdFusion used a prefix of FILE for these variables, rather than
CFFILE. Either prefix will work in ColdFusion MX to maintain backward compatibility, but you should use CFFILE for new
applications.

Table 33.3 CFFILE Variables Available After a File Upload

KEY EXPLANATION

CFFILE.AttemptedServerFile Did ColdFusion attempt to save the file? (Yes/No)

CFFILE.ClientDirectory Client-side directory in which the file was located.

CFFILE.ClientFile Client-side filename (with extension).

CFFILE.ClientFileExt Client-side filename extension without the period.

CFFILE.ClientFileName Client-side filename (without extension).

CFFILE.ContentSubType MIME content subtype of file.

CFFILE.ContentType MIME content type of file.

CFFILE.DateLastAccessed Returns the date and time the uploaded file was last accessed.

138 CHAPTER 33 Interacting with the Operating System

Table 33.3 (continued)

KEY EXPLANATION

CFFILE.FileExisted Did a file with the same name exist in the specified destination
prior to upload, copy, or move? (Yes/No)

CFFILE.FileSize Size of the uploaded file.

CFFILE.FileWasAppended Was the file appended to an existing file by ColdFusion?
(Yes/No)

CFFILE.FileWasOverwritten Was an existing file overwritten by ColdFusion? (Yes/No)

CFFILE.FileWasRenamed Was the uploaded file renamed to avoid a conflict? (Yes/No)

CFFILE.FileWasSaved Was the file saved by ColdFusion? (Yes/No)

CFFILE.OldFileSize Size of the file that was overwritten during an upload operation.

CFFILE.ServerDirectory Directory on server where file was saved.

CFFILE.ServerFile Filename of the saved file.

CFFILE.ServerFileExt Extension of the uploaded file without the period.

CFFILE.ServerFileName Filename without extension of the uploaded file.

CFFILE.TimeCreated Returns the time the uploaded file was created.

CFFILE.TimeLastModified Returns the date and time of the last modification to the
uploaded file.

These variables are used in several of the examples that follow, specifically in Listing 35.8 and the
examples that follow it.

Building an Upload Interface
After you have decided to use <CFFILE> to upload a file, you can move on to the next step of the
process, which is preparing the user interface. This requires the development of an HTML form,
either through writing static HTML or by creating an HTML form using dynamic code generated
via CFML. In either case, the form’s structure is basically the same.

The next series of listings is used to create an add-on to the actor listings that will allow a photo to
be linked to an actor record. First, the general syntax is shown, and then specific modifications to
the actor templates are made.

Listing 33.7 shows the HTML code necessary to create a form that prompts the user for a file to be
uploaded to the server (Figure 33.1). The user can use the Browse button to select a file from a
file selection dialog box (Figure 33.2); the selected filename will be placed in the TYPE=”File” input
field (Figure 33.3), which will cause the file to be uploaded when the form is submitted.

139Uploading Files

Figure 33.3

Example HTML form
for file upload with
selected filename.

Figure 33.2

Example file selection
dialog box.

Figure 33.1

Example HTML form
for file upload.

140 CHAPTER 33 Interacting with the Operating System

Listing 33.7 UploadForm.html—HTML Form for File Upload Using the <CFFILE> Tag
<!---
Filename: UploadForm.html
Edited By: Nate Weiss (NMW)
Purpose: Simple file uploading example

--->

<HTML>
<HEAD>
<TITLE><CFFILE> Upload Demonstration - Example 1</TITLE>

</HEAD>
<BODY>

<H3><CFFILE> Upload Demonstration - Example 1</H3>

<!--- Create HTML form to upload a file --->
<FORM
ACTION=”UploadAction.cfm”
ENCTYPE=”multipart/form-data”
METHOD=”Post”>

<!--- File field for user to select or specify a filename --->
<P>File to upload:

<INPUT
TYPE=”File”
NAME=”FileName”
SIZE=”50”>

<!--- Submit button to submit the form (and upload the file) --->
<INPUT
TYPE=”Submit”
VALUE=”Upload the File”>

</FORM>

</BODY>
</HTML>

There are several important items within this form, all of which are necessary to perform a file upload:

The <FORM> tag has a ENCTYPE=”multipart/form-data” attribute, which is necessary for the browser
to send the file to ColdFusion in a way that it can use.

The addition of an <INPUT> of TYPE=”File”, which tells the browser to process file selection using
the standard user-interface functionality of the underlying operating system.

The <FORM> tag’s ACTION attribute identifies which ColdFusion template will be used to process the
file. That template will use the <CFFILE> tag with ACTION=”Upload”.

The METHOD attribute is set to Post.

The dialog box shown in Figure 33.2 is specific to the operating system on which a browser is run-
ning and changes from one operating system to another. Figure 33.3 shows the HTML form with
the text box filled with the selected filename.

141Uploading Files

When this form is submitted, the FORM tag’s ACTION attribute causes the selected file to be uploaded.
Listing 33.8 shows the CFML code required to process the uploaded file. This example enumerates
the values of the keys in the CFFILE structure after the file has been written to the file server. Details
of the keys in the CFFILE structure can be seen in Table 33.3.

Listing 33.8 UploadAction.cfm—Processing an Uploaded File with ColdFusion
<!---
Filename: UploadAction.cfm
Edited By: Nate Weiss (NMW)
Purpose: Demonstrates how to accept a file upload from the browser machine

--->

<!--- Template to process uploaded files from user --->
<HTML>
<HEAD>
<TITLE><CFFILE> Upload Demonstration - Example 1</TITLE>

</HEAD>
<BODY>

<H3><CFFILE> Upload Demonstration - Example 1</H3>

<!--- Accept the actual file upload --->
<!--- The file will be placed into the same folder as this ColdFusion page --->
<CFFILE
DESTINATION=”#GetDirectoryFromPath(GetBaseTemplatePath())#”
ACTION=”Upload”
NAMECONFLICT=”Overwrite”
FILEFIELD=”FileName”>

<!--- Output information about the status of the upload --->
<CFOUTPUT>
<P>
<CFFILE> Tag File Upload Demonstration Results - Example 1

File Upload was Successful! Information about the file is detailed below

</P>

<TABLE>
<CAPTION>File Information</CAPTION>
<TR VALIGN=”Top”>
<TH ALIGN=”Left”>File Name:</TH>
<TD>#File.ServerDirectory#\#CFFILE.ServerFile#</TD>
<TH ALIGN=”Left”>Content Type:</TH><TD>#File.ContentType#</TD>

</TR>
<TR VALIGN=”Top”>
<TH ALIGN=”Left”>Content SubType:</TH>
<TD>#File.ContentSubType#</TD>
<TH ALIGN=”Left”>Client Path:</TH>
<TD>#File.ClientDirectory#</TD>

</TR>
<TR VALIGN=”Top”>
<TH ALIGN=”Left”>Client File:</TH>
<TD>#File.ClientFile#</TD>
<TH ALIGN=”Left”>Client FileName:</TH>
<TD>#File.ClientFileName#</TD>

</TR>
<TR VALIGN=”Top”>
<TH ALIGN=”Left”>Client FileExt:</TH>

142 CHAPTER 33 Interacting with the Operating System

Listing 33.8 (continued)
<TD>#File.ClientFileExt#</TD>
<TH ALIGN=”Left”>Server Path:</TH>
<TD>#File.ServerDirectory#</TD>

