
Praise for This Book

“An absolute pleasure to read…the best SOA book I’ve read.

A book I would recommend to all of my colleagues; it provides much insight to the
topics often overlooked by most books in this genre…the visuals were fantastic.”

—Brandon Bohling, SOA Architecture and Strategy, Intel Corporation

“I recommend this book to any SOA practitioner who wishes to empower themselves in
making service design real…gives readers the 360º view into service design [and] gives
SOA practitioners the depth and understanding needed into the principles of SOA to
assist in the design of a mature and successful SOA program.”

—Stephen G. Bennett, Americas SOA Practice Lead, BEA Systems

“There are few references for SOA that give you the nuts and bolts and this one is at the
top of the list. Well written and valuable as a reference book to any SOA practitioner.”

—Dr. Mohamad Afshar, Director of Product Management,
Oracle Fusion Middleware, Oracle Corporation

“A very clear discussion of the subject matter. Provides a good structure that facilitates
understanding and readily highlights key points.”

—Kareem Yusuf, Director of SOA Strategy and Planning, IBM Software Group

“This book does a great job laying out benefits, key ideas and design principles behind
successfully adopting service-oriented computing. At the same time, the book openly
addresses challenges, risks and trade-offs that are in the way of adopting SOA in the
real-world today. It moves away from ivory-tower views of service orientation, but still
lays out a strong vision for SOA and outlines the changes necessary to realize the full
potential.”

—Christoph Schittko, Senior Architect, Microsoft

“This book strikes a healthy balance between theory and practice. It is a perfect comple-
ment to the SOA series by the author.”

—Prakash Narayan, Sun Microsystems

“This book could be described as an encyclopedia of service design—Erl leaves nothing
to chance. Indispensable.”

—Steve Birkel, Chief IT Technical Architect, Intel Corp.

“I liked this book. It contains extremely important material for those who need to design
services.”

—Farzin Yashar, IBM SOA Advanced Technologies

“Thomas Erl’s books are always densely filled with information that’s well structured.
This book is especially insightful for Enterprise Architects because it provide s great
context and practical examples. Part 1 of the book alone is worth getting the book for.”

—Markus Zirn, Senior Director, Product Management,
Oracle Fusion Middleware, Oracle Corporation

“This book is a milestone in SOA literature. For the first time we are provided with a
practical guide on defining service characteristics and service design principles for SOA
from a vendor-agnostic viewpoint. It’s a great reference for SOA discovery, adoptions,

and implementation projects.”

—Canyang Kevin Liu, Principal Enterprise Architect, SAP Americas, Inc.

“There are very few who understand SOA like Thomas Erl does! The principle centric
description of service orientation from Thomas canonizes the underpinnings of this
important paradigm shift in creating agile and reusable software capabilities. The prin-
ciples, so eloquently explained, leave little room for any ambiguity attached to the
greater purpose of SOA. Most organizations today are creating services in a bottoms-up
approach, realizing composition and reuse organically. The time is ripe for a book like
this that prepares architects for a principle centric approach to SOA.”

—Hanu Kommalapati, Architect, Microsoft Corporation

“If you are going to be designing, developing, or implementing SOA, this is a must have
book.”

—Jason “AJ” Comfort Sr., Booz Allen Hamilton

“An excellent book for anyone who wants to understand service-orientation and the
principles involved in designing services…a clear, concise and articulate exploration of
the eight design principles involved in analyzing, designing, implementing, and main-
taining services…”

—Anish Karmarkar, Oracle Corporation

“Very well written, succinct, and easy to understand.”

—Raj Balasubramanian, IBM Software Group

“A thorough examination of the considerations of service design. Both seasoned
SOA practitioners and those endeavoring to realize services can benefit from reading
this book.”

—Bill Draven, Enterprise Architect, Intel Corporation

“I am very impressed. Comprehensive. Educative. This book helped me to step back and
look at the SOA principles from broader perspective. I’d say this is a must-read book for
SOA stakeholders.”

—Radovan Janecek, Director R&D, SOA Center, Hewlett-Packard

“A comprehensive exploration of the issues of service design which has the potential to
become the definitive work in this area.”

—James Pasley, Chief Technology Officer, Cape Clear Software

“SOA projects are most successful when they are based on a solid technical foundation.
Well accepted and established design principles are part of this foundation. This book
takes a very structured approach at defining the core design principles for SOA, thus
allowing the reader to immediately applying them to a project. Each principle is for-
mally introduced and explained, and examples are given for how to apply it to a real
design problem. A ‘must read’ for any architect, designer or developer of service ori-
ented solutions”.

—Andre Tost, Senior Technical Staff Member, IBM Software Group

“Outstanding SOA literature uniquely focused on the fundamental services design with
thorough and in-depth study on all practical aspects from design principles to method-
ologies. This book provides a systematic approach for SOA adoption essential for both
IT management and professionals.”

—Robin Chen, PhD, Google, Inc.

“An excellent addition to any SOA library; it covers a wide range of issues in enough
detail to be a valuable asset to anyone considering designing or using SOA based
technologies.”

—Mark Little, Director of Standards, Red Hat

“Very valuable guidance for understanding and applying SOA service design principles
with concrete examples. A must read for the practitioner of SOA service design.”

—Umit Yalcinalp, PhD, Standards Architect, SAP

“This book communicates complex concepts in a clear and concise manner. Examples
and illustrations are used very effectively.”

—Darryl Hogan, Senior Architect, Microsoft

“This book really does an excellent job of explaining the principles underpinning the
value of SOA…Erl goes to great length to explain and give examples of each of the 8
principles that will significantly increase the readers ability to drive an SOA service
design that benefits both business and IT.”

—Robert Laird, IT Architect, IBM EAI/SOA Advanced Technologies Group

“A work of genius…Offers the most comprehensive and thorough explanation on the
principles of service design and what it means to be ‘service oriented.’

“Erl’s treatment of the complex world of service oriented architecture is pragmatic,

inclusive of real world situations and offers readers ways to communicate these ideas
through illustrations and well formulated processes.”

—David Michalowicz, MITRE Corporation

“This is the book for the large organization trying to rationalize its IT assets and estab-
lish an agile platform for the future. By highlighting risk and rewards, Thomas Erl
brings clarity to how Service Orientation can be applied to ensure a responsive IT organ-
ization. This book finally brings software engineering principles to address the real
world development challenges being faced.

To effectively serve the business, let alone embrace SOA, everyone involved should be
familiar with the concepts investigated here. Thomas Erl thoroughly clarifies the
nuances and defines the practice of service design.

We expect that this will become a classic text in software engineering, corporate training
and colleges.”

—Cory Isaacson, President, Rogue Wave Software and Ravi Palepu,

SOA Author and Speaker

“Thomas Erl does a great job…an easy read.”

—Michael H. Sor, Booz Allen Hamilton

“…a must read for SOA Architects to develop a firm foundation and understanding of
the principles (and trade-offs) that make up a good SOA service.

After reading this book, it finally ‘clicked’ as to why a properly designed SOA system is
different (and better) than a system based on previous enterprise architectures.”

—Fred Ingham, Platinum Solutions Inc.

“Lays a tremendous foundation for business and technical workers to come to common
terms and expectations…incredibly enlightening to see the details associated with
achieving the SOA vision.”

—Wayne P. Ariola, Vice President of Strategy, Parasoft

“[Erl does] and excellent job of addressing the breadth of [his] audience to present to
those new to SOA and weaved in enough detail to assist those who are already actively
involved in SOA development.”

—R. Perry Smith, Application Program Manager, EDS/OnStar

“It is easy to miss the big picture of what SOA means for the design of larger scale
systems amidst the details of WS technologies. Erl helps provide a broader perspective,

surveying the landscape from a design standpoint.”

—Jim Clune, Chief Architect, Parasoft

“Lays a firm foundation for the underlying principles of good service design. Cuts
through the hype and provides a cogent resource for improving architectural judgment
on SOA projects.”

—Jim Murphy, Vice President of Product Management, Mindreef, Inc.

“The first book to concisely, gradually and comprehensively explain how to apply SOA
principles into enterprise-level software design. It is an excellent book.”

—Robin G. Qiu, Ph.D., Division of Engineering and Information Science,

Pennsylvania State University

“I really think that this is a very useful book that a lot of people really need out there in
the industry.”

