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Preface

Over the past few years I’ve been exposed to many different IT environments as part of
a wide range of SOA initiatives for clients in both private and public sectors. While
doing some work on a project for a client in the defense industry, I had an opportunity
to learn more about not just their technical landscape, but also the various policies and
procedures that are specific to the defense culture. During this time I came across the
DoD Standardization Program, an initiative comprised of documents and specifications
that establish guiding principles and standards for various aspects of the military,

including the design of weapons and military equipment, as well as the definition of
methods and processes used by military personnel.

While reading about this program, I learned that several other standardization pro-
grams have been in existence for some time, facilitating standardization within public
sector organizations (such as the Coast Guard and NASA), as well as numerous private
sector industries. The goals of these programs tend to revolve around the establishment
of industry standards to enhance interoperability with the ultimate objective of 
reducing operational overhead, reducing risk, and increasing the organization’s overall
effectiveness. 

In the case of the aforementioned public sector-related standards, interoperability may
refer to the exchange of equipment or weapons or the exchange and collaboration of 
personnel from different locations. 

For example, an ammunition clip manufactured in Iowa, stored in Virginia, and deliv-
ered to and used by someone at a training base in Texas will work perfectly with a gun
manufactured in Kansas because both of these products were built according to the
same set of specifications. Similarly, in response to a natural disaster a rescue team may



need to be quickly assembled from individuals based out of different cities and who
have never previously worked together. This team can still function effectively because
all team members were trained as per the same procedures and processes, using the
same vocabulary and conventions.

These standardization programs have much in common with the rationale and objec-
tives behind SOA and service-orientation. The fundamental goal is to produce some-
thing with repeatable value, long-term benefit, and inherent flexibility, all for the
strategic good of the organization. The greatest obstacle to achieving this goal in the
world of SOA has been a lack of understanding as to what service-orientation, as an
industry paradigm, really is. It is my hope that this book will help rectify this situation
by providing some clarity for what it means for something to be “service-oriented.”

xxx Preface



Acknowledgments

To ensure the accuracy and legitimacy of the content in this book, I decided early on to
subject it to a rigorous quality assurance process that involved technical reviews by over
60 industry professionals. I am deeply grateful for the time and effort these individuals
dedicated to these reviews. Specifically, I would like to thank Kevin Davis, PhD, Ronald
Bourret, Robert Schneider, Ravi Palepu, Wes McGregor, Judith Myerson, and Cyrille
Thilloy for their early feedback, and the following technical reviewers that participated
in the full manuscript review (in alphabetical order by last name):

Dr. Mohamad Afshar, Oracle Corporation

Wayne Ariola, Parasoft

Raj Balasubramanian, IBM Software Group

Stephen Bennett, BEA Systems, Inc.

Steve Birkel, Intel Corporation

Brandon Bohling, Intel Corporation

Peter Chang, PhD, Lawrence Technological University

Robin Chen, PhD, Google, Inc.

Jim Clune, Parasoft

Jason “AJ” Comfort Sr., Booz Allen Hamilton, Inc.

Bill Draven, Intel Corporation

Darryl Hogan, Microsoft Corporation

Continues



Fred Ingham, Platinum Solutions Inc.

Cory Isaacson, Rogue Wave Software

Radovan Janecek, Hewlett-Packard

Anish Karmarkar, Oracle Corporation

Hanu Kommalapati, Microsoft Corporation

Robert Laird, IBM EAI/SOA Advanced Technologies Group

Dr. Mark Little, Redhat

Canyang Kevin Liu, SAP Americas, Inc.

David Michalowicz, MITRE Corporation

Jim Murphy, Mindreef, Inc.

Prakash Narayan, Sun Microsystems

Philipp Offermann, University of Berlin

James Pasley, Cape Clear Software

Robin G. Qiu, PhD, Pennsylvania State University

Christoph Schittko, Microsoft Corporation

Dr. Arnaud Simon, Redhat

R. Perry Smith, EDS/OnStar

Michael H. Sor, Booz Allen Hamilton, Inc.

Philip Thomas, IBM United Kingdom Limited

Andre Tost, IBM Software Group

Sameer Tyagi, Fidelity Investments

Umit Yalcinalp, SAP

Farzin Yashar, IBM SOA Advanced Technologies

Kareem Yusuf, IBM Software Group

Markus Zirn, Oracle Corporation

xxxii Acknowledgments



4.1 Introduction to Service-Orientation

4.2 Problems Solved by Service-Orientation

4.3 Challenges Introduced by Service-Orientation

4.4 Additional Considerations

4.5 Effects of Service-Orientation on the Enterprise

4.6 Origins and Influences of Service-Orientation

4.7 Case Study Background

Chapter 4

Service-Orientation



H aving covered some of the basic elements of service-oriented computing, we now
narrow our focus on service-orientation. The next set of sections establish the 

paradigm of service-orientation and explain how it is changing the face of distributed
computing.

4.1 Introduction to Service-Orientation

In the every day world around us, services are and have been commonplace for as long
as civilized history has existed. Any person carrying out a distinct task in support of oth-
ers is providing a service (Figure 4.1). Any group of individuals collectively performing
a task is also demonstrating the delivery of a service. 

Figure 4.1
Three individuals, each capable of providing a distinct
service.

Similarly, an organization that carries out tasks associated with its purpose or business
is also providing a service. As long as the task or function being provided is well-defined
and can be relatively isolated from other associated tasks, it can be distinctly classified
as a service (Figure 4.2). 

Certain baseline requirements exist to enable a group of individual service providers to
collaborate in order to collectively provide a larger service. Figure 4.2, for example, dis-
plays a group of employees that each provide a service for ABC Delivery. Even though
each individual contributes a distinct service, for the company to function effectively, its
staff also needs to have fundamental, common characteristics, such as availability, reli-
ability, and the ability to communicate using the same language. With all of this in place,

these individuals can be composed into a productive working team. Establishing these
types of baseline requirements is a key goal of service-orientation.
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Services in Business Automation

In the world of SOA and service-orientation, the term “service” is not generic. It has spe-
cific connotations that relate to a unique combination of design characteristics. When
solution logic is consistently built as services and when services are consistently
designed with these common characteristics, service-orientation is successfully realized
throughout an environment.

For example, one of the primary service design characteristics explored as part of this
study of service-orientation is reusability. A strong emphasis on producing solution
logic in the format of services that are positioned as highly generic and reusable enter-
prise resources gradually transitions an organization to a state where more and more of
its solution logic becomes less dependent on and more agnostic to any one purpose or
business process. Repeatedly fostering this characteristic within services eventually
results in wide-spread reuse potential.

Consistently realizing specific design characteristics requires a set of guiding principles.
This is what the service-orientation design paradigm is all about.

Services Are Collections of Capabilities

When discussing services, it is important to remember that a single service can provide
a collection of capabilities. They are grouped together because they relate to a functional

Figure 4.2
A company that employs these three people can compose
their capabilities to carry out its business.



context established by the service. The functional context of the service illustrated in 
Figure 4.3, for example, is that of “shipment.” Therefore, this particular service provides
a set of capabilities associated with the processing of shipments.
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Figure 4.3
Much like a human, an automated service
can provide multiple capabilities.

A service can essentially act as a container of related capabilities. It is comprised of a
body of logic designed to carry out these capabilities and a service contract that
expresses which of its capabilities are made available for public invocation. 

References to service capabilities in this book are specifically focused on those that are
defined in the service contract. For a discussion of how service capabilities are distin-
guished from Web service operations and component methods, see the Principles and
Service Implementation Mediums section in Chapter 5.

Service-Orientation as a Design Paradigm

As established in Chapter 3, a design paradigm is an approach to designing solution
logic. When building distributed solution logic, design approaches revolve around a
software engineering theory known as the separation of concerns. In a nutshell, this the-
ory states that a larger problem is more effectively solved when decomposed into a set
of smaller problems or concerns. This gives us the option of partitioning solution logic
into capabilities, each designed to solve an individual concern. Related capabilities can
be grouped into units of solution logic.

The fundamental benefit to solving problems this way is that a number of the solution
logic units can be designed to solve immediate concerns while still remaining agnostic
to the greater problem. This provides the constant opportunity for us to reutilize the
capabilities within those units to solve other problems as well.

Different design paradigms exist for distributed solution logic. What distinguishes serv-
ice-orientation is the manner in which it carries out the separation of concerns and how
it shapes the individual units of solution logic. Applying service-orientation to a mean-
ingful extent results in solution logic that can be safely classified as “service-oriented”
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and units that qualify as “services.” To understand exactly what that means requires an
appreciation of the strategic goals covered in Chapter 3 combined with knowledge of the
associated design principles documented in Part II. 

For now, let’s briefly introduce each of these principles:

Standardized Service Contract 

Services express their purpose and capabilities via a service contract. The Standardized
Service Contract design principle is perhaps the most fundamental part of service-
orientation in that it essentially requires that specific considerations be taken into
account when designing a service’s public technical interface and assessing the nature
and quantity of content that will be published as part of a service’s official contract.