</TR>
<TR VALIGN=”Top”>
<TH ALIGN=”Left”>Server File:</TH>
<TD>#File.ServerFile#</TD>
<TH ALIGN=”Left”>Server FileName:</TH>
<TD>#File.ServerFileName#</TD>

</TR>
<TR VALIGN=”Top”>
<TH ALIGN=”Left”>Server FileExt:</TH>
<TD ALIGN=”Left”>#File.ServerFileExt#</TD>
<TH ALIGN=”Left”>Attempted ServerFile:</TH>
<TD>#File.AttemptedServerFile#</TD>

</TR>
<TR VALIGN=”Top”>
<TH ALIGN=”Left”>File Existed?</TH>
<TD>#File.FileExisted#</TD>
<TH ALIGN=”Left”>File Was Saved?</TH>
<TD>#File.FileWasSaved#</TD>

</TR>
<TR VALIGN=”Top”>
<TH ALIGN=”Left”>File Was Overwritten?</TH>
<TD>#File.FileWasOverWritten#</TD>
<TH ALIGN=”Left”>File Was Appended?</TH>
<TD>#File.FileWasAppended#</TD>

</TR>
<TR VALIGN=”Top”>
<TH ALIGN=”Left”>File Was Renamed?</TH>
<TD>#File.FileWasRenamed#</TD>
<TH ALIGN=”Left”>File Size:</TH>
<TD>#File.Filesize#</TD></TH>

</TR>
<TR VALIGN=”Top”>
<TH ALIGN=”Left”>Old File Size:</TH>
<TD>#File.OldFileSize#</TD>
<TH ALIGN=”Left”>Date Last Accessed:</TH>
<TD>#DateFormat(File.DateLastAccessed,’dd mmm yyyy’)#</TD>

</TR>
<TR VALIGN=”Top”>
<TH ALIGN=”Left”>Date/Time Created:</TH>
<TD>
#DateFormat(File.TimeCreated,’dd mmm yyyy’)#
#Timeformat(File.TimeCreated,’hh:mm:ss’)#

</TD>
<TH ALIGN=”Left”>Date/Time Modified:</TH>
<TD>
#DateFormat(File.TimeLastModified,’dd mmm yyyy’)#
#Timeformat(File.TimeLastModified,’hh:mm:ss’)#

</TD>
</TR>

</TABLE>
</CFOUTPUT>

</BODY>
</HTML>

143Uploading Files

The CFML template shown in Listing 33.8 processes the uploaded file, stores it in the directory
indicated in the <CFFILE> tag’s DESTINATION attribute, and then prints out the contents of the keys
in the CFFILE structure (Figure 33.4). Some of the CFFILE keys might not have values, depending on
the attributes passed to the <CFFILE> tag.

NOTE

Listing 33.8 uses the GetDirectoryFromPath() and GetBaseTemplatePath() functions to set the DESTINATION
attribute to the directory portion of the currently-executing template’s filename. In other words, the uploaded file will be saved in the
same folder that Listing 33.8 itself is stored in (probably the ows/32 folder within your web server’s document root). This combination
of functions can be used anytime For details about these helpful functions, see Appendix C, “ColdFusion Function Reference”.

NOTE

If you wish, you could use #ExpandPath(‘./’)# instead of #GetDirectoryFromPath(GetBaseTemplatePath())#
to return the location of the currently-executing template. See Appendix C for details.

Listing 33.9 shows an example that builds on the HTML/CFML code you just wrote; it demon-
strates the use of variables to set the various attributes of the <CFFILE> tag. The HTML form has
been modified by adding a radio button group that corresponds to the NAMECONFLICT attribute in
the <CFFILE> tag (Figure 33.5).

Figure 33.4

Example CFML
output of uploaded
file information.

144 CHAPTER 33 Interacting with the Operating System

Listing 33.9 UploadForm2.html—Modification of HTML to Demonstrate Data-Driven
Attribute Setting

<!---
Filename: UploadForm2.html
Edited By: Nate Weiss (NMW)
Purpose: Simple file uploading example

--->

<HTML>
<HEAD>
<TITLE><CFFILE> Upload Demonstration - Example 2</TITLE>

</HEAD>
<BODY>

<H3><CFFILE> Upload Demonstration - Example 2</H3>

<!--- Create HTML form to upload a file --->
<FORM
ACTION=”UploadAction2.cfm”
ENCTYPE=”multipart/form-data”
METHOD=”Post”>

<!--- File field for user to select or specify a filename --->
<P>File to upload:

<INPUT
TYPE=”File”
NAME=”FileName”
SIZE=”50”>

<P>Action if File Exists:

<INPUT TYPE=”RADIO” NAME=”FileAction” VALUE=”OVERWRITE” CHECKED>Overwrite
<INPUT TYPE=”RADIO” NAME=”FileAction” VALUE=”MAKEUNIQUE”>Make Unique
<INPUT TYPE=”RADIO” NAME=”FileAction” VALUE=”SKIP”>Skip

Figure 33.5

Providing further
control over file
uploads with form
fields.

145Uploading Files

Listing 33.9 (continued)
<!--- Submit button to submit the form (and upload the file) --->
<P>
<INPUT
TYPE=”Submit”
VALUE=”Upload the File”>

</FORM>

</BODY>
</HTML>

NOTE

The CD-ROM for this book contains the UploadAction2.cfm action page that this form posts its data to. The UploadAction2.cfm file
is exactly the same as the original version of the action page (Listing 33.8), except that the NAMECONFLICT=”Overwrite”
attribute has been replaced with NAMECONFLICT=”#FORM.FileAction#”.

In the form screenshot shown in Figure 33.5, the radio button marked Make Unique was checked.
With this option selected, the result of submitting the same file is that the server is forced to create
a unique name if the same file is uploaded the second time. The CFFILE.FileWasRenamed variable
will reflect this with a value of Yes (Figure 33.6). In this case, I uploaded a file from my browser that
had a filename of Sample.jpg. The second time I uploaded it, the Make Unique behavior kicked in
and saved the second version of the file with a filename of Sample1.jpg.

Figure 33.6

Example output
with user-specified
NAMECONFLICT
attribute.

146 CHAPTER 33 Interacting with the Operating System

The <CFFILE> tag in this example uses data passed from the form in the FileAction field to set the
value of the NAMECONFLICT attribute. The field was referenced in the <CFFILE> tag as follows:

NAMECONFLICT=”#FORM.FILEACTION#”

Any of the other attributes can also be set using CFSET variables, FORM attributes, or URL attributes.
Note, however, that setting the SOURCE or DESTINATION attribute based on user input can have far-
reaching consequences. For security reasons, users should not be permitted to specify SOURCE or
DESTINATION attributes using TEXT input fields. The SOURCE and DESTINATION attributes should be set
using only template-based code, which is conditionally executed, to provide maximum security.

Manipulating Folders on the Server with <CFDIRECTORY>
Just as <CFFILE> can be used to read, write, and manipulate files, <CFDIRECTORY> can be used to man-
age directories on the server’s drives. Similar to <CFFILE>, <CFDIRECTORY> takes an ACTION attribute,
which specifies the action to be performed.