—Dr. Arnaud Simon, Principal Software Engineer, Red Hat

“…indispensable companion to designing and implementing a service-oriented archi-
tecture. It condenses all information necessary to design services and is the most
relevant source I know if in the field.”

“[This book is] not only helpful, but fundamental to successfully designing an SOA.”

—Phillipp Offermann, Research Analyst, University of Berlin

“Service-Oriented Architecture is an important topic in IT today. Its vast scope could
span an organization’s enterprise. Designing it properly is a major undertaking. This
book provides timely, expert and comprehensive discussions on the principles of serv-
ice design. Thomas has a keen sense in identifying the subtle points of various subjects
and explains them in an easy-to-understand way. The book is a valuable resource for IT
professionals working in SOA.”

—Peter H. Chang, PhD, Associate Professor of Information Systems,

Lawrence Technological University

SOA: Principles of Service Design

The Service-Oriented Computing Series from Thomas

Erl aims to provide the IT industry with a consistent

level of unbiased, practical, and comprehensive

guidance and instruction in the areas of service-

oriented architecture, service-orientation, and the

expanding landscape that is shaping

the real-world service-oriented computing platform.

For more information, visit www.soabooks.com.

www.soabooks.com

SOA
Principles of Service Design

Thomas Erl

UPPER SADDLE RIVER, NJ • BOSTON • INDIANAPOLIS • SAN FRANCISCO

NEW YORK • TORONTO • MONTREAL • LONDON • MUNICH • PARIS • MADRID

CAPETOWN • SYDNEY • TOKYO • SINGAPORE • MEXICO CITY

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.
The author and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibil-
ity for errors or omissions. No liability is assumed for incidental or consequen-
tial damages in connection with or arising out of the use of the information or
programs contained herein.
The publisher offers excellent discounts on this book when ordered in quantity
for bulk purchases or special sales, which may include electronic versions
and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:
International Sales
international@pearsoned.com

ERHG-JTFH-BJHN-RFHR-4I87

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please e-mail
customer-service@safaribooksonline.com.

Visit us on the Web: www.pearson.com

Library of Congress Cataloging-in-Publication Data
Erl, Thomas.

SOA: principles of service design / Thomas Erl.
p. cm.

ISBN 0-13-234482-3 (hardback : alk. paper) 1. Web services. 2. Computer architecture. 3. System analysis.
4. System design. I. Title.
TK5105.88813.E75 2008
004.2’2—dc22

Copyright © 2008 SOA Systems, Inc.
All photographs provided by Thomas Erl. Permission to use photographs granted by SOA Systems Inc.
All rights reserved. Printed in the United States of America. This publication is protected by copyright, and per-
mission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 9780132344821
ISBN-10: 0132344823
Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, Indiana.
Ninth Printing: May 2014

Editor-in-Chief
Mark L. Taub

Managing Editor
Gina Kanouse

Senior Project Editor
Kristy Hart

Copy Editor
Language Logistics, LLC

Senior Indexer
Cheryl Lenser

Proofreader
Williams Woods Publishing

Publishing Coordinator
Noreen Regina

Compositor
Jake McFarland

Cover Designer
Thomas Erl

Graphics
Zuzana Cappova
Spencer Fruhling

Photos
Thomas Erl

www.prenhallprofessional.com

To my wife and family for their support.

This page intentionally left blank

Preface . xxv

Chapter 1: Introduction . 1

1.1 Objectives of this Book . 3

1.2 Who this Book Is For . 3

1.3 What this Book Does Not Cover . 4
Topics Covered by Other Books . 4
SOA Standardization Efforts . 5

1.4 How this Book Is Organized . 6
Part I: Fundamentals . 7
Part II: Design Principles. 9
Part III: Supplemental . 12
Appendices. 12

1.5 Symbols, Figures, and Style Conventions. 13
Symbol Legend . 13
How Color Is Used . 13
The Service Symbol . 13

1.6 Additional Information . 16
Updates, Errata, and Resources (www.soabooks.com) 16
Master Glossary (www.soaglossary.com) 16
Referenced Specifications (www.soaspecs.com). 16
Service-Oriented Computing Poster (www.soaposters.com) 16

Contents

www.soabooks.com
www.soaglossary.com
www.soaspecs.com
www.soaposters.com

xiv Contents

The SOA Magazine (www.soamag.com) 17
Notification Service . 17
Contact the Author . 17

Chapter 2: Case Study . 19

2.1 Case Study Background: Cutit Saws Ltd.. 20
History . 20
Technical Infrastructure and Automation Environment 21
Business Goals and Obstacles. 21

PART I: FUNDAMENTALS

Chapter 3: Service-Oriented Computing and SOA. 25

3.1 Design Fundamentals . 26
Design Characteristic . 27
Design Principle . 28
Design Paradigm . 29
Design Pattern. 30
Design Pattern Language . 31
Design Standard . 32
Best Practice . 34
A Fundamental Design Framework. 35

3.2 Introduction to Service-Oriented Computing 37
Service-Oriented Architecture. 38
Service-Orientation, Services, and Service-Oriented

Solution Logic . 39
Service Compositions . 39
Service Inventory. 40
Understanding Service-Oriented Computing Elements 40
Service Models . 43
SOA and Web Services. 46
Service Inventory Blueprints . 51
Service-Oriented Analysis and Service Modeling. 52

www.soamag.com

Contents xv

Service-Oriented Design. 53
Service-Oriented Architecture: Concepts, Technology,

and Design . 54

3.3 Goals and Benefits of Service-Oriented Computing 55
Increased Intrinsic Interoperability . 56
Increased Federation . 58
Increased Vendor Diversification Options. 59
Increased Business and Technology Domain Alignment 60
Increased ROI . 61
Increased Organizational Agility . 63
Reduced IT Burden. 64

3.4 Case Study Background . 66

Chapter 4: Service-Orientation. 67

4.1 Introduction to Service-Orientation 68
Services in Business Automation . 69
Services Are Collections of Capabilities . 69
Service-Orientation as a Design Paradigm. 70
Service-Orientation and Interoperability . 74

4.2 Problems Solved by Service-Orientation 75
Life Before Service-Orientation . 76
The Need for Service-Orientation . 81

4.3 Challenges Introduced by Service-Orientation. 85
Design Complexity . 85
The Need for Design Standards . 86
Top-Down Requirements . 86
Counter-Agile Service Delivery in Support of Agile

Solution Delivery . 87
Governance Demands . 88

4.4 Additional Considerations . 89
It Is Not a Revolutionary Paradigm . 89
Enterprise-wide Standardization Is Not Required 89
Reuse Is Not an Absolute Requirement . 90

4.5 Effects of Service-Orientation on the Enterprise 91
Service-Orientation and the Concept of “Application” 91
Service-Orientation and the Concept of “Integration”. 92
The Service Composition . 94
Application, Integration, and Enterprise Architectures 95

4.6 Origins and Influences of Service-Orientation 96
Object-Orientation. 97
Web Services . 98
Business Process Management (BPM) . 98
Enterprise Application Integration (EAI) . 98
Aspect-Oriented Programming (AOP) . 99

4.7 Case Study Background . 100

Chapter 5: Understanding Design Principles 103

5.1 Using Design Principles . 104
Incorporate Principles within Service-Oriented Analysis 105
Incorporate Principles within Formal Design Processes. 106
Establish Supporting Design Standards 107
Apply Principles to a Feasible Extent . 108

5.2 Principle Profiles . 109

5.3 Design Pattern References . 111

5.4 Principles that Implement vs. Principles that Regulate. . . 111

5.5 Principles and Service Implementation Mediums. 114
“Capability” vs. “Operation” vs. “Method” 115

5.6 Principles and Design Granularity 115
Service Granularity . 116
Capability Granularity . 116
Data Granularity . 116
Constraint Granularity . 117
Sections on Granularity Levels . 118

5.7 Case Study Background . 119
The Lab Project Business Process . 119

xvi Contents

Contents xvii

PART II: DESIGN PRINCIPLES

Chapter 6: Service Contracts (Standardization
and Design) . 125

6.1 Contracts Explained . 126
Technical Contracts in Abstract . 126
Origins of Service Contracts . 127

6.2 Profiling this Principle . 130

6.3 Types of Service Contract Standardization 132
Standardization of Functional Service Expression 133
Standardization of Service Data Representation 134
Standardization of Service Policies . 137