A great deal of emphasis is placed on specific aspects of contract design, including the
manner in which services express functionality, how data types and data models 
are defined, and how policies are asserted and attached. There is a constant focus on
ensuring that service contracts are both optimized, appropriately granular, and stan-
dardized to ensure that the endpoints established by services are consistent, reliable,

and governable.

Chapter 6 is dedicated to exploring this design principle in detail.

Service Loose Coupling 

Coupling refers to a connection or relationship between two things. A measure of cou-
pling is comparable to a level of dependency. This principle advocates the creation of a
specific type of relationship within and outside of service boundaries, with a constant
emphasis on reducing (“loosening”) dependencies between the service contract, its
implementation, and its service consumers. 

The principle of Service Loose Coupling promotes the independent design and evolu-
tion of a service’s logic and implementation while still guaranteeing baseline interoper-
ability with consumers that have come to rely on the service’s capabilities. There are
numerous types of coupling involved in the design of a service, each of which can
impact the content and granularity of its contract. Achieving the appropriate level of
coupling requires that practical considerations be balanced against various service
design preferences.

Chapter 7 provides an in-depth exploration of this principle and introduces related pat-
terns and concepts.



Service Abstraction

Abstraction ties into many aspects of service-orientation. On a fundamental level, this
principle emphasizes the need to hide as much of the underlying details of a service as
possible. Doing so directly enables and preserves the previously described loosely cou-
pled relationship. Service Abstraction also plays a significant role in the positioning and
design of service compositions. 

Various forms of meta data come into the picture when assessing appropriate abstrac-
tion levels. The extent of abstraction applied can affect service contract granularity and
can further influence the ultimate cost and effort of governing the service.

Chapter 8 covers several aspects of applying abstraction to different types of service
meta data, along with processes and approaches associated with information hiding.

Service Reusability

Reuse is strongly advocated within service-orientation; so much so, that it becomes a
core part of typical service analysis and design processes, and also forms the basis for
key service models. The advent of mature, non-proprietary service technology has pro-
vided the opportunity to maximize the reuse potential of multi-purpose logic on an
unprecedented level.

The principle of Service Reusability emphasizes the positioning of services as enterprise
resources with agnostic functional contexts. Numerous design considerations are raised
to ensure that individual service capabilities are appropriately defined in relation to an
agnostic service context, and to guarantee that they can facilitate the necessary reuse
requirements.

Variations and levels of reuse and associated agnostic service models are covered in
Chapter 9, along with a study of how commercial product design approaches have 
influenced this principle.

Service Autonomy

For services to carry out their capabilities consistently and reliably, their underlying
solution logic needs to have a significant degree of control over its environment and
resources. The principle of Service Autonomy supports the extent to which other design
principles can be effectively realized in real world production environments by fostering
design characteristics that increase a service’s reliability and behavioral predictability.
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This principle raises various issues that pertain to the design of service logic as well as
the service’s actual implementation environment. Isolation levels and service normal-
ization considerations are taken into account to achieve a suitable measure of autonomy,

especially for reusable services that are frequently shared.

Chapter 10 documents the design issues and challenges related to attaining higher 
levels of service autonomy, and further classifies different forms of autonomy and 
highlights associated risks.

Service Statelessness

The management of excessive state information can compromise the availability of a
service and undermine its scalability potential. Services are therefore ideally designed to
remain stateful only when required. Applying the principle of Service Statelessness
requires that measures of realistically attainable statelessness be assessed, based on the
adequacy of the surrounding technology architecture to provide state management del-
egation and deferral options.

Chapter 11 explores the options and impacts of incorporating stateless design charac-
teristics into service architectures.

Service Discoverability

For services to be positioned as IT assets with repeatable ROI they need to be easily iden-
tified and understood when opportunities for reuse present themselves. The service
design therefore needs to take the “communications quality” of the service and its indi-
vidual capabilities into account, regardless of whether a discovery mechanism (such as
a service registry) is an immediate part of the environment. 

The application of this principle, as well as an explanation of how discoverability relates
to interpretability and the overall service discovery process, are covered in Chapter 12.

Service Composability

As the sophistication of service-oriented solutions continues to grow, so does the com-
plexity of underlying service composition configurations. The ability to effectively com-
pose services is a critical requirement for achieving some of the most fundamental goals
of service-oriented computing. 



Complex service compositions place demands on service design that need to be antici-
pated to avoid massive retro-fitting efforts. Services are expected to be capable of par-
ticipating as effective composition members, regardless of whether they need to be
immediately enlisted in a composition. The principle of Service Composability
addresses this requirement by ensuring that a variety of considerations are taken into
account.

How the application of this design principle helps prepare services for the world of com-
plex compositions is described in Chapter 13.

Service-Orientation and Interoperability

One item that may appear to be absent from the preceding list is a principle along the
lines of “Services are Interoperable.” The reason this does not exist as a separate principle
is because interoperability is fundamental to every one of the principles just described.
Therefore, in relation to service-oriented computing, stating that services must be inter-
operable is just about as basic as stating that services must exist. Each of the eight prin-
ciples supports or contributes to interoperability in some manner. 

Here are just a few examples:

• Service contracts are standardized to guarantee a baseline measure of interoper-
ability associated with the harmonization of data models.

• Reducing the degree of service coupling fosters interoperability by making indi-
vidual services less dependent on others and therefore more open for invocation
by different service consumers.

• Abstracting details about the service limits all interoperation to the service con-
tract, increasing the long-term consistency of interoperability by allowing underly-
ing service logic to evolve more independently.

• Designing services for reuse implies a high-level of required interoperability
between the service and numerous potential service consumers.

• By raising a service’s individual autonomy, its behavior becomes more consis-
tently predictable, increasing its reuse potential and thereby its attainable level of
interoperability.

• Through an emphasis on stateless design, the availability and scalability of serv-
ices increase, allowing them to interoperate more frequently and reliably.
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• Service Discoverability simply allows services to be more easily located by those
who want to potentially interoperate with them. 

• Finally, for services to be effectively composable they must be interoperable. The
success of fulfilling composability requirements is often tied directly to the extent
to which services are standardized and cross-service data exchange is optimized.

A fundamental goal of applying service-orientation is for interoperability to become a
natural by-product, ideally to the extent that a level of intrinsic interoperability is estab-
lished as a common and expected service design characteristic. Depending on the archi-
tectural strategy being employed, this extent may or may not be limited to a specific
service inventory.

Of course, as with any other design characteristic, there are levels of interoperability a
service can attain. The ultimate measure is generally determined by the extent to which
service-orientation principles have been consistently and successfully realized (plus, of
course, environmental factors such as the compatibility of wire protocols, the maturity
level of the underlying technology platform, and adherence to technology standards).

NOTE

Increased intrinsic interoperability is one of the key strategic goals associ-
ated with service-oriented computing (as originally established in Chapter
3). For more detailed information about how service-orientation principles
directly support this and other strategic goals, see Chapter 16.

SUMMARY OF KEY POINTS

• The service-orientation paradigm consists of eight distinct design principles,
each of which fosters fundamental design characteristics, such as interoper-
ability. These principles are explored individually in subsequent chapters.

• Interoperability is a natural by-product of applying service-orientation design
principles.

4.2 Problems Solved by Service-Orientation

To best appreciate why service-orientation has emerged and how it is intended to
improve the design of automation systems, we need to compare before and after per-
spectives. By studying some of the common issues that have historically plagued IT, we
can begin to understand the solutions proposed by this design paradigm.



Life Before Service-Orientation

In the world of business it makes a great deal of sense to deliver solutions capable of
automating the execution of business tasks. Over the course of IT’s history, the majority
of such solutions have been created with a common approach of identifying the business
tasks to be automated, defining their business requirements, and then building the cor-
responding solution logic (Figure 4.4).
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NOTE

This book fully acknowledges that past design paradigms have advo-
cated similar principles and strategic goals as service-orientation. Several
of these design approaches, in fact, directly inspired or influenced serv-
ice-orientation (as explained further in the Origins and Influences of Ser-
vice-Orientation section of this chapter). The following section is focused
specifically on a comparison with the silo-based design approach
because it has persisted as the most common means by which applica-
tions are delivered.

Figure 4.4
A ratio of one application for each new set of automation requirements has been common.

This has been an accepted and proven approach to achieving tangible business benefits
through the use of technology and has been successful at providing a relatively pre-
dictable return on investment (Figure 4.5). 
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The ability to gain any further value from these applications is usually inhibited because
their capabilities are tied to specific business requirements and processes (some of which
will even have a limited lifespan). When new requirements and processes come our
way, we are forced to either make significant changes to what we already have, or we
may need to build a new application altogether. 

In the latter case, although repeatedly building “disposable applications” is not the per-
fect approach, it has proven itself as a legitimate means of automating business. Let’s
explore some of the lessons learned by first focusing on the positive. 