Using <CFDIRECTORY>
To create a directory, the tag is used like this:

<CFDIRECTORY
ACTION=”Create”
DIRECTORY=”c:\MyFolders\MyNewFolder”>

To delete a directory, just modify the ACTION, like this:

<CFDIRECTORY
ACTION=”Delete”
DIRECTORY=”c:\MyFolders\MyUnwantedFolder”>

To rename a directory, use the tag like this:

<!--- To rename a directory --->
<CFDIRECTORY
ACTION=”Rename”
DIRECTORY=”c:\MyFolders\MyExistingFolder”
NEWDIRECTORY=”c:\MyFolders\MyNewFolderName”>

Finally, to get a listing of the contents of a directory (that is, the files and sub-folders that the direc-
tory contains), use the tag like this:

<CFDIRECTORY
ACTION=”List”
DIRECTORY=”c:\MyFolders\MyExistingFolder”
SORT=”Name ASC”
FILTER=”*.*”
NAME=”MyQueryName”>

The supported actions for <CFDIRECTORY> are listed formally in Table 33.4, and the tag’s attributes
are listed in Table 33.5.

147Manipulating Folders on the Server with <CFDIRECTORY>

Table 33.4 <CFDIRECTORY> Actions

ACTION DESCRIPTION

CREATE Creates the directory specified in the DIRECTORY attribute.

DELETE Deletes the directory specified in the DIRECTORY attribute.

RENAME Renames the directory specified in the DIRECTORY attribute to the name
specified in the NEWDIRECTORY attribute.

LIST Returns the contents of the directory specified in the DIRECTORY attribute
into a query named in the NAME attribute. An optional FILTER can be
specified as well, as can a SORT order.

Table 33.5 Additional <CFDIRECTORY> Attributes

ATTRIBUTE DESCRIPTION

DIRECTORY Required. Directory on which the action will be taken.

MODE Optional. Used on Unix versions of ColdFusion to set directory permissions
when ACTION=”Create”. Ignored on Windows. Standard Unix style modes
are accepted.

NEWDIRECTORY Required for ACTION=”Rename”. Ignored for all other actions. Specifies new
name of directory.

NAME Required for ACTION=”List”. Ignored for other actions. Specifies name of
output query created by the action.

FILTER Optional. Used with ACTION=”List” to filter the files returned in the query.
An example is *.txt. Only one filter can be applied at a time. It’s ignored for
all other actions.

SORT Optional for ACTION=”List”. Ignored for other actions. Lists the columns
in the query to sort the results with. Specified in a comma-delimited list.
Ascending order is the default (ASC). Descending order is specified by the use
of DESC. An example is “dirname ASC, name DESC, size”.

Getting the Contents of a Directory
When you use <CFDIRECTORY> with ACTION=”List”, ColdFusion creates a query record set object
that contains information about the contents of the directory you specify in the DIRECTORY attribute.
The query object is returned to you with the variable name you specify in the NAME attribute. The
query object contains one row for every file or subfolder within the directory. The columns of the
query object are listed in Table 33.6.

So, for instance, if you provide NAME=”FolderContents” in a <CFDIRECTORY> tag, then you can refer
to FolderContents.Name to display the name of each file (or subfolder), and FolderContents.Size to
refer to its size on your server’s drive.

148 CHAPTER 33 Interacting with the Operating System

NOTE

On UNIX/Linux servers, there is also a MODE column that contains the Octal value that specifies the permissions setting for the
directory. For information about octal values, see the UNIX man pages for the chmod shell command.

Table 33.6 Query Columns Populated by <CFDIRECTORY> ACTION=”List”

COLUMN DESCRIPTION

Name The name of the file or folder, including the file extension (but not including
the full directory path).

Size The size of the file, in bytes.

Type Whether the record represents a file or a folder. If the record represents a
file, the value of the TYPE column will be File. If it represents a directory, the
TYPE will be Dir.

DateLastModified The date that the file was last modified, as a ColdFusion style date value.
You can use this date with DateFormat(), TimeFormat(), or any of the
other date-related functions listed in Appendix C, “ColdFusion Function
Reference.”

Attributes The file’s attributes (read-only, archive, and so on).

Building a Simple File Explorer
Listing 33.10 uses the ACTION=”List” attribute of <CFDIRECTORY> to build a simple web interface for
exploring the files and subfolders within the ows folder in your web server’s document root. When
you visit this page with your web browser, you will see a drop-down list that includes the folders
within the ows folder (Figure 33.7). When you select a folder from the list, the page reloads and
the files in the selected appear. From there, you can navigate further to any of the selected folder’s
subfolders, or return to the previous folder using the Parent Folder option in the drop-down list
(Figure 33.8).

Figure 33.7

The directory
listing provided by
<CFDIRECTORY> is
exposed to the user
as a drop-down list.

149Manipulating Folders on the Server with <CFDIRECTORY>

NOTE

This example assumes that you are saving the example listings for this book’s chapters in the recommended places. That is, the
assumption is that there is a folder named ows within your server’s Web document root, and that the example listings for Chapter 20
are in ows/20, the listings for Chapter 21 are in ows/21, and so on.

Listing 33.10 SimpleFileExplorer1.cfm—Listing Files and Folders Within a Directory
<!---
Filename: SimpleFileExplorer.cfm
Author: Nate Weiss (NMW)
Purpose: Provides an interface for exploring files and subfolders

within the ows root
--->

<!--- The user can explore this folder and any nested subfolders --->
<!--- Assume that the parent of the folder that contains this ColdFusion --->
<!--- page (that is, the “ows” folder) should be considered explorable --->
<CFSET BaseFolder = ExpandPath(“../”)>

<!--- The SubfolderPath variable indicates the currently selected folder --->
<!--- (relative to the BaseFolder). Defaults to an empty string, meaning --->
<!--- that the BaseFolder will be current when the page first appears --->
<CFPARAM NAME=”SubfolderPath” TYPE=”string” DEFAULT=””>

<!--- This variable, then, is the full path of the selected folder --->
<CFSET FolderToDisplay = BaseFolder & SubfolderPath>

<!--- Get a listing of the selected folder --->
<CFDIRECTORY
DIRECTORY=”#FolderToDisplay#”
NAME=”DirectoryQuery”
SORT=”Name ASC”
FILTER=”*.*”>

Figure 33.8

Users can view the
files in the selected
directory, or navigate
up and down the
folder structure.

150 CHAPTER 33 Interacting with the Operating System

Listing 33.10 (continued)
<CFOUTPUT>
<HTML>
<HEAD><TITLE>Simple File Explorer</TITLE></HEAD>

<BODY>
<H3>Simple File Explorer</H3>

<!--- Create a simple form for navigating through folders --->
<FORM ACTION=”SimpleFileExplorer1.cfm” METHOD=”Post”>

<!--- Show the subfolder path, unless already at top level --->
<CFIF SubfolderPath EQ “”>
You are at the top level.