6.4 Contracts and Service Design . 140
Data Representation Standardization and

Transformation Avoidance. 140
Standardization and Granularity . 142
Standardized Service Contracts and Service Models 144
How Standardized Service Contract Design Affects

Other Principles . 144

6.5 Risks Associated with Service Contract Design 149
Versioning . 149
Technology Dependencies . 150
Development Tool Deficiencies. 151

6.6 More About Service Contracts . 152
Non-Technical Service Contract Documents 152
“Web Service Contract Design for SOA”. 153

6.7 Case Study Example. 154
Planned Services . 154
Design Standards . 155
Standardized WSDL Definition Profiles . 155
Standardized XML Schema Definitions. 157
Standardized Service and Data Representation Layers 157
Service Descriptions . 158
Conclusion . 160

Chapter 7: Service Coupling (Intra-Service and
Consumer Dependencies) 163

7.1 Coupling Explained. 164
Coupling in Abstract . 165
Origins of Software Coupling . 165

7.2 Profiling this Principle . 167

7.3 Service Contract Coupling Types 169
Logic-to-Contract Coupling (the coupling of service logic to

the service contract) . 173
Contract-to-Logic Coupling (the coupling of the service

contract to its logic). 174
Contract-to-Technology Coupling (the coupling of the

service contract to its underlying technology) 176
Contract-to-Implementation Coupling (the coupling of the

service contract to its implementation environment). 177
Contract-to-Functional Coupling (the coupling of the service

contract to external logic) . 180

7.4 Service Consumer Coupling Types. 181
Consumer-to-Implementation Coupling 182
Standardized Service Coupling and Contract Centralization . . . 185
Consumer-to-Contract Coupling . 185
Measuring Consumer Coupling . 191

7.5 Service Loose Coupling and Service Design 193
Coupling and Service-Orientation. 193
Service Loose Coupling and Granularity 195
Coupling and Service Models. 196
How Service Loose Coupling Affects Other Principles 197

7.6 Risks Associated with Service Loose Coupling 200
Limitations of Logic-to-Contract Coupling 200
Problems when Schema Coupling Is “too loose” 201

7.7 Case Study Example. 202
Coupling Levels of Existing Services . 202
Introducing the InvLegacyAPI Service . 203
Service Design Options . 205

xviii Contents

Contents xix

Chapter 8: Service Abstraction (Information Hiding
and Meta Abstraction Types) 211

8.1 Abstraction Explained . 212
Origins of Information Hiding . 213

8.2 Profiling this Principle . 214
Why Service Abstraction Is Needed . 214

8.3 Types of Meta Abstraction . 218
Technology Information Abstraction . 219
Functional Abstraction . 221
Programmatic Logic Abstraction. 222
Quality of Service Abstraction. 224
Meta Abstraction Types and the Web Service Regions

of Influence . 225
Meta Abstraction Types in the Real World 227

8.4 Measuring Service Abstraction . 231
Contract Content Abstraction Levels . 231
Access Control Levels. 232
Abstraction Levels and Quality of Service Meta Information . . . 234

8.5 Service Abstraction and Service Design 235
Service Abstraction vs. Service Encapsulation. 235
How Encapsulation Can Affect Abstraction 235
Service Abstraction and Non-Technical Contract Documents . . 237
Service Abstraction and Granularity . 238
Service Abstraction and Service Models 239
How Service Abstraction Affects Other Principles 239

8.6 Risks Associated with Service Abstraction 242
Multi-Consumer Coupling Requirements 242
Misjudgment by Humans . 242
Security and Privacy Concerns. 243

8.7 Case Study Example. 244
Service Abstraction Levels . 244
Operation-Level Abstraction Examples 247

Chapter 9: Service Reusability (Commercial and
Agnostic Design) . 253

9.1 Reuse Explained . 254
Reuse in Abstract . 254
Origins of Reuse . 257

9.2 Profiling this Principle . 259

9.3 Measuring Service Reusability and Applying
Commercial Design. 262

Commercial Design Considerations . 262
Measures of Planned Reuse . 265
Measuring Actual Reuse . 267
Commercial Design Versus Gold-Plating 267

9.4 Service Reuse in SOA. 268
Reuse and the Agnostic Service. 268
The Service Inventory Blueprint . 269

9.5 Standardized Service Reuse and Logic Centralization . . 270
Understanding Logic Centralization . 271
Logic Centralization as an Enterprise Standard 272
Logic Centralization and Contract Centralization 272
Centralization and Web Services . 274
Challenges to Achieving Logic Centralization 274

9.6 Service Reusability and Service Design 276
Service Reusability and Service Modeling 276
Service Reusability and Granularity . 277
Service Reusability and Service Models. 278
How Service Reusability Affects Other Principles 278

9.7 Risks Associated with Service Reusability and
Commercial Design. 281

Cultural Concerns . 281
Governance Concerns . 283
Reliability Concerns . 286
Security Concerns. 286
Commercial Design Requirement Concerns. 286
Agile Delivery Concerns . 287

xx Contents

Contents xxi

9.8 Case Study Example. 288
The Inventory Service Profile. 288
Assessing Current Capabilities . 289
Modeling for a Targeted Measure of Reusability. 289
The New EditItemRecord Operation . 290
The New ReportStockLevels Operation 290
The New AdjustItemsQuantity Operation 291
Revised Inventory Service Profile . 292

Chapter 10: Service Autonomy (Processing Boundaries
and Control) . 293

10.1 Autonomy Explained . 294
Autonomy in Abstract . 294
Origins of Autonomy . 295

10.2 Profiling this Principle . 296

10.3 Types of Service Autonomy. 297
Runtime Autonomy (execution) . 298
Design-Time Autonomy (governance) . 298

10.4 Measuring Service Autonomy . 300
Service Contract Autonomy (services with normalized

contracts) . 301
Shared Autonomy . 305
Service Logic Autonomy (partially isolated services) 306
Pure Autonomy (isolated services) . 308
Services with Mixed Autonomy . 310

10.5 Autonomy and Service Design . 311
Service Autonomy and Service Modeling 311
Service Autonomy and Granularity . 311
Service Autonomy and Service Models 312
How Service Autonomy Affects Other Principles 314

10.6 Risks Associated with Service Autonomy 317
Misjudging the Service Scope . 317
Wrapper Services and Legacy Logic Encapsulation 318
Overestimating Service Demand . 318

10.7 Case Study Example. 319
Existing Implementation Autonomy of the GetItem Operation . . 319
New Operation-Level Architecture with Increased Autonomy . . 320
Effect on the Run Lab Project Composition 322

Chapter 11: Service Statelessness (State Management
Deferral and Stateless Design) 325

11.1 State Management Explained . 327
State Management in Abstract . 327
Origins of State Management . 328
Deferral vs. Delegation . 331

11.2 Profiling this Principle . 331

11.3 Types of State . 335
Active and Passive . 335
Stateless and Stateful . 336
Session and Context Data. 336

11.4 Measuring Service Statelessness 339
Non-Deferred State Management (low-to-no statelessness) . . . 340
Partially Deferred Memory (reduced statefulness) 340
Partial Architectural State Management Deferral

(moderate statelessness) . 341
Full Architectural State Management Deferral

(high statelessness) . 342
Internally Deferred State Management (high statelessness) . . . 342

11.5 Statelessness and Service Design 343
Messaging as a State Deferral Option . 343
Service Statelessness and Service Instances 344
Service Statelessness and Granularity . 346
Service Statelessness and Service Models 346
How Service Statelessness Affects Other Principles 347

11.6 Risks Associated with Service Statelessness 349
Dependency on the Architecture . 349
Increased Runtime Performance Demands 350
Underestimating Delivery Effort . 350

xxii Contents

Contents xxiii

11.7 Case Study Example. 351
Solution Architecture with State Management Deferral. 352
Step 1 . 353
Step 2 . 354
Step 3 . 355
Step 4 . 356
Step 5 . 357
Step 6 . 358
Step 7 . 359