• Solutions can be built efficiently because they only need to be concerned with the
fulfillment of a narrow set of requirements associated with a limited set of busi-
ness processes.

• The business analysis effort involved with defining the process to be automated is
straight forward. Analysts are focused only on one process at a time and therefore
only concern themselves with the business entities and domains associated with
that one process. 

• Solution designs are tactically focused. Although complex and sophisticated
automation solutions are sometimes required, the sole purpose of each is to auto-
mate just one or a specific set of business processes. This predefined functional
scope simplifies the overall solution design as well as the underlying application
architecture.

Figure 4.5
A sample formula for calculating ROI is based on a
predetermined investment with a predictable return.



• The project delivery lifecycle for each solution is streamlined and relatively pre-
dictable. Although IT projects are notorious for being complex endeavors, riddled
with unforeseen challenges, when the delivery scope is well-defined (and doesn’t
change), the process and execution of the delivery phases have a good chance of
being carried out as expected.

• Building new systems from the ground up allows organizations to take advantage
of the latest technology advancements. The IT marketplace progresses every year
to the extent that we fully expect technology we use to build solution logic today
to be different and better tomorrow. As a result, organizations that repeatedly
build disposable applications can leverage the latest technology innovations with
each new project.

These and other common characteristics of traditional solution delivery provide a good
indication as to why this approach has been so popular. Despite its acceptance, though,

it has become evident that there is still lots of room for improvement.

It Can Be Highly Wasteful

The creation of new solution logic in a given enterprise commonly results in a signifi-
cant amount of redundant functionality (Figure 4.6). The effort and expense required to
construct this logic is therefore also redundant.
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Figure 4.6
Different applications developed independently can result in significant
amounts of redundant functionality. The applications displayed were delivered
with various levels of solution logic that, in some form, already existed.
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It’s Not as Efficient as it Appears

Because of the tactical focus on delivering solutions for specific process requirements,

the scope of development projects is highly targeted. Therefore, there is the constant per-
ception that business requirements will be fulfilled at the earliest possible time. How-
ever, by continually building and rebuilding logic that already exists elsewhere, the
process is not as efficient as it could be if the creation of redundant logic could be
avoided (Figure 4.7).

Figure 4.7
Application A was delivered for a specific set of business requirements.
Because a subset of these business requirements had already been ful-
filled elsewhere, Application A’s delivery scope is larger than it has to be.

It Bloats an Enterprise

Each new or extended application adds to the bulk of an IT environment’s system 
inventory (Figure 4.8). The ever-expanding hosting, maintenance, and administration
demands can inflate an IT department in budget, resources, and size to the extent that
IT becomes a significant drain on the overall organization.

Figure 4.8
This simple diagram portrays an enterprise environment containing appli-
cations with redundant functionality. The net effect is a larger enterprise.



It Can Result in Complex Infrastructures and Convoluted Enterprise Architectures

Having to host numerous applications built from different generations of technologies
and perhaps even different technology platforms often requires that each will impose
unique architectural requirements. The disparity across these “siloed” applications can
lead to a counter-federated environment (Figure 4.9), making it challenging to plan the
evolution of an enterprise and scale its infrastructure in response to that evolution.
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Figure 4.9
Different application environments within the same enterprise can introduce incompatible
runtime platforms as indicated by the shaded zones.

Integration Becomes a Constant Challenge

Applications built only with the automation of specific business processes in mind are
generally not designed to accommodate other interoperability requirements. Making
these types of applications share data at some later point results in a jungle of convo-
luted integration architectures held together mostly through point-to-point patchwork
(Figure 4.10) or requiring the introduction of large middleware layers.
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The Need for Service-Orientation

After repeated generations of traditional distributed solutions, the severity of the previ-
ously described problems has been amplified. This is why service-orientation was con-
ceived. It very much represents an evolutionary state in the history of IT in that it
combines successful design elements of past approaches with new design elements that
leverage conceptual and technology innovation.

The consistent application of the eight design principles listed earlier results in the wide-
spread proliferation of the corresponding design characteristics:

• increased consistency in how functionality and data is represented

• reduced dependencies between units of solution logic

• reduced awareness of underlying solution logic design and implementation
details

• increased opportunities to use a piece of solution logic for multiple purposes

• increased opportunities to combine units of solution logic into different 
configurations

Figure 4.10
A vendor-diverse enterprise can introduce a variety of integration challenges, as expressed
by the little lightning bolts that highlight points of concern when trying to bridge propri-
etary environments.



• increased behavioral predictability 

• increased availability and scalability

• increased awareness of available solution logic 

When these characteristics exist as real parts of implemented services, they establish a
common synergy. As a result, the complexion of an enterprise changes as the following
distinct qualities are consistently promoted:

Increased Amounts of Agnostic Solution Logic

Within a service-oriented solution, units of logic (services) encapsulate functionality not
specific to any one application or business process (Figure 4.11). These services are there-
fore classified as agnostic and reusable IT assets.
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Figure 4.11
Business processes are automated by a series of business process-specific services 
(top layer) that share a pool of business process-agnostic services (bottom layer). These
layers correspond to the task, entity, and utility service models described in Chapter 3.

Reduced Amounts of Application-Specific Logic

Increasing the amount of solution logic not specific to any one application or business
process decreases the amount of required application-specific logic (Figure 4.12). This
blurs the lines between standalone application environments by reducing the overall
quantity of standalone applications. (See also the Service-Orientation and the Concept of 
“Application” section later in this chapter.)
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Figure 4.12
Business Process A can be automated by either Application A or Service Composition A. The
delivery of Application A can result in a body of solution logic that is specific to and tailored
for the business process. Service Composition A would be designed to automate the process
with a combination of agnostic services and 40% of additional logic specific to the business
process.

Reduced Volume of Logic Overall

The overall quantity of solution logic is reduced because the same solution logic is
shared and reused to automate multiple business processes, as shown in Figure 4.13.

Figure 4.13
The quantity of solution logic shrinks as
an enterprise transitions toward a stan-
dardized service inventory comprised of
“normalized” services.
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Figure 4.14
Services from different parts of a service inventory can be combined into new compositions. If
these services are designed to be intrinsically interoperable, the effort to assemble them into
new composition configurations is significantly reduced.

Inherent Interoperability

Common design characteristics consistently implemented result in solution logic that is
naturally aligned. When this carries over to the standardization of service contracts and
their underlying data models, a base level of automatic interoperability is achieved
across services, as illustrated in Figure 4.14. (See also the Service-Orientation and the 
Concept of “Integration” section later in this chapter.)

SUMMARY OF KEY POINTS

• The traditional silo-based approach to building applications has been suc-
cessful at providing tangible benefits and measurable returns on investment.

• This approach has also caused its share of problems, most notably an
increase in integration complexity and an increase in the size and administra-
tive burden of IT enterprises.

• Service-orientation establishes a design paradigm that leverages and builds
upon previous approaches and proposes a means of avoiding problems asso-
ciated with silo-based application delivery.
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4.3 Challenges Introduced by Service-Orientation

As much as service-orientation can solve some of the more significant historical prob-
lems in IT, its application in the real world can make some serious impositions. It is nec-
essary to be aware of these challenges ahead of time because being prepared is key to
overcoming them.

Design Complexity

With a constant emphasis on reuse, a significant percentage of a service inventory can
ultimately be comprised of agnostic services capable of fulfilling requirements for mul-
tiple potential service consumer programs. 

Although this can establish a highly normalized and streamlined architecture, it can also
introduce an increased level of complexity for both the architecture as well as individ-
ual service designs. 

Examples include:

• increased performance requirements resulting from the increased reuse of agnostic
services

• reliability issues of services at peak concurrent usage times and availability issues
of services during off-hours

• single point of failure issues introduced by excessive reuse of agnostic services
(and that may require the need for redundant deployments to mitigate risks)

• increased demands on service hosting environments to accommodate autonomy-
related preferences

• service contract versioning issues and the impact of potentially redundant service
contracts

Design issues such as these can be addressed by a combination of sound technology
architecture design, modern vendor runtime platform technology, and the consistent
application of service-orientation design principles. Solving service reliability and per-
formance issues in particular are primary goals of those design principles more focused
on the underlying service logic, such as Service Autonomy, Service Statelessness, and
Service Composability.



The Need for Design Standards

Design standards can be healthy for an enterprise in that they “pre-solve” problems by
making several decisions for architects and developers ahead of time, thereby increas-
ing the consistency and compatibility of solution designs. Their use is required in order
to realize the successful propagation of service-orientation.

Although it can be a straight-forward process to create these standards, incorporating
them into a (non-standardized) IT culture already set in its ways can be demanding to
say the least. The usage of design standards can introduce the need to enforce their com-
pliance, a policing role that can meet with resistance. Additionally, architects and devel-
opers sometimes feel that design standards inhibit their creativity and ability to
innovate.