<CFELSE>
Current Folder: #SubfolderPath#

</CFIF>

<!--- Provide a drop-down list of subfolder names --->
Select folder:
<SELECT NAME=”SubfolderPath” onchange=”this.form.submit()”>

<!--- Provide an option to go up one level to the parent folder, --->
<!--- unless already at the BaseFolder --->
<CFIF ListLen(SubfolderPath, ‘/’) GT 0>
<CFSET ParentFolder = ListDeleteAt(SubfolderPath, ListLen(SubfolderPath,
➥‘/’), ‘/’)>
<OPTION VALUE="#ParentFolder#">[parent folder]

</CFIF>

<!--- For each record in the query returned by <CFDIRECTORY> --->
<CFLOOP QUERY=”DirectoryQuery”>
<!--- If the record represents a subfolder, list it as an option --->
<CFIF Type EQ “Dir”>
<OPTION VALUE=”#SubfolderPath#/#Name#”>#Name#

</CFIF>
</CFLOOP>

</SELECT>

<!--- Submit button to navigate to the selected folder --->
<INPUT TYPE=”Submit” VALUE=”Go”>

</FORM>

<!--- Use Query of Queries (In Memory Query) to get a subset of --->
<!--- the query returned by <CFDIRECTORY>. This new query object --->
<!--- will hold only the file records, not any subfolder records --->
<CFQUERY DBTYPE=”query” NAME=”FilesQuery”>
SELECT * FROM DirectoryQuery
WHERE TYPE = ‘File’

</CFQUERY>

<!--- If there is at least one file to display... --->
<CFIF FilesQuery.RecordCount GT 0>
<!--- Display the files in a simple HTML table --->
<TABLE WIDTH=”500” BORDER=”0” CELLPADDING=”1” CELLSPACING=”0”>
<TR BGCOLOR=”CornflowerBlue”>

151Manipulating Folders on the Server with <CFDIRECTORY>

Listing 33.10 (continued)
<TH>Filename</TH>
<TH>Modified</TH>
<TH>Size</TH>

</TR>

<!--- For each file... --->
<CFLOOP QUERY=”FilesQuery”>
<!--- Use alternating colors for the table rows --->
<!--- This is explained in the “Next N” examples from Chapter 21 --->
<CFIF FilesQuery.CurrentRow MOD 2 EQ 0>
<CFSET RowColor = “LightGrey”>

<CFELSE>
<CFSET RowColor = “White”>

</CFIF>

<!--- Display the file details --->
<TR BGCOLOR=”#RowColor#”>
<!--- File name --->
<TD WIDTH=”250”>
#Name#

</TD>
<!--- File modification date and time --->
<TD WIDTH=”200”>
#DateFormat(DateLastModified, “m/d/yyyy”)#
at
#TimeFormat(DateLastModified, “h:mm:ss tt”)#

</TD>
<!--- File size --->
<TD WIDTH=”50” ALIGN=”right”>
#Ceiling(Size / 1024)# KB

</TD>
</TR>

</CFLOOP>
</TABLE>

</CFIF>

</BODY>
</HTML>

</CFOUTPUT>

First, the ExpandPath() function is used to create a variable called BaseFolder that holds the path to
the ows folder on your server’s drive. The actual value of this variable when your page executes will
likely be c:\CFusionMX\wwwroot\ows, c:\inetpub\wwwroot\ows, or something similar, depending on
the web server you are using. For common sense security reasons, the user will only be able to
explore files and directories within the BaseFolder. If you want the user to be able to explore some
other folder, perhaps outside of your server’s document root, you can just hardcode the BaseFolder
variable with the location of that folder.

Next, the <CFPARAM> tag is used to declare a variable named SubfolderPath and give it a default value
of an empty string. The idea is that this variable will indicate which subfolder within the BaseFolder
that the user wants to explore. If a URL or FORM parameter called SubfolderPath is provided to
the page, that value will be used; otherwise it is assumed that the page is appearing for the first time.
If the user has selected the subfolder named images, then the value of SubfolderPath will be /20.

152 CHAPTER 33 Interacting with the Operating System

The FolderToDisplay variable is then created by concatenating the BaseFolder together with the
SubfolderPath. This variable, then, holds the full path to the folder the user wants to explore; this is
what will be supplied to the <CFDIRECTORY> tag to obtain the contents of the folder. So, if the user
If the user has selected the subfolder named images, then the value of FolderToDisplay will be
c:\CFusionMX\wwwroot\ows\images, c:\inetpub\wwwroot\ows\images, or something similar,
depending on what web server you are using.

Now the <CFDIRECTORY> tag can be used to get a listing of all the files and subfolders within the
selected folder. This will result in a query object called DirectoryQuery, which will contain the columns
listed in Table 33.6.

Near the middle of this listing, a <CFLOOP> tag is used to loop over the DirectoryQuery query,
generating an <OPTION> tag for each subfolder within the current folder (as shown in Figure 33.7).
Within the loop, a <CFIF> test is used to only output options for rows where the Type column is set
to Dir. This step is necessary because the query object may contain rows for subfolders and other
rows for individual files. The <CFIF> test effectively filters the query object so that only rows that
represent folders are processed.

Another way to filter a directory query object by type (that is, to only include files or folders) is to
use ColdFusion MX’s Query of Queries feature (also called In Memory Query) that you learned
about in Chapter 29, “More About SQL and Queries”. This strategy is used in the second half of
this listing, to create a filtered version of DirectoryQuery (called FilesQuery), that only contains
records for files, not subfolders. Once that’s done, outputting the actual information about files is a
simple matter. A <CFLOOP> block is used to output the file information in a simple HTML table,
displaying the values of each record’s Name, Size, and DateLastModified columns. Note that the
ordinary DateFormat(), TimeFormat(), and Ceiling() functions are used to display the data
attractively.

This book’s CD-ROM also contains a SimpleFileExplorer2.cfm page that adds the ability for the
user to add and remove directories to the server’s drive. This second version of the page is only
slightly more complex than the one shown in Listing 33.10. As a learning exercise, you are
encouraged to take a look at the listing and study how it works.

Building an Application to Manage Files
Now that you have seen the <CFFILE> tag used in simple examples, you can modify the sample
application that combines file upload capabilities, directory listings, and file manipulation. The
example application for this section will be a Web based interface for updating information in the
Actors table within the Orange Whip Studios database.

Three CFML templates will be created for this example application. The first template provides a
list of actors from which to choose. The second template is a simple form that allows you to edit
actor information or upload a photo of the actor. The third template accepts the uploaded photos
and makes any appropriate changes to the database.

Let’s start by creating the template to provide the actor list, which is shown in Listing 33.11.

153Building an Application to Manage Files

Listing 33.11 ActorPhotoList.cfm—Actor Listing Template
<!---
Filename: ActorPhoto1.cfm
Edited By: Nate Weiss (NMW)
Purpose: Creates an interface for uploading actor photos

--->

<!--- Query the database to get a listing of actors to choose from --->
<CFQUERY DATASOURCE=”ows” NAME=”ActorsQuery”>
SELECT ActorID, NameFirst, NameLast
FROM Actors
ORDER BY NameLast, NameFirst

</CFQUERY>

<!--- Location of the directory where actor photos are stored --->
<!--- The folder name is ActorPhotos, within this page’s folder --->
<CFSET ActorPhotoDir = ExpandPath(“ActorPhotos”)>

<!--- If the photo directory does not exist yet... --->
<CFIF NOT DirectoryExists(ActorPhotoDir)>
<!--- ...go ahead and create the photo directory --->
<CFDIRECTORY
ACTION=”Create”
DIRECTORY=”#ActorPhotoDir#”>

</CFIF>

<HTML>
<HEAD>
<TITLE>Maintain Actor Photos</TITLE>

</HEAD>
<BODY>
<H2>Maintain Actor Photos</H2>
<H3>Click on Actor Name to Add Photo</H3>

<TABLE BORDER=”1” WIDTH=”300”>
<TR>
<TH>Name</TH>
<TH>Photo</TH>

</TR>

<!--- For each actor in the database... --->
<CFOUTPUT QUERY=”ActorsQuery”>

<!--- Get a listing of any current image files for this actor --->
<CFDIRECTORY
ACTION=”List”
DIRECTORY=”#ActorPhotoDir#”
NAME=”ExistingPhotos”
FILTER=”Actor#ActorsQuery.ActorID#Photo.*”>

<TR>
<TD>

154 CHAPTER 33 Interacting with the Operating System

Listing 33.11 (continued)
<!--- Provide link to upload page, passing actor’s ID in the URL --->
#NameFirst# #NameLast#

</TD>
<TD HEIGHT=”50”>
<!--- If there is a photo for this actor --->
<CFIF ExistingPhotos.RecordCount NEQ 0>
<!--- Display a thumbnail view of the photo --->

<IMG
SRC=”ActorPhotos/#ExistingPhotos.Name#”
WIDTH=”50”
HEIGHT=”50”
BORDER=”0”
ALT=”Click to edit”>

<CFELSE>
[no photo]
</CFIF>

</TD>
</TR>

</CFOUTPUT>
</TABLE>

</BODY>
</HTML>

The template created in Listing 33.11 selects a list of actors from the Actors table. A link is created
for each actor in the Actors table (Figure 33.9); the link takes you to another template, where the
actor’s information can be updated or a new photo can be provided.