Chapter 12: Service Discoverability (Interpretability
and Communication) 361

12.1 Discoverability Explained . 362
Discovery and Interpretation, Discoverability and Interpretability in
Abstract . 364
Origins of Discovery . 367

12.2 Profiling this Principle . 368

12.3 Types of Discovery and Discoverability
Meta Information . 371

Design-Time and Runtime Discovery . 371
Discoverability Meta Information. 373
Functional Meta Data . 374
Quality of Service Meta Data. 374

12.4 Measuring Service Discoverability 375
Fundamental Levels . 375
Custom Rating System . 376

12.5 Discoverability and Service Design 376
Service Discoverability and Service Modeling 377
Service Discoverability and Granularity 378
Service Discoverability and Policy Assertions 378
Service Discoverability and Service Models. 378
How Service Discoverability Affects Other Principles 378

12.6 Risks Associated with Service Discoverability 381
Post-Implementation Application of Discoverability 381
Application of this Principle by Non-Communicative Resources 381

12.7 Case Study Example. 382
Service Profiles (Functional Meta Information) 382
Related Quality of Service Meta Information. 386

Chapter 13: Service Composability (Composition
Member Design and Complex
Compositions) . 387

13.1 Composition Explained . 388
Composition in Abstract . 388
Origins of Composition . 390

13.2 Profiling this Principle . 392

13.3 Composition Concepts and Terminology 396
Compositions and Composition Instances 397
Composition Members and Controllers. 398
Service Compositions and Web Services 401
Service Activities . 402
Composition Initiators . 403
Point-to-Point Data Exchanges and Compositions 405
Types of Compositions . 406

13.4 The Complex Service Composition. 407
Stages in the Evolution of a Service Inventory 407
Defining the Complex Service Composition 410
Preparing for the Complex Service Composition 411

13.5 Measuring Service Composability and Composition
Effectiveness Potential . 412

Evolutionary Cycle States of a Composition 412
Composition Design Assessment . 413
Composition Runtime Assessment . 415
Composition Governance Assessment. 417
Measuring Composability . 419

xxiv Contents

Contents xxv

13.6 Composition and Service Design 427
Service Composability and Granularity. 427
Service Composability and Service Models 428
Service Composability and Composition Autonomy. 430
Service Composability and Orchestration. 430
How Service Composability Affects Other Principles 432

13.7 Risks Associated with Service Composition 437
Composition Members as Single Points of Failure 437
Composition Members as Performance Bottlenecks 437
Governance Rigidity of “Over-Reuse” in Compositions 438

13.8 Case Study Example. 439

PART III: SUPPLEMENTAL

Chapter 14: Service-Orientation and Object-
Orientation: A Comparison of Principles
and Concepts . 445

14.1 A Tale of Two Design Paradigms 446

14.2 A Comparison of Goals . 449
Increased Business Requirements Fulfillment 450
Increased Robustness . 451
Increased Extensibility . 451
Increased Flexibility. 452
Increased Reusability and Productivity. 452

14.3 A Comparison of Fundamental Concepts. 453
Classes and Objects. 453
Methods and Attributes. 454
Messages . 454
Interfaces . 456

14.4 A Comparison of Design Principles 457
Encapsulation . 458
Inheritance . 459

Generalization and Specialization. 461
Abstraction . 463
Polymorphism . 463
Open-Closed Principle (OCP). 465
Don’t Repeat Yourself (DRY) . 465
Single Responsibility Principle (SRP) . 466
Delegation . 468
Association . 469
Composition . 470
Aggregation. 471

14.5 Guidelines for Designing Service-Oriented Classes. . . . 472
Implement Class Interfaces . 473
Limit Class Access to Interfaces. 473
Do Not Define Public Attributes in Interfaces 473
Use Inheritance with Care . 473
Avoid Cross-Service “has-a” Relationships 474
Use Abstract Classes for Modeling, Not Design 474
Use Façade Classes . 474

Chapter 15: Supporting Practices 477

15.1 Service Profiles . 478
Service-Level Profile Structure . 478
Capability Profile Structure . 480
Additional Considerations . 482

15.2 Vocabularies . 483
Service-Oriented Computing Terms . 484
Service Classification Terms . 484
Types and Associated Terms . 485
Design Principle Application Levels . 487

15.3 Organizational Roles . 488
Service Analyst . 490
Service Architect . 490
Service Custodian . 491
Schema Custodian . 491
Policy Custodian . 492

xxvi Contents

Contents xxvii

Service Registry Custodian. 492
Technical Communications Specialist. 493
Enterprise Architect. 493
Enterprise Design Standards Custodian (and Auditor). 494

Chapter 16: Mapping Service-Orientation Principles
to Strategic Goals 497

16.1 Principles that Increase Intrinsic Interoperability 498

16.2 Principles that Increase Federation 501

16.3 Principles that Increase Vendor Diversification Options . 501

16.4 Principles that Increase Business and Technology
Domain Alignment. 502

16.5 Principles that Increase ROI . 504

16.6 Principles that Increase Organizational Agility 505

16.7 Principles that Reduce the Overall Burden of IT. 507

PART IV: APPENDICES

Appendix A: Case Study Conclusion 513

Appendix B: Process Descriptions 517

B.1 Delivery Processes . 518
Bottom-Up vs. Top-Down . 518
The Inventory Analysis Cycle . 520
Inventory Analysis and Service-Oriented Design 521
Choosing a Delivery Strategy . 521

B.2 Service-Oriented Analysis Process 522
Define Analysis Scope . 522
Identify Affected Systems . 523
Perform Service Modeling. 523

B.3 Service Modeling Process . 523

B.4 Service-Oriented Design Processes. 525
Design Processes and Service Models 526
Service Design Processes and Service-Orientation 527

Appendix C: Principles and Patterns
Cross-Reference 529

Additional Resources . 533

About the Author . 535

About the Photos . 537

Index . 539

xxviii Contents

Preface

Over the past few years I’ve been exposed to many different IT environments as part of
a wide range of SOA initiatives for clients in both private and public sectors. While
doing some work on a project for a client in the defense industry, I had an opportunity
to learn more about not just their technical landscape, but also the various policies and
procedures that are specific to the defense culture. During this time I came across the
DoD Standardization Program, an initiative comprised of documents and specifications
that establish guiding principles and standards for various aspects of the military,

including the design of weapons and military equipment, as well as the definition of
methods and processes used by military personnel.

While reading about this program, I learned that several other standardization pro-
grams have been in existence for some time, facilitating standardization within public
sector organizations (such as the Coast Guard and NASA), as well as numerous private
sector industries. The goals of these programs tend to revolve around the establishment
of industry standards to enhance interoperability with the ultimate objective of
reducing operational overhead, reducing risk, and increasing the organization’s overall
effectiveness.

In the case of the aforementioned public sector-related standards, interoperability may
refer to the exchange of equipment or weapons or the exchange and collaboration of
personnel from different locations.

For example, an ammunition clip manufactured in Iowa, stored in Virginia, and deliv-
ered to and used by someone at a training base in Texas will work perfectly with a gun
manufactured in Kansas because both of these products were built according to the
same set of specifications. Similarly, in response to a natural disaster a rescue team may

need to be quickly assembled from individuals based out of different cities and who
have never previously worked together. This team can still function effectively because
all team members were trained as per the same procedures and processes, using the
same vocabulary and conventions.

These standardization programs have much in common with the rationale and objec-
tives behind SOA and service-orientation. The fundamental goal is to produce some-
thing with repeatable value, long-term benefit, and inherent flexibility, all for the
strategic good of the organization. The greatest obstacle to achieving this goal in the
world of SOA has been a lack of understanding as to what service-orientation, as an
industry paradigm, really is. It is my hope that this book will help rectify this situation
by providing some clarity for what it means for something to be “service-oriented.”

xxx Preface

Acknowledgments

To ensure the accuracy and legitimacy of the content in this book, I decided early on to
subject it to a rigorous quality assurance process that involved technical reviews by over
60 industry professionals. I am deeply grateful for the time and effort these individuals
dedicated to these reviews. Specifically, I would like to thank Kevin Davis, PhD, Ronald
Bourret, Robert Schneider, Ravi Palepu, Wes McGregor, Judith Myerson, and Cyrille
Thilloy for their early feedback, and the following technical reviewers that participated
in the full manuscript review (in alphabetical order by last name):

Dr. Mohamad Afshar, Oracle Corporation

Wayne Ariola, Parasoft

Raj Balasubramanian, IBM Software Group

Stephen Bennett, BEA Systems, Inc.