A circumstance that tends to aid the large-scale realization of standardization is when
the SOA initiative is championed by an executive manager, such as a CIO. When an indi-
vidual or a governing body has the authority to essentially “lay down the law,” many of
these cultural issues resolve themselves more quickly. However, within organizations
based on peer-level departmental structures (which are more common in the public 
sector), the acceptance of design standards may require negotiation and compromise.

The best weapon for overcoming cultural resistance to design standards is communica-
tion and education. Those resisting standardization efforts are more likely to become
supporters after gaining an appreciation of the strategic significance and ultimate 
benefits of adopting and respecting the need for design standards.

Top-Down Requirements

A preferred strategy to delivering services is to first conceptualize a service inventory by
defining a blueprint of all planned services, their relationships, boundaries, and indi-
vidual service models. This approach is very much associated with a top-down delivery
strategy in that it can impose a significant amount of up-front analysis effort involving
many members of business analysis and technology architecture groups.

Though preferred, achieving a comprehensive blueprint prior to building services is
often not feasible. It is common for organizations to face budget and time constraints
and tactical priorities that simply won’t permit it. As a result, there are phased and iter-
ative delivery approaches that allow for services to be produced earlier on. These, how-
ever, often come with trade-offs in that they can require the service designs to be
revisited and revised at a later point. While this can introduce risks associated with 
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the implementation of premature service designs, it is often considered an acceptable
compromise.

The principles of service-orientation can be applied to services on an individual basis,

allowing a reasonable degree of service-orientation to be achieved regardless of the
approach. However, the actual quality of the resulting service designs is typically tied
to how much of the top-down analysis work was completed prior to their delivery. 

Counter-Agile Service Delivery in Support of Agile Solution Delivery

Irrespective of the potential top-down efforts needed for some SOA projects, the addi-
tional design considerations required to implement a meaningful measure of each of the
eight design principles increases both the overall time and cost to deliver service logic.

This may appear contrary to the attention SOA has received for its ability to increase
agility. To achieve the state of organizational agility described in Chapter 3 requires that
service-orientation already be successfully implemented. This is what establishes an
environment in which the delivery of solutions is much more agile.

However, given that it takes more initial effort to design and build services than it does
to build a corresponding amount of logic that is not service-oriented, the process of
delivering services in support of SOA can actually be counter-agile. This can cause issues
for an organization that has tactical requirements or needs to be responsive while build-
ing a service inventory. 

BEST PRACTICE

It is recommended that, at minimum, a high-level service inventory blueprint always be
defined prior to creating physical service contracts. This establishes an important
“broader” perspective in support of service-oriented analysis and service modeling
processes and, ultimately, results in stronger and more durable service designs.

BEST PRACTICE

An effective approach, when sufficient resources are available, is to allow SOA initiatives
to be delivered alongside existing legacy development and maintenance projects. This
way, tactical requirements can continue to be fulfilled by traditional applications while the
enterprise works toward a phased transition toward service-oriented computing. 

Appendix B provides additional coverage of SOA delivery strategies that address tacti-
cal versus strategic service delivery requirements.



Governance Demands

The eventual existence of one or more service inventories represents the ultimate deliv-
erable of the typical large-scale SOA initiative. A service inventory establishes a power-
ful reserve of standardized solution logic, a high percentage of which will ideally be
classified as agnostic or reusable. Subsequent to their implementation, though, the man-
agement and evolution of these agnostic services can be responsible for some of the most
profound changes imposed by service-orientation. 

In the past, a standalone application was typically developed by a single project team.
Members of this team often ended up remaining “attached” to the application for sub-
sequent upgrades, maintenance, and extensions. This ownership model worked because
the application’s overall purpose and scope remained focused on the business tasks it
was originally built to automate. 

The body of solution logic represented by agnostic services, however, is intentionally
positioned to not belong to any one business process. Although these services may have
been delivered by a project team, that same team may not continue to own the service
logic as it gets repeatedly utilized by other solutions, processes, and compositions. 

Therefore, a special governance structure is required. This can introduce new resources,

roles, processes, and even new groups or departments. Ultimately, when these issues are
under control and the IT environment itself has successfully adapted to the required
changes, the many benefits associated with this new computing platform are there for
the taking. However, the process of moving to this new governance model can challenge
traditional approaches and demand time, expense, and a great deal of patience.

SUMMARY OF KEY POINTS

• Applying service-orientation on a broad scale can introduce increased design
complexity and the need for a consistent level of standardization.

• The construction of services can be expensive and time-consuming, introduc-
ing a more burdensome project delivery lifecycle, further compounded by
some of the common top-down analysis requirements that may need to be in
place before services can be built.

• Service inventory governance requirements can impose significant changes
that can shake up the organizational structure of an IT department. 
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4.4 Additional Considerations

To supplement the benefits and challenges just covered, this section discusses some fur-
ther aspects of service-orientation.

It Is Not a Revolutionary Paradigm

Service-orientation is not a brand new paradigm that aims to replace all that preceded
it. It, in fact, incorporates and builds upon proven and successful elements from past
paradigms and combines these with design approaches shaped to leverage recent tech-
nology innovations. 

This is why we do not refer to SOA as a revolutionary model in the history of IT. It is sim-
ply the next stage in an evolutionary cycle that began with the application of modular-
ity on a small scale (by organizing simple programming routines into shared modules
for example) and has now spread to the potential modularization of the enterprise.

Enterprise-wide Standardization Is Not Required

There is a common misperception that unless design standardization is achieved glob-
ally throughout the entire enterprise, SOA will not succeed. Although design standard-
ization is a critical success factor for SOA projects that is ideally achieved across an
enterprise, it only needs to be realized to a meaningful extent for service-orientation to
result in strategic benefit.

For example, service-orientation emphasizes the need for standardizing service data
models to avoid unnecessary data transformation and other problematic issues that can
compromise interoperability. The extent to which data model standardization is
achieved determines the extent to which these problems will be avoided. 

The goal is not always to eliminate problems entirely because that can be an unrealistic
objective, especially in larger enterprises. Therefore, the goal is sometimes to just mini-
mize problems by taking special considerations into account during service design. 

In support of this approach, design patterns exist for organizing the division of an enter-
prise into more manageable domains. Data standardization is generally more easily
attained within each domain, and transformation is then only required when exchang-
ing data across these domains. Even though this does not achieve a global data model,
it can still help establish a very meaningful level of interoperability.



Reuse Is Not an Absolute Requirement

Increasing reusability of solution logic is a fundamental goal of service-orientation, and
reuse is clearly one of the most associated benefits of SOA. As a result, organizations that
have had limited success with past reuse initiatives, or with concerns that significant
amounts of reuse cannot be achieved within their enterprise, are often hesitant about
SOA in general.

While reuse, especially over time, can be one of the most rewarding parts of investing in
SOA, it is not the sole primary benefit. Perhaps even more fundamental to service-
orientation than promoting reuse is fostering interoperability. Enabling an enterprise to
connect previously disparate systems or to make interconnectivity an intrinsic quality of
new solution logic is extremely powerful. 

You could ignore the principle of Service Reusability in service designs and still achieve
significant returns on investment based solely on raising the level of enterprise-wide
interoperability.
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NOTE

One could argue that reuse and interoperability are very closely related in
that if two services are interoperable, there is always the opportunity for
reuse. However, traditional perspectives of reusable solution logic focus
on the nature of the logic itself. A service that is designed to be specifi-
cally agnostic to business processes and cross-cutting to address multi-
ple concerns will have a particular functional context associated with it.
Therefore, reuse can be seen as a separate design characteristic that
relies and builds upon interoperability. See Chapter 9 for more details.

SUMMARY OF KEY POINTS

• Service-orientation has deep roots in several past computing platforms and
design approaches, and is therefore not considered a revolutionary design
paradigm.

• Global standardization within an enterprise is not a requirement for creating
service-oriented enterprises because individual service inventories can be
established (and separately standardized) within different enterprise domains.

• Although fundamental to much of service-orientation, if reusability were to be
omitted as a design characteristic, significant interoperability-related benefit
would still be attainable.
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4.5 Effects of Service-Orientation on the Enterprise

There are good reasons to have high expectations from the service-orientation para-
digm. But, at the same time, there is much to learn and understand before it can be suc-
cessfully applied. The following sections explore some of the more common examples.

Service-Orientation and the Concept of “Application”

Having just stated that reuse is not an absolute requirement, it is important to acknowl-
edge the fact that service-orientation does place an unprecedented emphasis on reuse.
By establishing a service inventory with a high percentage of reusable and agnostic serv-
ices, we are now positioning those services as the primary (or only) means by which the
solution logic they represent can and should be accessed. 

As a result, we make a very deliberate move away from the silos in which applications
previously existed. Because we want to share reusable logic whenever possible, we auto-
mate existing, new, and augmented business processes through service composition.
This results in a shift where more and more business requirements are fulfilled not by
building or extending applications, but by simply composing existing services into new
composition configurations.