Figure 33.9

Actor photo
maintenance list.

155Building an Application to Manage Files

In most respects, this is just an ordinary data-display page. The only twists involve the <CFDIRECTORY>
tag, which is used in two different places to enable the display of thumbnail-sized photographs next
to each actor’s name. At the top of the listing, a variable called ActorPhotoDir is created, which con-
tains the path to the folder where the actor photos will be stored. The folder is called ActorPhotos,
located within the folder that contains this listing. If the folder does not exist already, it is created with
the <CFDIRECTORY> tag.

Then, within the loop that displays each actor’s name, the <CFDIRECTORY> tag is used again to find out
if there are any photos for the actor currently being processed. Actor photos will be stored with file-
names based on the actor’s ID number. Users will be upload photos of any type (GIF, JPEG, PNG,
and so on), so the FILTER attribute is used with a * wildcard for the extension. For actor number 5,
for instance, the ActorPhotos folder might contain a file called Actor5photo.gif; for actor number 12,
there might be a Actor12Photo.jpg or Actor12Photo.png file instead.

In any case, the <CFDIRECTORY> tag will find whatever relevant files are present (if any). If the resulting
query’s RecordCount property is greater than zero, that means that there is a photo for the actor. If
so, the photo is displayed next to the actor’s name as a thumbnail (displayed at a size of 50 pixels wide
by 50 pixels high). The thumbnails are visible in Figure 33.9.

Listing 33.12 shows the ColdFusion page that the user lands at when they click on an actor’s name.
The form created in this listing code serves two purposes. First, an actor’s photo can be updated via
file uploading. Second, the actor’s record in the database can be updated, just like an ordinary data
update form. In other words, the internal details about how the information is stored (the fact that
the photo is stored as a discrete file, while the actor’s name is stored in the database) is hidden from
the user. The distinction doesn’t matter to the user, so there is no reason not to provide a single form
to manage everything about an actor’s information (Figure 33.10).

Figure 33.10

Actor photo
upload form.

156 CHAPTER 33 Interacting with the Operating System

Listing 33.12 ActorPhotoForm.cfm—Actor Photo Maintenance Form
<!---
Filename: ActorPhoto1.cfm
Edited By: Nate Weiss (NMW)
Purpose: Creates an interface for uploading actor photos

--->

<!--- Insist that an ActorID parameter is passed in the URL --->
<CFPARAM NAME=”URL.ActorID” TYPE=”numeric”>

<!--- Query the database for information about the specified actor --->
<CFQUERY NAME=”ActorQuery” DATASOURCE=”ows”>
SELECT ActorID, NameLast, NameFirst
FROM Actors
WHERE ActorID = #Val(URL.ActorID)#

</CFQUERY>

<!--- Location of the directory where actor photos are stored --->
<!--- The folder name is ActorPhotos, within this page’s folder --->
<CFSET ActorPhotoDir = ExpandPath(“ActorPhotos”)>

<!--- Get a listing of any current image files for this actor --->
<CFDIRECTORY
ACTION=”List”
DIRECTORY=”#ActorPhotoDir#”
NAME=”ExistingPhotos”
FILTER=”Actor#URL.ActorID#Photo.*”>

<HTML>
<TITLE>Actor Photo Maintenance Form</TITLE>
<BODY>
<H2>Actor Photo Maintenance Form</H2>

<!--- Link to return to the list of actors --->
Return To List

<CFOUTPUT>

<!--- This form submits to ActorPhotoAction.cfm, --->
<!--- passing the ActorID along in the URL. --->
<CFFORM
ACTION=”ActorPhotoAction.cfm?ActorID=#URL.ActorID#”
ENCTYPE=”multipart/form-data”
METHOD=”Post”>

<!--- Text input field for first name --->
<P>First Name:

<CFINPUT
TYPE=”Text”
NAME=”NameFirst”
VALUE=”#ActorQuery.NameFirst#”
SIZE=”30”
MAXLENGTH=”50”
REQUIRED=”Yes”
MESSAGE=”Please don’t leave the first name blank.”>

<!--- Text input field for last name --->
<P>Last Name:

<CFINPUT

157Building an Application to Manage Files

Listing 33.12 (continued)
TYPE=”Text”
NAME=”NameLast”
VALUE=”#ActorQuery.NameLast#”
SIZE=”30”
MAXLENGTH=”50”
REQUIRED=”Yes”
MESSAGE=”Please don’t leave the last name blank.”>

<!--- File field for user to select or specify a filename --->
<P>Photo File to upload:

<INPUT
NAME=”PhotoFile”
SIZE=”50”
TYPE=”FILE”>

<!--- If there are any existing photos for this user, --->
<!--- provide a checkbox for deleting the existing photo --->
<CFIF ExistingPhotos.RecordCount GT 0>
<INPUT
TYPE=”Checkbox”
NAME=”DeletePhoto”>Delete existing photo

</CFIF>

<!--- Submit button to submit the form (and upload the file) --->
<P>
<INPUT
TYPE=”SUBMIT”
VALUE=”Update Actor Data”>

<!--- Display the photo if available --->
<CFIF ExistingPhotos.RecordCount GT 0>
<P>Existing photo shown below:

<IMG
SRC=”ActorPhotos/#ExistingPhotos.Name#”
BORDER=”0”
ALT=”Photo of #ActorQuery.NameFirst# #ActorQuery.NameLast#”>

</CFIF>

</CFFORM>
</CFOUTPUT>

</BODY>
</HTML>

This template is a simple modification of the first file upload template you wrote. First, the
URL.ActorId variable is used to retrieve the actor’s name from the Actors table. The actor’s first
and last names are displayed in simple text input fields using the <CFINPUT> tag. A TYPE=”File”
field is also provided, where the user can select a photo of the actor. When the form is submitted,
the photo and the first/last name information is all sent to the server, where it will be processed
by the template in Listing 33.13.

This listing also uses the <CFDIRECTORY> tag to find out if there are any existing photos of the actor,
using the same basic logic that was used in Listing 33.11. If there is a photo, a checkbox is added to the
form to allow the user to delete the existing photo (the photo is also displayed at full size under the form).

158 CHAPTER 33 Interacting with the Operating System

Listing 33.13 is the action page that is executed when the user submits the form shown in Figure 33.10.