Steve Birkel, Intel Corporation

Brandon Bohling, Intel Corporation

Peter Chang, PhD, Lawrence Technological University

Robin Chen, PhD, Google, Inc.

Jim Clune, Parasoft

Jason “AJ” Comfort Sr., Booz Allen Hamilton, Inc.

Bill Draven, Intel Corporation

Darryl Hogan, Microsoft Corporation

Continues

Fred Ingham, Platinum Solutions Inc.

Cory Isaacson, Rogue Wave Software

Radovan Janecek, Hewlett-Packard

Anish Karmarkar, Oracle Corporation

Hanu Kommalapati, Microsoft Corporation

Robert Laird, IBM EAI/SOA Advanced Technologies Group

Dr. Mark Little, Redhat

Canyang Kevin Liu, SAP Americas, Inc.

David Michalowicz, MITRE Corporation

Jim Murphy, Mindreef, Inc.

Prakash Narayan, Sun Microsystems

Philipp Offermann, University of Berlin

James Pasley, Cape Clear Software

Robin G. Qiu, PhD, Pennsylvania State University

Christoph Schittko, Microsoft Corporation

Dr. Arnaud Simon, Redhat

R. Perry Smith, EDS/OnStar

Michael H. Sor, Booz Allen Hamilton, Inc.

Philip Thomas, IBM United Kingdom Limited

Andre Tost, IBM Software Group

Sameer Tyagi, Fidelity Investments

Umit Yalcinalp, SAP

Farzin Yashar, IBM SOA Advanced Technologies

Kareem Yusuf, IBM Software Group

Markus Zirn, Oracle Corporation

xxxii Acknowledgments

4.1 Introduction to Service-Orientation

4.2 Problems Solved by Service-Orientation

4.3 Challenges Introduced by Service-Orientation

4.4 Additional Considerations

4.5 Effects of Service-Orientation on the Enterprise

4.6 Origins and Influences of Service-Orientation

4.7 Case Study Background

Chapter 4

Service-Orientation

H aving covered some of the basic elements of service-oriented computing, we now
narrow our focus on service-orientation. The next set of sections establish the

paradigm of service-orientation and explain how it is changing the face of distributed
computing.

4.1 Introduction to Service-Orientation

In the every day world around us, services are and have been commonplace for as long
as civilized history has existed. Any person carrying out a distinct task in support of oth-
ers is providing a service (Figure 4.1). Any group of individuals collectively performing
a task is also demonstrating the delivery of a service.

Figure 4.1
Three individuals, each capable of providing a distinct
service.

Similarly, an organization that carries out tasks associated with its purpose or business
is also providing a service. As long as the task or function being provided is well-defined
and can be relatively isolated from other associated tasks, it can be distinctly classified
as a service (Figure 4.2).

Certain baseline requirements exist to enable a group of individual service providers to
collaborate in order to collectively provide a larger service. Figure 4.2, for example, dis-
plays a group of employees that each provide a service for ABC Delivery. Even though
each individual contributes a distinct service, for the company to function effectively, its
staff also needs to have fundamental, common characteristics, such as availability, reli-
ability, and the ability to communicate using the same language. With all of this in place,

these individuals can be composed into a productive working team. Establishing these
types of baseline requirements is a key goal of service-orientation.

4.1 Introduction to Service-Orientation 69

Services in Business Automation

In the world of SOA and service-orientation, the term “service” is not generic. It has spe-
cific connotations that relate to a unique combination of design characteristics. When
solution logic is consistently built as services and when services are consistently
designed with these common characteristics, service-orientation is successfully realized
throughout an environment.

For example, one of the primary service design characteristics explored as part of this
study of service-orientation is reusability. A strong emphasis on producing solution
logic in the format of services that are positioned as highly generic and reusable enter-
prise resources gradually transitions an organization to a state where more and more of
its solution logic becomes less dependent on and more agnostic to any one purpose or
business process. Repeatedly fostering this characteristic within services eventually
results in wide-spread reuse potential.

Consistently realizing specific design characteristics requires a set of guiding principles.
This is what the service-orientation design paradigm is all about.

Services Are Collections of Capabilities

When discussing services, it is important to remember that a single service can provide
a collection of capabilities. They are grouped together because they relate to a functional

Figure 4.2
A company that employs these three people can compose
their capabilities to carry out its business.

context established by the service. The functional context of the service illustrated in
Figure 4.3, for example, is that of “shipment.” Therefore, this particular service provides
a set of capabilities associated with the processing of shipments.

70 Chapter 4: Service-Orientation

Figure 4.3
Much like a human, an automated service
can provide multiple capabilities.

A service can essentially act as a container of related capabilities. It is comprised of a
body of logic designed to carry out these capabilities and a service contract that
expresses which of its capabilities are made available for public invocation.

References to service capabilities in this book are specifically focused on those that are
defined in the service contract. For a discussion of how service capabilities are distin-
guished from Web service operations and component methods, see the Principles and
Service Implementation Mediums section in Chapter 5.

Service-Orientation as a Design Paradigm

As established in Chapter 3, a design paradigm is an approach to designing solution
logic. When building distributed solution logic, design approaches revolve around a
software engineering theory known as the separation of concerns. In a nutshell, this the-
ory states that a larger problem is more effectively solved when decomposed into a set
of smaller problems or concerns. This gives us the option of partitioning solution logic
into capabilities, each designed to solve an individual concern. Related capabilities can
be grouped into units of solution logic.

The fundamental benefit to solving problems this way is that a number of the solution
logic units can be designed to solve immediate concerns while still remaining agnostic
to the greater problem. This provides the constant opportunity for us to reutilize the
capabilities within those units to solve other problems as well.

Different design paradigms exist for distributed solution logic. What distinguishes serv-
ice-orientation is the manner in which it carries out the separation of concerns and how
it shapes the individual units of solution logic. Applying service-orientation to a mean-
ingful extent results in solution logic that can be safely classified as “service-oriented”

4.1 Introduction to Service-Orientation 71

and units that qualify as “services.” To understand exactly what that means requires an
appreciation of the strategic goals covered in Chapter 3 combined with knowledge of the
associated design principles documented in Part II.

For now, let’s briefly introduce each of these principles:

Standardized Service Contract

Services express their purpose and capabilities via a service contract. The Standardized
Service Contract design principle is perhaps the most fundamental part of service-
orientation in that it essentially requires that specific considerations be taken into
account when designing a service’s public technical interface and assessing the nature
and quantity of content that will be published as part of a service’s official contract.

A great deal of emphasis is placed on specific aspects of contract design, including the
manner in which services express functionality, how data types and data models
are defined, and how policies are asserted and attached. There is a constant focus on
ensuring that service contracts are both optimized, appropriately granular, and stan-
dardized to ensure that the endpoints established by services are consistent, reliable,

and governable.

Chapter 6 is dedicated to exploring this design principle in detail.

Service Loose Coupling

Coupling refers to a connection or relationship between two things. A measure of cou-
pling is comparable to a level of dependency. This principle advocates the creation of a
specific type of relationship within and outside of service boundaries, with a constant
emphasis on reducing (“loosening”) dependencies between the service contract, its
implementation, and its service consumers.

The principle of Service Loose Coupling promotes the independent design and evolu-
tion of a service’s logic and implementation while still guaranteeing baseline interoper-
ability with consumers that have come to rely on the service’s capabilities. There are
numerous types of coupling involved in the design of a service, each of which can
impact the content and granularity of its contract. Achieving the appropriate level of
coupling requires that practical considerations be balanced against various service
design preferences.

Chapter 7 provides an in-depth exploration of this principle and introduces related pat-
terns and concepts.

Service Abstraction

Abstraction ties into many aspects of service-orientation. On a fundamental level, this
principle emphasizes the need to hide as much of the underlying details of a service as
possible. Doing so directly enables and preserves the previously described loosely cou-
pled relationship. Service Abstraction also plays a significant role in the positioning and
design of service compositions.

Various forms of meta data come into the picture when assessing appropriate abstrac-
tion levels. The extent of abstraction applied can affect service contract granularity and
can further influence the ultimate cost and effort of governing the service.