When compositions become more common, the traditional concept of an application, a
system, or a solution actually begins to fade, along with the silos that contain them.
Applications no longer consist of self-contained bodies of programming logic responsi-
ble for automating a specific set of tasks (Figure 4.15). What was an application is now
just another service composition. And it’s a composition made up of services that very
likely participate in other compositions (Figure 4.16).

Figure 4.15
The traditional application, delivered to automate specific business process logic.



An application in this environment loses its individuality. One could argue that a serv-
ice-oriented application actually does not exist because it is, in fact, just one of many
service compositions. However, upon closer reflection, we can see that some of the serv-
ices are actually not business process-agnostic. The task service, for example, intention-
ally represents logic that is dedicated to the automation of just one business task and
therefore is not necessarily reusable.

What this indicates is that non-agnostic services can still be associated with the notion
of an application. However, within service-oriented computing, the meaning of this
term can change to reflect the fact that a potentially large portion of the application logic
is no longer exclusive to the application.

Service-Orientation and the Concept of “Integration”

When we revisit the idea of a service inventory consisting of services that have, as per
our service-orientation principles, been shaped into standardized and (for the most part)
reusable units of solution logic, we can see that this can challenge the traditional per-
ception of “integration.”

In the past, integrating something implied connecting two or more applications or pro-
grams that may or may not have been compatible (Figure 4.17). Perhaps they were based
on different technology platforms or maybe they were never designed to connect with
anything outside of their own internal boundary. The increasing need to hook up dis-
parate pieces of software to establish a reliable level of data exchange is what turned
integration into an important, high profile part of the IT industry.
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Figure 4.16
The service composition, intended to fulfill the role of the traditional application by leveraging agnostic and non-
agnostic services from a service inventory. This essentially establishes a “composite application.”
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Services designed to be “intrinsically interoperable” are built with the full awareness
that they will need to interact with a potentially large range of service consumers, most
of which will be unknown at the time of their initial delivery. If a significant part of our
enterprise solution logic is represented by an inventory of intrinsically interoperable
services, it empowers us with the freedom to mix and match these services into infinite
composition configurations to fulfill whatever automation requirements come our way.

As a result, the concept of integration begins to fade. Exchanging data between different
units of solution logic becomes a natural and secondary design characteristic (Figure
4.18). Again, though, this is something that can only transpire when a substantial per-
centage of an organization’s solution logic is represented by a quality service inventory.

Figure 4.17
The traditional integration architecture, comprised of two or more applications
connected in different ways to fulfill a new set of automation requirements (as
dictated by the new Business Process G).



While working toward achieving this environment, there will likely be many require-
ments for traditional integration between existing legacy systems and also between
legacy systems and these services. 
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Figure 4.18
A new combination of services is composed together to fulfill the role of
traditional integrated applications.

The Service Composition

Applications, integrated applications, solutions, systems, all of these terms and what
they have traditionally represented can be directly associated with the service composi-
tion (Figure 4.19). However, given the fact that many SOA implementations consist of a
mixture of legacy environments and services, these terms are sure to survive for quite
some time. 

In fact, as SOA transition initiatives continue to progress within an enterprise, it can be
helpful to make a clear distinction between a traditional application (one which may
reside alongside an SOA implementation or which may be actually encapsulated by a
service) and the service compositions that eventually become more commonplace.



4.5 Effects of Service-Orientation on the Enterprise 95

Application, Integration, and Enterprise Architectures

Because applications have existed for as long as IT, when technology architecture as a
profession and perspective within the enterprise came about, it made perfect sense to
have separate architectural views dedicated to individual applications, integrated appli-
cations, and the enterprise as a whole.

When standardizing on service-orientation, the manner in which we document technol-
ogy architecture is also in for a change. The enterprise-level perspective becomes pre-
dominant as it represents a master view of the service inventory. It can still encompass
the traditional parts of a formal architecture, including conceptual views, physical
views, and supporting technologies and governance platforms—but all these views are
likely to now become associated with the service inventory.

A new type of technical specification that gains prominence in service-oriented enter-
prise initiatives is the service composition architecture. Even though we talk about the sim-
plicity of combining services into new composition configurations on demand, it is by
no means an easy process. It is a design exercise that requires the detailed documenta-
tion of the planned composition architecture.

For example, each service needs to be assessed as to its competency to fulfill its role as a
composition member, and foreseeable service activity scenarios need to be mapped out.

Figure 4.19
A service-oriented solution, application, or system is the equiva-
lent of a service composition. If we were to build an enterprise-
wide SOA from the ground up, it would likely be comprised of
numerous service compositions capable of fulfilling the traditional
roles associated with these terms.



Message designs, messaging routes, exception handling, cross-service transactions,

policies, and many more considerations go into making a composition capable of
automating its designated business process. 
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SUMMARY OF KEY POINTS

• The traditional concept of an application can change as more agnostic 
services become established parts of the enterprise. 

• The traditional concept of integration can change as the proliferation of 
standardized, intrinsic interoperable services increases.

• Architectural views of the enterprise shift in response to the adoption of 
service-orientation. Principally, the enterprise perspective becomes 
increasingly prominent.

4.6 Origins and Influences of Service-Orientation

It is often said that the best way to understand something is to gain knowledge of its his-
tory. Service-orientation, by no means, is a design paradigm that just came out of
nowhere. It is very much a representation of the evolution of IT and therefore has many

BEST PRACTICE

Although the structure and content of traditional application architecture specifications
are augmented when documenting composition architectures, there can still be a natural
tendency to refer to these documents as architecture specifications for applications. 

While an organization is undergoing a transition toward SOA, it can be helpful to make a
clear distinction between an application consisting of a service composition and tradi-
tional, standalone or legacy applications. 

One approach is to consistently qualify the term “application.” For example, it can be
prefixed with “service-oriented,” “composite,” “standalone,” or “legacy.” Another option
is to simply limit the use of the term “application” to refer to non-service-composed solu-
tions only. 

Furthermore, a composed service encapsulating a legacy application can be docu-
mented in separate specifications: a composition architecture specification that identifies
the service and points to an application architecture specification that defines the corre-
sponding application.
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roots in past paradigms and technologies (Figure 4.20). At the same time, it is still in a
state of evolution itself and therefore remains subject to influences from on-going trends
and movements.

Figure 4.20
The primary influences of service-orientation also highlight its many origins.

The sections that follow describe some of the more prominent origins and thereby help
clarify how service-orientation can relate to and even help further some of the goals
from past paradigms.

Object-Orientation

In the 1990s the IT community embraced a design philosophy that would lead the way
in defining how distributed solutions were to be built. This paradigm was object-orien-
tation, and it came with its own set of principles, the application of which helped ensure
consistency across numerous environments. These principles defined a specific type of
relationship between units of solution logic classified as objects, which resulted in a pre-
dictable set of dynamics that ran through entire solutions.

Service-orientation is frequently compared to object-orientation, and rightly so. The
principles and patterns behind object-oriented analysis and design represent one of the
most significant sources of inspiration for this paradigm.

In fact, a subset of service-orientation principles (Service Reusability, Service Abstrac-
tion, and Service Composability, for example) can be traced back to object-oriented
counterparts. What distinguishes service-orientation, though, are the parts of the object-
oriented school of thought that were left out and the other principles that were added.
See Chapter 14 for a comparative analysis of principles and concepts associated with
these two design approaches.



Web Services 

Even though service-orientation as a paradigm and SOA as a technology architecture are
each implementation-neutral, their association with Web services has become common-
place—so much so that the primary SOA vendors have shaped their respective plat-
forms around the utilization of Web services technology.

Although service-orientation remains a fully abstract paradigm, it is one that has his-
torically been influenced by the SOA platforms and roadmaps produced by these ven-
dors. As a result, the Web services framework has influenced and promoted several
service-orientation principles, including Service Abstraction, Service Loose Coupling,

and Service Composability.

Business Process Management (BPM) 

BPM places a significant emphasis on business processes within the enterprise both in
terms of streamlining process logic to improve efficiency and also to establish processes
that are adaptable and extensible so that they can be augmented in response to business
change.

The business process layer represents a core part of any service-oriented architecture.
From a composition perspective, it usually assumes the role of the parent service com-
position controller. The advent of orchestration technology reaffirmed this role from an
implementation perspective.

A primary goal of service-orientation is to establish a highly agile automation environ-
ment fully capable of adapting to change. This goal can be realized by abstracting busi-
ness process logic into its own layer, thereby alleviating other services from having to
repeatedly embed process logic. 

While service-orientation itself is not as concerned with business process reengineering,

it fully supports process optimization as a primary source of change for which services
can be recomposed.

Enterprise Application Integration (EAI) 

Integration became a primary focal point in the late 90’s, and many organizations were
ill prepared for it. Numerous systems were built with little thought given to how data
could be shared outside of the system boundary. As a result, point-to-point integration
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channels were often created when data sharing requirements emerged. This led to well
known problems associated with a lack of stability, extensibility, and inadequate inter-
operability frameworks.