Listing 33.13 ActorPhotoAction.cfm—Actor Photo Upload Process Template
<!---
Filename: ActorPhoto1.cfm
Edited By: Nate Weiss (NMW)
Purpose: Creates an interface for uploading actor photos

--->

<!--- Insist that an ActorID parameter is passed in the URL --->
<CFPARAM NAME=”URL.ActorID” TYPE=”numeric”>
<!--- Also, make sure the expected form fields are present --->
<CFPARAM NAME=”FORM.NameFirst” TYPE=”string”>
<CFPARAM NAME=”FORM.NameLast” TYPE=”string”>
<CFPARAM NAME=”FORM.PhotoFile” TYPE=”string”>

<!--- Location of the directory where actor photos are stored --->
<!--- The folder name is ActorPhotos, within this page’s folder --->
<CFSET ActorPhotoDir = ExpandPath(“ActorPhotos”)>

<!--- Function for deleting the existing photos of the actor --->
<CFFUNCTION NAME=”DeleteExistingPhotos”>
<CFARGUMENT NAME=”ActorID” TYPE=”numeric” REQUIRED=”Yes”>

<!--- Get a listing of any current image files for this actor --->
<CFDIRECTORY
ACTION=”List”
DIRECTORY=”#ActorPhotoDir#”
NAME=”ExistingPhotos”
FILTER=”Actor#ARGUMENTS.ActorID#Photo.*”>

<!--- For each existing file, if any... --->
<CFLOOP QUERY=”ExistingPhotos”>
<!--- Delete the existing file --->
<CFFILE
ACTION=”Delete”
FILE=”#ActorPhotoDir#\#ExistingPhotos.Name#”>

</CFLOOP>
</CFFUNCTION>

<!--- Query the database for information about the specified actor --->
<CFQUERY NAME=”ActorQuery” DATASOURCE=”ows”>
SELECT ActorID, NameLast, NameFirst
FROM Actors
WHERE ActorID = #Val(URL.ActorID)#

</CFQUERY>

<!--- If the actor’s first or last names have been edited... --->
<CFIF (ActorQuery.NameFirst NEQ FORM.NameFirst)

OR (ActorQuery.NameLast NEQ FORM.NameLast)>

<!--- Update the actor’s record in the database --->
<CFQUERY DATASOURCE=”ows”>

159Building an Application to Manage Files

Listing 33.13 (continued)
UPDATE Actors
SET
NameFirst = ‘#FORM.NameFirst#’,
NameLast = ‘#FORM.NameLast#’

WHERE ActorID = #URL.ActorID#
</CFQUERY>

</CFIF>

<!--- If the user has specified a file to upload --->
<CFIF FORM.PhotoFile NEQ “”>

<!--- Make sure only one person is working with this actor’s photos --->
<CFLOCK
NAME=”ActorPhotoUploads#URL.ActorID#”
TYPE=”Exclusive”
TIMEOUT=”10”>

<!--- Accept the file upload --->
<CFFILE
DESTINATION=”#GetTempDirectory()#”
ACTION=”UPLOAD”
NAMECONFLICT=”MakeUnique”
FILEFIELD=”PhotoFile”
ACCEPT=”image/*”>

<!--- Delete the existing photographs --->
<CFSET DeleteExistingPhotos(URL.ActorID)>

<!--- Create a new name for the uploaded file, based on the actor’s ID --->
<CFSET NewFile = “Actor#URL.ActorID#Photo.#File.ServerFileExt#”>

<!--- Go ahead and rename the uploaded file --->
<CFFILE
ACTION=”RENAME”
SOURCE=”#CFFILE.ServerDirectory#/#CFFILE.ServerFile#”
DESTINATION=”#ActorPhotoDir#/#NewFile#”>

</CFLOCK>

<CFELSEIF IsDefined(“FORM.DeletePhoto”)>
<!--- Make sure only one person is working with this actor’s photos --->
<CFLOCK
NAME=”ActorPhotoUploads#URL.ActorID#”
TYPE=”Exclusive”
TIMEOUT=”10”>

<!--- Delete the existing photographs --->
<CFSET DeleteExistingPhotos(URL.ActorID)>

</CFLOCK>

</CFIF>

<!--- Now that the edit is complete, send the user back to the form page --->
<CFLOCATION
URL=”ActorPhotoForm.cfm?ActorID=#URL.ActorID#”>

160 CHAPTER 33 Interacting with the Operating System

At the top of this listing, a user defined function called DeleteExistingPhotos() is created. When
called, this function will delete all photos from the ActorPhotos folder that correspond to the ActorID
argument provided. This is accomplished using a simple <CFDIRECTORY> tag (which is used nearly
identically as in the two previous listings) to get a listing of any corresponding actor photos, then
looping through the photo records, deleting each photo with the <CFILE> tag.

Next, a query is executed to select the first and last name of the selected actor from the database. If
the user has edited the actor’s name (that is, if the values from the form submission no longer match
the values in the database), the Actors table is updated with a simple UPDATE query.

Next, the listing checks the value of the FORM.PhotoFile field. If it is not empty, then the user is sub-
mitting a file to be uploaded. The upload is accepted using the <CFFILE> tag with ACTION=”Upload”.
Please note that the GetTempDirectory() function is used to so that the file is uploaded into the
server’s temporary directory, rather than the ActorPhotos folder. The DeleteExistingPhotos()
function is then called to delete any existing photos of the actor. Finally, the uploaded file is moved
from the temporary folder to the ActorPhotos folder, where it belongs. As it is moved, the file is
also given an appropriate filename (based on the actor’s ID number, but retaining the file’s original
extension as reported by the CFFILE.ServerFileExt variable). You can see the upload results in
Figure 33.11.

NOTE

The <CFFILE> tag’s ACCEPT attribute is set to allow only images files to be uploaded to the server. Because the subtype of the
ACCEPT attribute is specified with the * wildcard, any type of image can be uploaded (GIF, JPEG, PNG, and so on).

If a file is not being uploaded, this listing checks to see if the Delete Existing Photo checkbox was
checked on the form by testing for the presence of the FORM.DeletePhoto variable. If so, the
DeleteExistingPhotos() function is called to delete any existing photos of the actor.

Figure 33.11

Actor photo
upload results.

161Executing Programs on the Server with <CFEXECUTE>

Protecting File Accesses with <CFLOCK>
It’s worth noting that both of the file-manipulation blocks in Listing 33.13 are protected with the
<CFLOCK> tag. The idea is that no two users should be able to alter an actor’s photo at the same time,
simply to avoid any potential problems that might arise if one user’s page request is trying to delete
a photo while another user’s request is trying to update the photo via a new upload.

The NAME attribute of the <CFLOCK> tag is set to a combination of the string ActorPhotoUploads and
the actor’s actual ID number. This will have the effect of allowing two users to alter two different
actors’ photos at the same time, but will not allow two users to alter the same actor’s photo at the
same time.

I recommend that you use <CFLOCK> in a similar fashion whenever your code is allowing users to edit
files or directories in such a way that simultaneous page accesses could be a problem. In general,
you will always want to use the NAME attribute of the <CFLOCK> tag for file-related locking, not the
SCOPE attribute.

For more information about <CFLOCK>, please consult Appendix B, ColdFusion Tag Reference, or
the discussion on locking in Chapter 16, Introducing the Web Application Framework.

Executing Programs on the Server with <CFEXECUTE>
ColdFusion provides a powerful tool for interacting with the operating system in the <CFEXECUTE>
tag. It enables the execution of server processes at the command-line level. It is powerful yet simple.