Chapter 8 covers several aspects of applying abstraction to different types of service
meta data, along with processes and approaches associated with information hiding.

Service Reusability

Reuse is strongly advocated within service-orientation; so much so, that it becomes a
core part of typical service analysis and design processes, and also forms the basis for
key service models. The advent of mature, non-proprietary service technology has pro-
vided the opportunity to maximize the reuse potential of multi-purpose logic on an
unprecedented level.

The principle of Service Reusability emphasizes the positioning of services as enterprise
resources with agnostic functional contexts. Numerous design considerations are raised
to ensure that individual service capabilities are appropriately defined in relation to an
agnostic service context, and to guarantee that they can facilitate the necessary reuse
requirements.

Variations and levels of reuse and associated agnostic service models are covered in
Chapter 9, along with a study of how commercial product design approaches have
influenced this principle.

Service Autonomy

For services to carry out their capabilities consistently and reliably, their underlying
solution logic needs to have a significant degree of control over its environment and
resources. The principle of Service Autonomy supports the extent to which other design
principles can be effectively realized in real world production environments by fostering
design characteristics that increase a service’s reliability and behavioral predictability.

72 Chapter 4: Service-Orientation

4.1 Introduction to Service-Orientation 73

This principle raises various issues that pertain to the design of service logic as well as
the service’s actual implementation environment. Isolation levels and service normal-
ization considerations are taken into account to achieve a suitable measure of autonomy,

especially for reusable services that are frequently shared.

Chapter 10 documents the design issues and challenges related to attaining higher
levels of service autonomy, and further classifies different forms of autonomy and
highlights associated risks.

Service Statelessness

The management of excessive state information can compromise the availability of a
service and undermine its scalability potential. Services are therefore ideally designed to
remain stateful only when required. Applying the principle of Service Statelessness
requires that measures of realistically attainable statelessness be assessed, based on the
adequacy of the surrounding technology architecture to provide state management del-
egation and deferral options.

Chapter 11 explores the options and impacts of incorporating stateless design charac-
teristics into service architectures.

Service Discoverability

For services to be positioned as IT assets with repeatable ROI they need to be easily iden-
tified and understood when opportunities for reuse present themselves. The service
design therefore needs to take the “communications quality” of the service and its indi-
vidual capabilities into account, regardless of whether a discovery mechanism (such as
a service registry) is an immediate part of the environment.

The application of this principle, as well as an explanation of how discoverability relates
to interpretability and the overall service discovery process, are covered in Chapter 12.

Service Composability

As the sophistication of service-oriented solutions continues to grow, so does the com-
plexity of underlying service composition configurations. The ability to effectively com-
pose services is a critical requirement for achieving some of the most fundamental goals
of service-oriented computing.

Complex service compositions place demands on service design that need to be antici-
pated to avoid massive retro-fitting efforts. Services are expected to be capable of par-
ticipating as effective composition members, regardless of whether they need to be
immediately enlisted in a composition. The principle of Service Composability
addresses this requirement by ensuring that a variety of considerations are taken into
account.

How the application of this design principle helps prepare services for the world of com-
plex compositions is described in Chapter 13.

Service-Orientation and Interoperability

One item that may appear to be absent from the preceding list is a principle along the
lines of “Services are Interoperable.” The reason this does not exist as a separate principle
is because interoperability is fundamental to every one of the principles just described.
Therefore, in relation to service-oriented computing, stating that services must be inter-
operable is just about as basic as stating that services must exist. Each of the eight prin-
ciples supports or contributes to interoperability in some manner.

Here are just a few examples:

• Service contracts are standardized to guarantee a baseline measure of interoper-
ability associated with the harmonization of data models.

• Reducing the degree of service coupling fosters interoperability by making indi-
vidual services less dependent on others and therefore more open for invocation
by different service consumers.

• Abstracting details about the service limits all interoperation to the service con-
tract, increasing the long-term consistency of interoperability by allowing underly-
ing service logic to evolve more independently.

• Designing services for reuse implies a high-level of required interoperability
between the service and numerous potential service consumers.

• By raising a service’s individual autonomy, its behavior becomes more consis-
tently predictable, increasing its reuse potential and thereby its attainable level of
interoperability.

• Through an emphasis on stateless design, the availability and scalability of serv-
ices increase, allowing them to interoperate more frequently and reliably.

74 Chapter 4: Service-Orientation

4.2 Problems Solved by Service-Orientation 75

• Service Discoverability simply allows services to be more easily located by those
who want to potentially interoperate with them.

• Finally, for services to be effectively composable they must be interoperable. The
success of fulfilling composability requirements is often tied directly to the extent
to which services are standardized and cross-service data exchange is optimized.

A fundamental goal of applying service-orientation is for interoperability to become a
natural by-product, ideally to the extent that a level of intrinsic interoperability is estab-
lished as a common and expected service design characteristic. Depending on the archi-
tectural strategy being employed, this extent may or may not be limited to a specific
service inventory.

Of course, as with any other design characteristic, there are levels of interoperability a
service can attain. The ultimate measure is generally determined by the extent to which
service-orientation principles have been consistently and successfully realized (plus, of
course, environmental factors such as the compatibility of wire protocols, the maturity
level of the underlying technology platform, and adherence to technology standards).

NOTE

Increased intrinsic interoperability is one of the key strategic goals associ-
ated with service-oriented computing (as originally established in Chapter
3). For more detailed information about how service-orientation principles
directly support this and other strategic goals, see Chapter 16.

SUMMARY OF KEY POINTS

• The service-orientation paradigm consists of eight distinct design principles,
each of which fosters fundamental design characteristics, such as interoper-
ability. These principles are explored individually in subsequent chapters.

• Interoperability is a natural by-product of applying service-orientation design
principles.

4.2 Problems Solved by Service-Orientation

To best appreciate why service-orientation has emerged and how it is intended to
improve the design of automation systems, we need to compare before and after per-
spectives. By studying some of the common issues that have historically plagued IT, we
can begin to understand the solutions proposed by this design paradigm.

Life Before Service-Orientation

In the world of business it makes a great deal of sense to deliver solutions capable of
automating the execution of business tasks. Over the course of IT’s history, the majority
of such solutions have been created with a common approach of identifying the business
tasks to be automated, defining their business requirements, and then building the cor-
responding solution logic (Figure 4.4).

76 Chapter 4: Service-Orientation

NOTE

This book fully acknowledges that past design paradigms have advo-
cated similar principles and strategic goals as service-orientation. Several
of these design approaches, in fact, directly inspired or influenced serv-
ice-orientation (as explained further in the Origins and Influences of Ser-
vice-Orientation section of this chapter). The following section is focused
specifically on a comparison with the silo-based design approach
because it has persisted as the most common means by which applica-
tions are delivered.

Figure 4.4
A ratio of one application for each new set of automation requirements has been common.

This has been an accepted and proven approach to achieving tangible business benefits
through the use of technology and has been successful at providing a relatively pre-
dictable return on investment (Figure 4.5).

4.2 Problems Solved by Service-Orientation 77

The ability to gain any further value from these applications is usually inhibited because
their capabilities are tied to specific business requirements and processes (some of which
will even have a limited lifespan). When new requirements and processes come our
way, we are forced to either make significant changes to what we already have, or we
may need to build a new application altogether.

In the latter case, although repeatedly building “disposable applications” is not the per-
fect approach, it has proven itself as a legitimate means of automating business. Let’s
explore some of the lessons learned by first focusing on the positive.

• Solutions can be built efficiently because they only need to be concerned with the
fulfillment of a narrow set of requirements associated with a limited set of busi-
ness processes.

• The business analysis effort involved with defining the process to be automated is
straight forward. Analysts are focused only on one process at a time and therefore
only concern themselves with the business entities and domains associated with
that one process.

• Solution designs are tactically focused. Although complex and sophisticated
automation solutions are sometimes required, the sole purpose of each is to auto-
mate just one or a specific set of business processes. This predefined functional
scope simplifies the overall solution design as well as the underlying application
architecture.

Figure 4.5
A sample formula for calculating ROI is based on a
predetermined investment with a predictable return.