EAI platforms introduced middleware that allowed for the abstraction of proprietary
applications through the use of adapters, brokers, and orchestration engines. The result-
ing integration architectures were, in fact, more robust and extensible. However, they
also became notorious for being overwhelmingly complex and expensive, as well as
requiring long-term commitments to the middleware vendor’s platform and roadmap.

The advent of the open Web services framework and its ability to fully abstract propri-
etary technology changed the face of integration middleware. Vendor ties could be bro-
ken by investing in mobile services as opposed to proprietary platforms, and
organizations gained more control over the evolution of their integration architectures. 

Several innovations that became popularized during the EAI era were recognized as
being useful to the overall goals associated with building SOA using Web services. One
example is the broker component, which allows for services using different schemas
representing the same type of data to still communicate through runtime transforma-
tion. The other is the orchestration engine, which can actually be positioned to represent
an entire service layer within larger SOA implementations. These parts of the EAI 
platform support several service-orientation principles, including Service Abstraction,

Service Statelessness, Service Loose Coupling, and Service Composability.

Aspect-Oriented Programming (AOP)

A primary goal of AOP is to approach the separation of concerns with the intent of iden-
tifying specific concerns that are common to multiple applications or automation sce-
narios. These concerns are then classified as “cross-cutting,” and the corresponding
solution logic developed for cross-cutting concerns becomes naturally reusable.

Aspect-orientation emerged from object-orientation by building on the original goals of
establishing reusable objects. Although not a primary influential factor of service-orien-
tation, AOP does demonstrate a common goal in emphasizing the importance of invest-
ing in units of solution logic that are agnostic to business processes and applications and
therefore highly reusable. It further promotes role-based development, allowing devel-
opers with different areas of expertise to collaborate.



SUMMARY OF KEY POINTS

• Service-orientation represents a design paradigm that has its roots in several
origins. It emphasizes successful and proven approaches and supplements
them with new principles that leverage recent conceptual and technology 
innovation.

• Service-orientation, as a design paradigm, is comparable with object-
orientation. In fact, several key object-oriented principles have persisted 
in service-orientation.

• The Web services technology platform is primarily responsible for the popular-
ity of SOA and is therefore also a significant influence in service-orientation.
Conversely, the rise of service-oriented computing has repositioned and 
formalized the Web services technology set from its original incarnation.
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NOTE

The actual events and timeline associated with the emergence of SOA
are documented in Chapter 4 of the book Service-Oriented Architecture:
Concepts, Technology, and Design.

4.7 CASE STUDY BACKGROUND

Cutit’s immediate priority is to streamline their internal supply chain process. The
order process in particular needs to be supported by the planned services so that
orders and back-orders can be fulfilled as soon as possible.

Below are brief descriptions of the service candidates shown in Figure 4.21 in rela-
tion to how they inter-relate based on their entity-centric functional contexts:

• Everything originates with the manufacturing of chain blades in the Cutit
lab, which requires the use of specific materials that are applied as per prede-
fined formulas. 

• The assembly of chains results in products being added to their overall 
inventory.

• Saws and kits are items Cutit purchases from different manufacturers to com-
plement their chain models.

• Notifications need to be issued when stock levels fall below certain levels or if
other urgent conditions occur.



• Finally, a periodic patent sweep is conducted to search for recently issued
patents with similarities to Cutit’s planned chain designs.

Note that all services shown are entity services, with the exception of Patent
Sweep and Notifications, which are based on the utility service model. A task serv-
ice is added in Part II.
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Figure 4.21
The initial set of services planned to support the following types of processes: keeping track of orders and back-
orders, chain manufacturing, tracking required manufacturing materials, and inventory management of manufac-
tured and purchased products. All of the displayed services are based on the entity service model, except for the
bottom two, which are utility services.
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services; WS-BPEL
orchestration services. See orchestrated

task services
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agile development versus, 63
project delivery timelines and, 64
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Service Abstraction principle

support for, 506
service compositions and, 64
Service Loose Coupling principle

support for, 506
Service Reusability principle

support for, 64, 506
service-orientation and, 63
in service-oriented computing,

63-64
organizational culture. See cultural

issues
organizational roles, 488-490

enterprise architects, 494-495
enterprise design standards
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policy custodians, 493
schema custodians, 492
service analysts, 491
service architects, 491
service custodians, 492
service registry custodians, 493-494
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specialists, 494
origins
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of composition, 390-392
of coupling, 165-166

of discovery, 367-368
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of reuse, 257-258
of service-orientation, 96-99

AOP (aspect-oriented
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BPM (business process
management), 98

EAI (enterprise application
integration), 98-99

object-orientation, 97
Web services, 98

of service contracts, 127-129
of state management, 328-331

overestimating service usage
requirements, 318

P

paradigm. See design paradigm
parameters in policy assertions, 138
parent process coupling, 180
partially deferred memory, 340-341
partially deferred state management,

341-342
partially isolated services, 306-308
passive state (state management), 335
pattern languages. See design pattern

languages
patterns. See design patterns
performance

data transformation, 140
schema coupling and, 202
Service Composability design

risks, 437-438
service loose coupling, 201-202
state management and, 334

Plain Old XML. See POX
planned reuse, measures of, 265-266
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policies, 48, 137-139, 274, 493
centralization and, 138
contract-to-logic coupling, 179
editors, 152
processors, 138
Service Abstraction and, 238
service consumer dependencies

and, 138
service profiles and, 483
structural standards, 139

policy alternatives, 378
policy assertions, 146, 493

centralization, 138-139
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nested policy assertions, 138
parameters, 138
proprietary vocabularies for

discoverability, 378
Service Discoverability and, 378
structural design, 139
structural standards and, 139
vocabularies for, 137-138

policy custodians (role), 493
policy parameters, 378
policy vocabularies, 493
polymorphism (OOAD), 463-464
portType element, 456
positive types of coupling, 193, 195
post-implementation application of

service discoverability, 381
poster Web site, 16, 534
POX (Plain Old XML), 50
Prentice Hall Service-Oriented Computing

Series from Thomas Erl, 4, 111, 284,
495, 531

Web site, 16, 533

primitive compositions, 406, 487
primitive service activities, 402, 405
principle profiles

explained, 109-110
Service Abstraction, 214-217
Service Autonomy, 296-297
Service Composability, 392,

395-396
Service Discoverability, 368, 370
Service Loose Coupling, 167, 169
service profiles versus, 110
Service Reusability, 259-261
Service Statelessness, 331-332, 334
Standardized Service Contract,

130-132
principles. See design principles
privacy concerns, Service Abstraction

principle, 243
process services. See orchestrated task

services
process-specific services, service

contracts for, 144
processes

bottom-up, 518-519
choosing, 521-522
discovery, 363-367
interpretation, 364-367
inventory analysis cycle, 520-521
service delivery, 518, 521-528
service modeling, 105-106, 523
service-oriented analysis,

105-106, 521
service-oriented design, 106-107
SOA delivery, 518, 521-528
top-down, 518-519

productivity, as goal of object-
orientation, 450, 452
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profiles

Index 555
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222-223, 226, 486

proprietary assertion vocabularies, 378
proprietary vocabularies, 137-138
proxies, 128
pure autonomy, 308-310, 317, 488
Purpose Description (service profile

field), 481

Q

QoS Requirements (service profile
field), 481

quality of service abstraction, 224,
226, 486

quality of service meta information,
374, 486

abstraction levels and, 234
example of, 386
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reduced IT burden, as supported by
Service Composability principle, 509

reduced statefulness, 340-341
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avoidance of, 64, 465-466
reducing, 83
in silo-based applications, 78
in traditional solution delivery,

78-79
registries. See service registries
regulatory presence, 241
regulatory principles, 111-114
reliability, 317

Service Reusability design 
risks, 286

repository versus registry, 367
REST (Representational State 

Transfer), 50

return on investment. See ROI
reusability, 69. See also Service

Reusability (principle)
as goal of object-orientation,

450, 452
level required, 90
reuse versus, 256

reusable components (Standardized
Service Contract principle), 129

reuse, 62-63, 69, 82, 90. See also Service
Reusability (principle)

explained in abstract, 254-256
governance rigidity and, 438
origins of, 257-258
reusability versus, 256
traditional approaches, 258
traditional problems with, 257-258
Web services and, 258

risks
with consumer-to-contract

coupling, 214
of gold-plating, 267
Service Abstraction design, 242

human misjudgment, 242-243
multi-consumer coupling

requirements, 242
security and privacy 

concerns, 243
Service Autonomy design

functional scope, 317
overestimating service usage

requirements, 318
wrapper services, 318

Service Composability design
governance rigidity, 438
performance limitations,

437-438
single points of failure, 437
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151-152
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Service Discoverability design
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381-382
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application, 381
Service Loose Coupling design,