NOTE

Executing processes on the server can have disastrous consequences, so extreme care should be taken to control access to
templates that use the <CFEXECUTE> tag. Arbitrary user input of arguments to the tag should be prohibited.

Listing 33.14 shows the basic arguments for the <CFEXECUTE> tag.

Listing 33.14 <CFEXECUTE> Arguments
<CFEXECUTE
NAME=”Application name”
ARGUMENTS=”Command line arguments”
OUTPUTFILE=”Output file name”
TIMEOUT=”Timeout interval in seconds” >

Table 33.7 shows the definitions of the arguments and attributes for the <CFEXECUTE> tag.

NOTE

On Windows systems, the NAME argument must contain the fully qualified path to the program to be executed, including the extension
(e.g.: C:\WINNT\SYSTEM32\IPCONFIG.EXE).

Several things are worth noting about the attributes of the <CFEXECUTE> tag.

162 CHAPTER 33 Interacting with the Operating System

Table 33.7 <CFEXECUTE> Tag Syntax

ATTRIBUTE DESCRIPTION

NAME Required. The fully qualified name of the application to execute.

ARGUMENTS Optional. Command-line arguments to be passed to the program.

OUTPUTFILE Optional. File in which output of program will be written. If you don’t provide
this attribute, the output of the program will be simply be included in the
current ColdFusion page.

TIMEOUT Optional. Indicates how long in seconds ColdFusion will wait for the process
to complete. Values must be integers greater than or equal to 0.

If ARGUMENTS is passed as a string, it is processed in the following ways:

■ On Windows systems, the entire string is passed to the Windows process for parsing.

■ On Unix, the string is tokenized into an array of arguments. The default token separator
is a space; arguments with embedded spaces can be delimited by double quotes.

If ARGUMENTS is passed as an array, it is processed as follows:

■ On Windows systems, the array elements is concatenated into a string of tokens, separated
by spaces. This string is then passed to the Windows process.

■ On Unix, the elements of the ARGUMENTS array is copied into a corresponding array of
exec() arguments.

If TIMEOUT and OUTPUTFILE are not provided as attributes to the tag, the resulting output from the
executed process is ignored.

The TIMEOUT attribute is used to determine whether ColdFusion should execute the called process
asynchronously (that is, spawn process and continue) or synchronously (spawn process and wait). A
value of 0 spawns the process asynchronously, with the ColdFusion execution picking up at the next
line of CFML code immediately. Any positive integer value causes the process to be spawned syn-
chronously, with ColdFusion waiting for TIMEOUT seconds before proceeding.

If errors occur during the process, exceptions are thrown that can be handled with <CFTRY> and
<CFCATCH> (as discussed in Chapter 31, Error Handling). These exceptions are:

■ If the application name is not found, an Application File Not Found exception is thrown.

■ If the output file cannot be opened, an Output File Cannot Be Opened exception is thrown.

■ If ColdFusion does not have permissions to execute the process, a security exception is
thrown.

Listing 33.15 shows an example of using the <CFEXECUTE> tag to determine IP configuration infor-
mation about the server using the IPCONFIG utility (Figure 33.12).

163Executing Programs on the Server with <CFEXECUTE>

Listing 33.15 ExecuteIPConfig.cfm—<CFEXECUTE> Example Showing Output from IPCONFIG
<!---
Filename: ExecuteIPConfig.cfm
Edited By: Nate Weiss (NMW)
Purpose: Demonstrates use of the Windows IPCONFIG utility

--->

<HTML>
<HEAD>

<TITLE><CFEXECUTE> Demonstration</TITLE>
</HEAD>

<BODY>
<H2><CFEXECUTE> Demonstration</H2>

<!--- Set up output file --->
<CFSET OutFile = GetTempFile(GetTempDirectory(), “ipc”)>

<!--- Call the system utility, with output placed in the file --->
<CFEXECUTE
NAME=”c:\winnt\system32\ipconfig.exe”
ARGUMENTS=”/ALL”
TIMEOUT=”15”
OUTPUTFILE=”#OutFile#”></CFEXECUTE>

Figure 33.12

Output from the
<CFEXECUTE>
example.

164 CHAPTER 33 Interacting with the Operating System

Listing 33.15 (continued)
<!--- Read the file for display --->
<CFFILE
ACTION=”READ”
FILE=”#OutFile#”
VARIABLE=”FileContent”>

<!--- Delete the file, since it is no longer needed --->
<CFFILE
ACTION=”DELETE”
FILE=”#OutFile#”>

<!--- Display the contents of the file --->
<CFOUTPUT>
#HTMLCodeFormat(FileContent)#

</CFOUTPUT>

</BODY>
</HTML>

The code in Listing 33.15 is fairly simple and straightforward. Using techniques learned earlier
in the chapter, GetTempFile() is used to get a filename to be passed as the OUTPUTFILE argument
to <CFEXECUTE>. The NAME attribute is set to the fully qualified pathname of the executable that is to
be run. In this case, that’s the IPCONFIG utility, which is traditionally located at c:\winnt\system32\
ipconfig.exe on Windows systems).

The ARGUMENTS attribute is set to “/ALL”, which tells the IPCONFIG utility to return information
about all defined interfaces. Lastly, the TIMEOUT attribute is set to 15 seconds, indicating that the
process should be spawned in a synchronous fashion. The output from the process is then read into
a variable using <CFFILE>. The temporary file is then deleted, since it is no longer needed.

NOTE

Of course, if you are using a non-Windows system, this call to IPCONFIG won’t work. The <CFEXECUTE> tag, by its very nature,
leads to application code that will probably not work across different operating systems.

NOTE

It is also possible to code this page such that the temporary file is not needed at all, by simply omitting the OUTPUTFILE attribute.
The ExecuteIPConfig2.cfm page (on the CD-ROM) is a revised version of Listing 33.15 that doesn’t use a temporary file.

<CFEXECUTE> provides a powerful set of functionality, but its use should be carefully evaluated
because any server process has the potential to affect the stability of the server. There are many
potential uses for CFEXECUTE, including the capability to

■ Submit batch processes to legacy command-line applications

■ Use CF to communicate with external processes via the command line

■ Execute CF templates asynchronously using batch files and the CFML.exe stub file

165Interacting with the System Registry Using <CFREGISTRY>

Interacting with the System Registry Using <CFREGISTRY>
If you are using a Windows server for ColdFusion, you may be interested in another powerful means
of interacting with the operating system: the <CFREGISTRY> tag. As its name implies, <CFREGISTRY>
provides access to the Windows Registry.

NOTE

<CFREGISTRY> has the potential for causing serious harm to the stability of a server, if improperly used. In fact, it can be disabled
in the ColdFusion Administrator as a precaution. Bottom Line: Use extreme care when using the <CFREGISTRY> tag to modify the
system Registry.

What Is the Registry?
The Registry is a system database that primarily holds information about where things are located
in the operating system. Programs, paths, default values, and more are stored within it. Because it is
a system database, it has very fast access to information. The only problem is that it is not designed
for real database work. This is one of the reasons client variables can better be stored in a database
rather than in the Registry, which is the default setting.

NOTE

Even though the Registry is a Windows-only construct, a simulation is provided on Unix platforms. This simulation has the same
effect as the Windows Registry, and the tag reacts the same way to both.

NOTE

If you are not familiar with the Windows Registry, you should not change any of the settings. This cannot be recommended strongly
enough! If you decide to explore the Windows Registry, be sure to have a good Registry book on hand, such as Troubleshooting and
Configuring the Windows NT/95 Registry (Sams Publishing, ISBN: 0-672-31066-X).