• The project delivery lifecycle for each solution is streamlined and relatively pre-
dictable. Although IT projects are notorious for being complex endeavors, riddled
with unforeseen challenges, when the delivery scope is well-defined (and doesn’t
change), the process and execution of the delivery phases have a good chance of
being carried out as expected.

• Building new systems from the ground up allows organizations to take advantage
of the latest technology advancements. The IT marketplace progresses every year
to the extent that we fully expect technology we use to build solution logic today
to be different and better tomorrow. As a result, organizations that repeatedly
build disposable applications can leverage the latest technology innovations with
each new project.

These and other common characteristics of traditional solution delivery provide a good
indication as to why this approach has been so popular. Despite its acceptance, though,

it has become evident that there is still lots of room for improvement.

It Can Be Highly Wasteful

The creation of new solution logic in a given enterprise commonly results in a signifi-
cant amount of redundant functionality (Figure 4.6). The effort and expense required to
construct this logic is therefore also redundant.

78 Chapter 4: Service-Orientation

Figure 4.6
Different applications developed independently can result in significant
amounts of redundant functionality. The applications displayed were delivered
with various levels of solution logic that, in some form, already existed.

4.2 Problems Solved by Service-Orientation 79

It’s Not as Efficient as it Appears

Because of the tactical focus on delivering solutions for specific process requirements,

the scope of development projects is highly targeted. Therefore, there is the constant per-
ception that business requirements will be fulfilled at the earliest possible time. How-
ever, by continually building and rebuilding logic that already exists elsewhere, the
process is not as efficient as it could be if the creation of redundant logic could be
avoided (Figure 4.7).

Figure 4.7
Application A was delivered for a specific set of business requirements.
Because a subset of these business requirements had already been ful-
filled elsewhere, Application A’s delivery scope is larger than it has to be.

It Bloats an Enterprise

Each new or extended application adds to the bulk of an IT environment’s system
inventory (Figure 4.8). The ever-expanding hosting, maintenance, and administration
demands can inflate an IT department in budget, resources, and size to the extent that
IT becomes a significant drain on the overall organization.

Figure 4.8
This simple diagram portrays an enterprise environment containing appli-
cations with redundant functionality. The net effect is a larger enterprise.

It Can Result in Complex Infrastructures and Convoluted Enterprise Architectures

Having to host numerous applications built from different generations of technologies
and perhaps even different technology platforms often requires that each will impose
unique architectural requirements. The disparity across these “siloed” applications can
lead to a counter-federated environment (Figure 4.9), making it challenging to plan the
evolution of an enterprise and scale its infrastructure in response to that evolution.

80 Chapter 4: Service-Orientation

Figure 4.9
Different application environments within the same enterprise can introduce incompatible
runtime platforms as indicated by the shaded zones.

Integration Becomes a Constant Challenge

Applications built only with the automation of specific business processes in mind are
generally not designed to accommodate other interoperability requirements. Making
these types of applications share data at some later point results in a jungle of convo-
luted integration architectures held together mostly through point-to-point patchwork
(Figure 4.10) or requiring the introduction of large middleware layers.

4.2 Problems Solved by Service-Orientation 81

The Need for Service-Orientation

After repeated generations of traditional distributed solutions, the severity of the previ-
ously described problems has been amplified. This is why service-orientation was con-
ceived. It very much represents an evolutionary state in the history of IT in that it
combines successful design elements of past approaches with new design elements that
leverage conceptual and technology innovation.

The consistent application of the eight design principles listed earlier results in the wide-
spread proliferation of the corresponding design characteristics:

• increased consistency in how functionality and data is represented

• reduced dependencies between units of solution logic

• reduced awareness of underlying solution logic design and implementation
details

• increased opportunities to use a piece of solution logic for multiple purposes

• increased opportunities to combine units of solution logic into different
configurations

Figure 4.10
A vendor-diverse enterprise can introduce a variety of integration challenges, as expressed
by the little lightning bolts that highlight points of concern when trying to bridge propri-
etary environments.

• increased behavioral predictability

• increased availability and scalability

• increased awareness of available solution logic

When these characteristics exist as real parts of implemented services, they establish a
common synergy. As a result, the complexion of an enterprise changes as the following
distinct qualities are consistently promoted:

Increased Amounts of Agnostic Solution Logic

Within a service-oriented solution, units of logic (services) encapsulate functionality not
specific to any one application or business process (Figure 4.11). These services are there-
fore classified as agnostic and reusable IT assets.

82 Chapter 4: Service-Orientation

Figure 4.11
Business processes are automated by a series of business process-specific services
(top layer) that share a pool of business process-agnostic services (bottom layer). These
layers correspond to the task, entity, and utility service models described in Chapter 3.

Reduced Amounts of Application-Specific Logic

Increasing the amount of solution logic not specific to any one application or business
process decreases the amount of required application-specific logic (Figure 4.12). This
blurs the lines between standalone application environments by reducing the overall
quantity of standalone applications. (See also the Service-Orientation and the Concept of
“Application” section later in this chapter.)

4.2 Problems Solved by Service-Orientation 83

Figure 4.12
Business Process A can be automated by either Application A or Service Composition A. The
delivery of Application A can result in a body of solution logic that is specific to and tailored
for the business process. Service Composition A would be designed to automate the process
with a combination of agnostic services and 40% of additional logic specific to the business
process.

Reduced Volume of Logic Overall

The overall quantity of solution logic is reduced because the same solution logic is
shared and reused to automate multiple business processes, as shown in Figure 4.13.

Figure 4.13
The quantity of solution logic shrinks as
an enterprise transitions toward a stan-
dardized service inventory comprised of
“normalized” services.

84 Chapter 4: Service-Orientation

Figure 4.14
Services from different parts of a service inventory can be combined into new compositions. If
these services are designed to be intrinsically interoperable, the effort to assemble them into
new composition configurations is significantly reduced.

Inherent Interoperability

Common design characteristics consistently implemented result in solution logic that is
naturally aligned. When this carries over to the standardization of service contracts and
their underlying data models, a base level of automatic interoperability is achieved
across services, as illustrated in Figure 4.14. (See also the Service-Orientation and the
Concept of “Integration” section later in this chapter.)

SUMMARY OF KEY POINTS

• The traditional silo-based approach to building applications has been suc-
cessful at providing tangible benefits and measurable returns on investment.

• This approach has also caused its share of problems, most notably an
increase in integration complexity and an increase in the size and administra-
tive burden of IT enterprises.

• Service-orientation establishes a design paradigm that leverages and builds
upon previous approaches and proposes a means of avoiding problems asso-
ciated with silo-based application delivery.

4.3 Challenges Introduced by Service-Orientation 85

4.3 Challenges Introduced by Service-Orientation

As much as service-orientation can solve some of the more significant historical prob-
lems in IT, its application in the real world can make some serious impositions. It is nec-
essary to be aware of these challenges ahead of time because being prepared is key to
overcoming them.

Design Complexity

With a constant emphasis on reuse, a significant percentage of a service inventory can
ultimately be comprised of agnostic services capable of fulfilling requirements for mul-
tiple potential service consumer programs.

Although this can establish a highly normalized and streamlined architecture, it can also
introduce an increased level of complexity for both the architecture as well as individ-
ual service designs.

Examples include:

• increased performance requirements resulting from the increased reuse of agnostic
services

• reliability issues of services at peak concurrent usage times and availability issues
of services during off-hours

• single point of failure issues introduced by excessive reuse of agnostic services
(and that may require the need for redundant deployments to mitigate risks)

• increased demands on service hosting environments to accommodate autonomy-
related preferences

• service contract versioning issues and the impact of potentially redundant service
contracts

Design issues such as these can be addressed by a combination of sound technology
architecture design, modern vendor runtime platform technology, and the consistent
application of service-orientation design principles. Solving service reliability and per-
formance issues in particular are primary goals of those design principles more focused
on the underlying service logic, such as Service Autonomy, Service Statelessness, and
Service Composability.

The Need for Design Standards

Design standards can be healthy for an enterprise in that they “pre-solve” problems by
making several decisions for architects and developers ahead of time, thereby increas-
ing the consistency and compatibility of solution designs. Their use is required in order
to realize the successful propagation of service-orientation.