200
logic-to-contract coupling,

200-201
performance problems, 201-202

Service Reusability design, 281
agile delivery, 287
commercial design, 286-287
governance structure, 283-285
organizational culture, 281-283
reliability, 286
security, 286

Service Statelessness design
architecture dependency, 349-

350
runtime performance, 350
underestimating effort

requirements, 350
robustness, as goal of object-

orientation, 450-451
ROI (return on investment)

Service Composability principle
support for, 505

Service Discoverability principle
support for, 505

Service Statelessness principle
support for, 505

in service-oriented computing,
61-62

roles. See organizational roles
RPC, 150, 448, 455
RPC-style messages, 117
runtime autonomy, 486

explained, 298
normalization design patterns, 305
service contracts and, 301-305

runtime discovery, 371-373, 486
runtime performance (Service

Statelessness design risks), 350

S

scalability, 326, 333, 340, 348
Schema Centralization design pattern,

135-137, 531
schema custodians (role), 492
scope

of analysis, defining, 522
comparison of object-orientation

and service-orientation, 447
second-generation Web services

platform, 47. See also Web services
security

Service Abstraction principle, 243
Service Reusability design 

risks, 286
separation of concerns, 70

in relation to service 
compositions, 390

Service Abstraction (principle), 72, 212-
251, 402

application level terminology, 487
associated terminology, 486
in case study, 244-252
commercial product design 

and, 214
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(OOAD), 463

considerations when designing
service-oriented classes, 473

constraint granularity and, 239
consumer coupling and, 192
contribution to realizing

organizational agility, 506
design principles, relationship

with, 239-241
design risks, 242

human misjudgment, 242-243
multi-consumer coupling

requirements, 242
security and privacy 

concerns, 243
effect on other design principles,

239-241
encapsulation versus, 235-237
explained, 212
goals, 215
impact on composition design

process, 418
implementation requirements, 216
interoperability and, 74
measuring, 231

access control abstraction levels,
232-234

contract content abstraction
levels, 231-232

quality of service meta
information, 234

meta abstraction types, 218-219
in commercial software, 227
in custom-developed software,

228-229
functional abstraction, 221-222
in open source software, 227-228
programmatic logic abstraction,

222-223

quality of service 
abstraction, 224

technology information
abstraction, 219-221

Web service design and, 225-226
in Web services, 229-230

non-technical contract documents
and, 237-238

origins of, 213
policies and, 238
policy assertions, 238
principle profile, 214-217
Service Autonomy and, 316
Service Composability and, 241,

433-435
Service Discoverability and,

241, 379
service granularity and, 238-239
Service Loose Coupling and, 114,

198, 241
service models and, 239
Service Reusability and, 241, 279
Standardized Service Contract

principle and, 146, 240
Web services and, 50
WS-Policy definitions, 238

service activities, explained,
402-403, 487

service adapters, 142, 174, 213
service agents, 114

in message processing logic, 48
service analysts (role), 491
service architects (role), 491
Service Autonomy (principle), 72, 276,

294-323
application level terminology, 488
associated terminology, 486
in case study, 319-323
composition autonomy and, 430
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considerations when designing
service-oriented classes, 473

coupling and, 178
design principles, relationship

with, 314-317
design risks

functional scope, 317
overestimating service usage

requirements, 318
wrapper services, 318

design-time autonomy, explained,
298-299

effect on other design principles,
314-317

explained, 294-295
interoperability and, 74
measuring, 300-301

mixed autonomy, 310
pure autonomy, 308-310
service contract autonomy,

301-305
service logic autonomy, 306-308
shared autonomy, 305-306

origins of, 295
principle profile, 296-297
runtime autonomy, explained, 298
scalability, 261
Service Abstraction and, 316
Service Composability and, 317,

435-436
service contracts, 301-305
service granularity and, 311-312
Service Loose Coupling and, 178,

199, 315-316
service models and, 105, 311-314,

525
Service Reusability and, 280, 316
Service Statelessness and, 316, 348
service-oriented analysis processes

and, 105

Standardized Service Contract
and, 301-305, 315

service candidates, 269, 276. See also
service modeling

explained, 52
Service Discoverability and, 377
service inventory blueprint

definition, 520
service modeling and, 52
service-oriented design and, 53
services versus, 52

service capabilities
composition design support,

assessment for, 422
composition governance support,

assessment for, 426
composition runtime support,

assessment for, 424
explained, 115
granularity and, 116
operations and methods 

versus, 115
service capability candidates, 523, 525.

See also service candidates
service catalogs, service profiles 

and, 483
Service Composability (principle), 73,

388-441. See also composition
(OOAD)

associated terminology, 487
in case study, 439-441
composition autonomy and, 430
composition controllers, explained,

398-401
composition initiators, explained,

403-405
composition members, explained,

398-401
considerations when designing

service-oriented classes, 473-474
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consumer coupling and, 191
contract-to-implementation

coupling and, 200
contract-to-logic coupling and, 199
contract-to-technology coupling

and, 199
contribution to realizing reduced

IT burden, 509
contribution to realizing ROI, 505
design principles, relationship

with, 432-436
design risks

governance rigidity, 438
performance limitations, 437-

438
single points of failure, 437

effect on other design principles,
432-436

explained, 388
interoperability and, 75
measuring, 412

checklists, 419-420, 426-427
design phase assessment,

413, 415
governance phase assessment,

417, 419
lifecycle phases, 412-413
runtime phase assessment,

415, 417
orchestration and, 430, 432
point-to-point data exchanges,

explained, 405-406
principle profile, 392, 395-396
Service Abstraction and, 241,

433-435
service activities, explained,

402-403
Service Autonomy and, 317,

435-436

service composition instances,
explained, 397

service compositions
capabilities, 399-400
explained, 397

Service Discoverability and,
380, 436

service granularity and, 427-428
Service Loose Coupling and,

199-200, 433
service models and, 428-430
Service Reusability and, 280, 435
Service Statelessness and, 436
Standardized Service Contract

and, 148, 432
Web service region of influence,

395-396
Web services and, 50, 401

service composition candidates, 523
service composition instances,

explained, 397
service composition references, 63
service compositions, 82

agnostic services, 62
applications versus, 91-92
architecture of, 95-96
autonomy and, 298, 314
capabilities, 399-400
compared to applications and

integrated applications, 94-95
complex service compositions, 407

characteristics of, 410-411
preparation for, 411
service inventory evolution, 407,

409-410
composition autonomy, 430
consumer coupling and, 191
defined, 39
design assessment, 413
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evolutionary cycles, 412-413
design phase, 413
governance phase, 413
runtime phase, 413

explained, 39-40, 94-95,
388-390, 397

governance assessment, 417
governance considerations, 438
hidden, 434
implementation, 42
integrated applications versus,

92-94
naming, 96
origins of, 390-392
as related to service 

inventories, 407
relationship with service-oriented

computing elements, 40
roles

composition controllers, 398-399
composition initiators, 403-404
composition members, 398-399
designated controllers, 400
examples of, 404-405

runtime assessment, 415, 417
scope of, 405-406
service contracts and, 148
state management and, 340
types of, 406

service consumers, 48-49
as composition initiators and

controllers, 404
coupling and, 167
coupling types, 181-182

consumer-to-contract coupling,
185-191

consumer-to-implementation
coupling, 182, 184

Contract Centralization design
pattern, 185

measuring consumer coupling,
191-192

policy dependencies, 138
service contract autonomy, 301-305, 488
service contracts, 126, 393. See also

Standardized Service Contracts
(principle)

APIs and, 129
auto-generation, 54, 152
in client-service applications, 128
content abstraction levels, 231-232
data models and, 134-137
defined, 126
denormalization and, 301-305
dependencies on, 165
design-time autonomy and,

301-305
discoverability, 364-367
in distributed applications, 128
explained, 126-127
interpretability, 364-367
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non-technical contract documents,

Service Abstraction and, 237-238
normalization and, 301-305
runtime autonomy and, 301-305
Service Autonomy and, 301-305
service compositions and, 148
technical versus non-technical, 127
validation coupling and, 190-191
versions, 150
Web services architecture, 48

service coupling. See coupling
service custodians (role), 492
service description documents,
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service design

capability granularity and, 116
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in, 106-107
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granularity types, 118
normalization and, 65
separation of concerns and, 70
service granularity and, 116
Service Reusability principle

design principles, relationship
with, 278, 280-281

service granularity, 277-278
service models, 276-278

service-orientation principles and,
106-107

Service Discoverability (principle), 73,
243, 272, 276, 362-386. See also
discovery

associated terminology, 486
in case study, 382-386
contribution to realizing ROI, 505
design principles, relationship

with, 378-380
design risks

communication limitations,
381-382

post-implementation 
application, 381

discovery types, design-time and
runtime discovery, 371-373

effect on other design principles,
378-380

explained, 362-364
implementation requirements, 370
interoperability and, 75
measuring
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375-376
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meta information types, 373
functional meta data, 374
quality of service meta data, 374

policy assertions and, 378
principle profile, 368, 370
Service Abstraction and, 241, 379
Service Composability and,