One important note is that the Registry is a system database for Windows machines. The structure
and job of the Registry exist only for the Windows NT and Windows NT/95/98 versions of Cold-
Fusion. Therefore, the <CFREGISTRY> tag has very limited use with non-Windows servers. Certain
terms are used in conjunction with the Windows Registry that you need to become familiar with to
use the <CFREGISTRY> tag:

■ Key—This is the same as a directory in a filesystem. It holds subkeys (subdirectories) and
entries (files).

■ Entry—A variable within a key that holds a data value. Entries do not change unless they
are deleted and re-created. Only their content can be altered.

■ Value—The data contained within an entry. ColdFusion does not allow binary data to be
set or retrieved from values.

■ Branch—A specific path mapping from the root of a Registry tree to a specific subkey.

166 CHAPTER 33 Interacting with the Operating System

NOTE

Previous versions of ColdFusion used the system Registry to store information about how ColdFusion was configured. Changing
settings in the ColdFusion Administrator was editing the Registry behind the scenes. In ColdFusion MX, all server settings are now
stored in XML files and other disk-based means (for details about these files, see Appendix F, ColdFusion MX Directory Structure).
Therefore, while it was common to use <CFREGISTRY> to find the current values of certain ColdFusion settings programmatically
with older versions of ColdFusion, that practice will no longer have the same effect.

Like the <CFFILE> and <CFDIRECTORY> tags that you’ve already learned about in this chapter, the
<CFREGISTRY> tag supports an ACTION attribute that enables you to perform various Registry-related
tasks. The possible ACTION values are listed in Table 33.8, and are discussed in the following sections.

Table 33.8 <CFREGISTRY> Actions

ATTRIBUTE DESCRIPTION

ACTION=”Get” Reads a particular value from the Registry.

ACTION=”GetAll” Gets a listing of available values from a particular branch of the Registry.

ACTION=”Set” Changes or creates a value in the Registry.

ACTION=”Delete” Removes a value from the Registry.

Get Action

The Get action of <CFREGISTRY> is similar to the <CFSET> tag. It sets a variable with a value, derived
from the Registry. Table 33.9 shows the attributes for the <CFREGISTRY> tag when the action is set
to GET.

Table 33.9 <CFREGISTRY> Tag Attributes with GET Action

ATTRIBUTE DESCRIPTION

ENTRY Required. The Registry value to be accessed

TYPE Optional. The type of data you want to access. TYPE=”String” (the default)
returns a string value (default). TYPE=”DWord” returns a numeric value.
TYPE=”Key” returns the key’s value using its default type.

VARIABLE Required. Variable into which <CFREGISTRY> places the value.

One important note is that this tag tries to set the variable with the entry value no matter what. So,
if the entry value does not exist, it fails. However, the GetAll section of this chapter shows a way
around this. Listing 33.16 uses <CFREGISTRY> with the Get action to retrieve the company name to
whom the ColdFusion server is registered (Figure 33.13).

167Interacting with the System Registry Using <CFREGISTRY>

Listing 33.16 RegistryGet.cfm—<CFREGISTRY> with the Get Attribute
<!---
Filename: RegistryGet.cfm
Edited By: Nate Weiss (NMW)
Purpose: Demonstrates use of the <CFREGISTRY> tag

--->

<html>
<head>

<title><CFREGISTRY> Action=Get Example</title>
</head>

<body>

<!---
This example uses CFREGISTRY with the Get Action to retrieve the default
directory for File ODBC Datasources
--->
<CFREGISTRY
ACTION=”GET”
BRANCH=”HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\ODBC File DSN”
ENTRY=”DefaultDSNDir”
VARIABLE=”ODBC_Information”
TYPE=”String”>

The value returned by the <CFREGISTRY> call is:
<p>
<cfoutput>
Directory = #ODBC_Information#

</cfoutput>

</body>
</html>

Figure 33.13

Output from the
<CFREGISTRY>
ACTION=Get example.

168 CHAPTER 33 Interacting with the Operating System

The GetAll Action

The GetAll action is the broadest of the <CFREGISTRY> actions. It searches and returns all values within
a key. This capability covers both Key and Entry values. The result of this action is a standard Cold-
Fusion query with the name specified by the NAME attribute. Table 33.10 shows the <CFREGISTRY>
attributes to use with the GetAll action.

Table 33.10 Attributes for the GetAll Action of the <CFREGISTRY> Tag

ATTRIBUTE DESCRIPTIONS

BRANCH Required. The branch of the registry that you want to retrieve information from.

TYPE Optional. The type of data you want to access. TYPE=”String” returns all string
values within the branch of the registry. TYPE=”DWord” returns all numeric values
within the branch. TYPE=”Key” returns all nested sub-keys within the branch.
TYPE=”Any” returns all of the above.

NAME Required. The name of the resultset to contain returned keys and values.

SORT Optional. Used to sort query column data returned with ACTION=”GETALL”.
Ignored for all other actions. Sorts on Entry, Type, and Value fields as text. Any
combination of columns from a query output can be specified in a comma-separated
list. ASC (ascending) or DESC (descending) can be specified as qualifiers for
column names. ASC is the default.

When run, this version of the <CFREGISTRY> tag returns a query with three columns:

■ Entry—The name of the key or entry.

■ Type—The data type (refer to Table 33.10).

■ Value—If the type is not a key, this holds the value of the entry.

Listing 33.17 shows an example of using the GetAll action to read the registration information
from the Registry and display it (Figure 33.14).

Listing 33.17 RegistryGetAll.cfm—<CFREGISTRY> Action=GetAll Example
<!---
Filename: RegistryGetAll.cfm
Edited By: Nate Weiss (NMW)
Purpose: Demonstrates use of the <CFREGISTRY> tag

--->

<html>
<head>

<title>CFREGISTRY GETALL Example</title>
</head>

<body>

<!--- Retreive information from the Windows Registry --->

169Interacting with the System Registry Using <CFREGISTRY>

Listing 33.17 (continued)
<CFREGISTRY
ACTION=”GETALL”
BRANCH=”HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\ODBC Data Sources”
NAME=”ODBC_Information”
TYPE=”Any”
SORT=”entry ASC, value DESC”>

<!--- Display message about information returned by <CFREGISTRY> --->
The GETALL action returns a CF query object
containing the following columns:

<cfoutput>#ODBC_Information.columnlist#</cfoutput>

<p>
The results of reading the ODBC\ODBC.INI\ODBC Data Sources
entry are shown below:
<table border>
<tr>
<th valign=”left”>Entry</th>
<th valign=”left”>Type</th>
<th valign=”left”>Value</th>

</tr>

<!--- For each value in the specified branch of the Registry... --->
<cfoutput query=”ODBC_Information”>
<tr>
<td valign=”left”>#entry#</td>
<td valign=”left”>#type#</td>
<td valign=”left”>#value#</td>

</tr>
</cfoutput>

</table>

</body>
</html>

Figure 33.14

Output from the
<CFREGISTRY>
ACTION=GetAll
example.

170 CHAPTER 33 Interacting with the Operating System

Summary
ColdFusion provides several powerful tools to interact with the operating system, including the
<CFFILE>, <CFDIRECTORY>, <CFEXECUTE>, and <CFREGISTRY> tags. With this power comes potential for
harm to the system, so extreme caution needs to be exercised when using these tags in applications,
especially if user input is used to drive the tags.