380, 436
service granularity and, 378
Service Loose Coupling and, 199
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377-378, 525
Service Reusability and, 280, 380
service-oriented analysis processes

and, 106
Standardized Service Contract

and, 147-148, 379
support for service capability

composition design process, 426
Web service region of 
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service encapsulation, 235-237, 306
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inventory blueprints
service granularity, 486

cohesion and, 467
coupling and, 195-196
explained, 116
functional context and, 116
inheritance (OOAD) and, 473
Service Abstraction and, 238-239
Service Autonomy and, 311-312
Service Composability and,

427-428
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Service Reusability, 277-278
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service inventory. See also service
inventory blueprints

analysis process, 521
defined, 40
delivery processes, 520-521
evolutionary stages, 407, 409-410
modeling, 520-521
example of, 270
explained, 40
implementation, 42
as related to service 

compositions, 407
relationship with service-oriented

computing elements, 41
service inventory blueprints, 53, 313,

320. See also service inventory
architecture definition, 520
case study, 66
defining, 520
explained, 51-52
selecting processes, 521
Service Reusability, 269-270

service inventory models. See service
inventory blueprints

service layers, 60, 82
service level agreement. See SLA
service logic autonomy, 306-308, 488
Service Loose Coupling (principle), 71,

164-209, 299. See also coupling
associated terminology, 486
association with Service

Autonomy principle, 299
capability granularity and, 195-196
considerations when designing

service-oriented classes, 473
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contribution to realizing
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effect on other design principles,

197-200
interoperability and, 74
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Service Abstraction principle and,

114, 198, 241
Service Autonomy and, 178, 199,

315-316
Service Composability and,

199-200, 433
Service Discoverability principle

and, 199
Service Reusability and, 199, 279
Standardized Service Contract

principle and, 145-146, 173, 198
technology abstraction and, 221
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service-oriented analysis
alternative terms for, 485
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business-centric, 45
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coupling and, 196-197
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explained, 43-46, 52
non-business-centric, 46
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process, 523
Service Abstraction and, 239
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Service Composability and,

428-430
Service Discoverability and, 106,
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276-278, 525
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service-orientation principles and,

105-106
service-oriented design processes

and, 526-527
standardization of service

contracts, 144
task services, 44-45
technology architects and, 53
utility services, 46
wrapper service model, 306

Service Normalization design pattern,
272, 305, 465, 531

service contract autonomy and,
302-304

service operations, explained, 115
service policies, standardization of,

137-139
service profiles, 155

capability profiles, structure of,
481-482

case study, 155, 157
customizing, 482
example of, 383-386
explained, 478-479
policies and, 483
principle profiles versus, 110
service catalogs and, 483
service registries and, 482
structure of, 480

service providers, 48-49
service registries

explained, 366
service profiles and, 482

service registry custodians (role),
493-494

Service Reusability (principle), 62, 72,

254-292, 343, 393, 465, 468
agnostic services, 268-269
application level terminology, 487
in case study, 288-292
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organizational agility, 506
cultural issues, 281-283
design principles, relationship

with, 278, 280-281
design risks, 281

agile delivery, 287
commercial design, 286-287
governance structure, 283-285
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reliability, 286
security, 286

Domain Inventory design pattern
and, 275

effect on other design principles,
278-281

explained, 254
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interoperability and, 74
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272-273
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as enterprise design 
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explained, 271
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265-266
commercial design approach,
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gold-plating, 267
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280, 435
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280, 380
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269-270
Service Loose Coupling and,

199, 279
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276-278, 525
Service Statelessness and, 280, 348
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and, 105
Standardized Service Contract

and, 147, 278
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considerations when designing

service-oriented classes, 473
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design principles, relationship

with, 347-349
design risks

architecture dependency, 349-
350

runtime performance, 350
underestimating effort

requirements, 350
effect on other design principles,

347-349
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measuring, 339
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342-343
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management, 342
non-deferred state 

management, 340
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340-341
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management, 341-342
messaging as deferral option,

343-344
principle profile, 331-332, 334
scalability, 261
Service Autonomy and, 316, 348
Service Composability and, 436
service instances and, 344-346
service models and, 346-347
Service Reusability and, 280, 348
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business data, 338
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session data, 336-337
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explained, 329
messaging as, 343-344
state delegation versus, 331

state delegation
explained, 329
state deferral versus, 331

state management
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explained, 327-328
origins of, 328-331
performance and, 334
service compositions and, 340
SOAP attachments and, 334

service symbol, explained, 13, 15-16
service-orientation

advantages of, 81-84
applications and, 82, 91-92
applications versus service

compositions, 91-92
challenges introduced by, 85-88
comparison with object-

orientation, 446-475
counter-agile delivery and, 87
coupling types and, 193-195
defined, 39
design characteristics, importance

of, 69
as design paradigm, 30, 70-71
design standards and, 86, 89
evolution of, 89
explained, 68-101
governance demands, 88
integration and, 84, 92-94
interoperability and, 74-75, 84
meta abstraction types in, 229-230
object-orientation compared, 97,

446-449
common goals, 449-452
design principles, 457-472
fundamental concepts, 453-457

origins of, 96-99
AOP (aspect-oriented

programming), 99
BPM (business process

management), 98
EAI (enterprise application

integration), 98-99

object-orientation, 97
Web services, 98

problems solved by, 75-84
relationship with service-oriented

computing elements, 40
reusability, level required, 90
service compositions, explained,

94-95
standardization and, 89
technology architectures and, 95-96
top-down delivery, 86-87

service-orientation principles. See also
design principles

service modeling processes and,
105-106

service-oriented analysis processes
and, 105-106

service-oriented design processes
and, 106-107

service-oriented analysis, 60, 522-523.
See also service modeling

business analysts and, 53
design principles in, 105-106
explained, 52-53
process, 521
service-orientation principles and,

105-106
technology architects and, 53

service-oriented architecture. See SOA
Service-Oriented Architecture: A Field

Guide to Integrating XML and Web
Services, 492

Service-Oriented Architecture: Concepts,
Technology, and Design, 5, 100, 432,
518

service-oriented classes, designing,
472-474

service-oriented computing
elements, 37-42
explained, 37-54
goals and benefits, 55-56
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with, 498-499
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60-61
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63-64
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principles, 104-105
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vendor diversification, 59-60
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40-42
service compositions and, 39-40
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51-52
service models and, 43-46
service-oriented analysis and,

52-53
service-oriented design and, 53-54
services and, 39
SOA and, 38, 56
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vision, 55
Web services and, 49-50

service-oriented design, 377, 521, 525,
527-528

contract first design, 53, 131,
173, 194

explained, 53-54
Service Abstraction

design principles, relationship
with, 239-241

encapsulation, 235-237
non-technical contract

documents, 237-238
service granularity and, 238-239
service models and, 239

Service Autonomy
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with, 314-317
service granularity and, 311-312
service models and, 311-314

Service Composability
composition autonomy and, 430
design principles, relationship

with, 432-436
orchestration and, 430, 432
service granularity and, 427-428
service models and, 428-430
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140-142
service granularity, 142-144
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with, 378-380
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service models and, 377-378
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granularity and, 346
messaging as deferral option,

343-344
service instances and, 344-346
service models and, 346-347

service-orientation principles and,
106-107

service-oriented solution logic
defined, 39
implementation, 42
relationship with service-oriented

computing elements, 40
service-to-consumer coupling, 180
services

agnostic, 62, 82, 91
business-centric, 45
in case study, 154
as collections of capabilities, 69-70
communications quality, 365
as components, 176-177
as containers, 70
counter-agile delivery of, 87
defined, 39
dependencies between, 165
discoverability, 364-367
explained, 39, 68-69
as federated endpoints, 58
functional context, 70
implementation, 42, 47
interoperability, 84
interpretability, 364-367
as IT assets, 62
non-business-centric, 46
normalized, 65, 83
ownership, 88
real-world analogy, 68-70
relationship with service-oriented

computing elements, 40
reusable versus agnostic, 268-269

reuse. See reuse; Service
Reusability (principle)

ROI, 62
roles

service consumers, 48-49
service providers, 48-49

scalability, 326, 333, 340, 348
service candidates versus, 52
standardization of, 89
symbols for, 39
usage requirements, 318
Web services versus, 49

session data (state management),
336-337

shared autonomy, 305-306, 488
silo-based applications, 92

advantages of, 76-78
counter-federation and, 80
disadvantages of, 78-81
integration and, 81
redundancy, 78

Simple Object Access Protocol. See
SOAP

single responsibility principle. See SRP
single-purpose programs, 255
SLA (service level agreement), 152-153,

237-238, 249, 382, 386, 483
SOA (service-oriented architecture), 5.

See also service-oriented computing
explained, 38
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