Although it can be a straight-forward process to create these standards, incorporating
them into a (non-standardized) IT culture already set in its ways can be demanding to
say the least. The usage of design standards can introduce the need to enforce their com-
pliance, a policing role that can meet with resistance. Additionally, architects and devel-
opers sometimes feel that design standards inhibit their creativity and ability to
innovate.

A circumstance that tends to aid the large-scale realization of standardization is when
the SOA initiative is championed by an executive manager, such as a CIO. When an indi-
vidual or a governing body has the authority to essentially “lay down the law,” many of
these cultural issues resolve themselves more quickly. However, within organizations
based on peer-level departmental structures (which are more common in the public
sector), the acceptance of design standards may require negotiation and compromise.

The best weapon for overcoming cultural resistance to design standards is communica-
tion and education. Those resisting standardization efforts are more likely to become
supporters after gaining an appreciation of the strategic significance and ultimate
benefits of adopting and respecting the need for design standards.

Top-Down Requirements

A preferred strategy to delivering services is to first conceptualize a service inventory by
defining a blueprint of all planned services, their relationships, boundaries, and indi-
vidual service models. This approach is very much associated with a top-down delivery
strategy in that it can impose a significant amount of up-front analysis effort involving
many members of business analysis and technology architecture groups.

Though preferred, achieving a comprehensive blueprint prior to building services is
often not feasible. It is common for organizations to face budget and time constraints
and tactical priorities that simply won’t permit it. As a result, there are phased and iter-
ative delivery approaches that allow for services to be produced earlier on. These, how-
ever, often come with trade-offs in that they can require the service designs to be
revisited and revised at a later point. While this can introduce risks associated with

86 Chapter 4: Service-Orientation

4.3 Challenges Introduced by Service-Orientation 87

the implementation of premature service designs, it is often considered an acceptable
compromise.

The principles of service-orientation can be applied to services on an individual basis,

allowing a reasonable degree of service-orientation to be achieved regardless of the
approach. However, the actual quality of the resulting service designs is typically tied
to how much of the top-down analysis work was completed prior to their delivery.

Counter-Agile Service Delivery in Support of Agile Solution Delivery

Irrespective of the potential top-down efforts needed for some SOA projects, the addi-
tional design considerations required to implement a meaningful measure of each of the
eight design principles increases both the overall time and cost to deliver service logic.

This may appear contrary to the attention SOA has received for its ability to increase
agility. To achieve the state of organizational agility described in Chapter 3 requires that
service-orientation already be successfully implemented. This is what establishes an
environment in which the delivery of solutions is much more agile.

However, given that it takes more initial effort to design and build services than it does
to build a corresponding amount of logic that is not service-oriented, the process of
delivering services in support of SOA can actually be counter-agile. This can cause issues
for an organization that has tactical requirements or needs to be responsive while build-
ing a service inventory.

BEST PRACTICE

It is recommended that, at minimum, a high-level service inventory blueprint always be
defined prior to creating physical service contracts. This establishes an important
“broader” perspective in support of service-oriented analysis and service modeling
processes and, ultimately, results in stronger and more durable service designs.

BEST PRACTICE

An effective approach, when sufficient resources are available, is to allow SOA initiatives
to be delivered alongside existing legacy development and maintenance projects. This
way, tactical requirements can continue to be fulfilled by traditional applications while the
enterprise works toward a phased transition toward service-oriented computing.

Appendix B provides additional coverage of SOA delivery strategies that address tacti-
cal versus strategic service delivery requirements.

Governance Demands

The eventual existence of one or more service inventories represents the ultimate deliv-
erable of the typical large-scale SOA initiative. A service inventory establishes a power-
ful reserve of standardized solution logic, a high percentage of which will ideally be
classified as agnostic or reusable. Subsequent to their implementation, though, the man-
agement and evolution of these agnostic services can be responsible for some of the most
profound changes imposed by service-orientation.

In the past, a standalone application was typically developed by a single project team.
Members of this team often ended up remaining “attached” to the application for sub-
sequent upgrades, maintenance, and extensions. This ownership model worked because
the application’s overall purpose and scope remained focused on the business tasks it
was originally built to automate.

The body of solution logic represented by agnostic services, however, is intentionally
positioned to not belong to any one business process. Although these services may have
been delivered by a project team, that same team may not continue to own the service
logic as it gets repeatedly utilized by other solutions, processes, and compositions.

Therefore, a special governance structure is required. This can introduce new resources,

roles, processes, and even new groups or departments. Ultimately, when these issues are
under control and the IT environment itself has successfully adapted to the required
changes, the many benefits associated with this new computing platform are there for
the taking. However, the process of moving to this new governance model can challenge
traditional approaches and demand time, expense, and a great deal of patience.

SUMMARY OF KEY POINTS

• Applying service-orientation on a broad scale can introduce increased design
complexity and the need for a consistent level of standardization.

• The construction of services can be expensive and time-consuming, introduc-
ing a more burdensome project delivery lifecycle, further compounded by
some of the common top-down analysis requirements that may need to be in
place before services can be built.

• Service inventory governance requirements can impose significant changes
that can shake up the organizational structure of an IT department.

88 Chapter 4: Service-Orientation

4.4 Additional Considerations 89

4.4 Additional Considerations

To supplement the benefits and challenges just covered, this section discusses some fur-
ther aspects of service-orientation.

It Is Not a Revolutionary Paradigm

Service-orientation is not a brand new paradigm that aims to replace all that preceded
it. It, in fact, incorporates and builds upon proven and successful elements from past
paradigms and combines these with design approaches shaped to leverage recent tech-
nology innovations.

This is why we do not refer to SOA as a revolutionary model in the history of IT. It is sim-
ply the next stage in an evolutionary cycle that began with the application of modular-
ity on a small scale (by organizing simple programming routines into shared modules
for example) and has now spread to the potential modularization of the enterprise.

Enterprise-wide Standardization Is Not Required

There is a common misperception that unless design standardization is achieved glob-
ally throughout the entire enterprise, SOA will not succeed. Although design standard-
ization is a critical success factor for SOA projects that is ideally achieved across an
enterprise, it only needs to be realized to a meaningful extent for service-orientation to
result in strategic benefit.

For example, service-orientation emphasizes the need for standardizing service data
models to avoid unnecessary data transformation and other problematic issues that can
compromise interoperability. The extent to which data model standardization is
achieved determines the extent to which these problems will be avoided.

The goal is not always to eliminate problems entirely because that can be an unrealistic
objective, especially in larger enterprises. Therefore, the goal is sometimes to just mini-
mize problems by taking special considerations into account during service design.

In support of this approach, design patterns exist for organizing the division of an enter-
prise into more manageable domains. Data standardization is generally more easily
attained within each domain, and transformation is then only required when exchang-
ing data across these domains. Even though this does not achieve a global data model,
it can still help establish a very meaningful level of interoperability.

Reuse Is Not an Absolute Requirement

Increasing reusability of solution logic is a fundamental goal of service-orientation, and
reuse is clearly one of the most associated benefits of SOA. As a result, organizations that
have had limited success with past reuse initiatives, or with concerns that significant
amounts of reuse cannot be achieved within their enterprise, are often hesitant about
SOA in general.

While reuse, especially over time, can be one of the most rewarding parts of investing in
SOA, it is not the sole primary benefit. Perhaps even more fundamental to service-
orientation than promoting reuse is fostering interoperability. Enabling an enterprise to
connect previously disparate systems or to make interconnectivity an intrinsic quality of
new solution logic is extremely powerful.

You could ignore the principle of Service Reusability in service designs and still achieve
significant returns on investment based solely on raising the level of enterprise-wide
interoperability.

90 Chapter 4: Service-Orientation

NOTE

One could argue that reuse and interoperability are very closely related in
that if two services are interoperable, there is always the opportunity for
reuse. However, traditional perspectives of reusable solution logic focus
on the nature of the logic itself. A service that is designed to be specifi-
cally agnostic to business processes and cross-cutting to address multi-
ple concerns will have a particular functional context associated with it.
Therefore, reuse can be seen as a separate design characteristic that
relies and builds upon interoperability. See Chapter 9 for more details.

SUMMARY OF KEY POINTS

• Service-orientation has deep roots in several past computing platforms and
design approaches, and is therefore not considered a revolutionary design
paradigm.

• Global standardization within an enterprise is not a requirement for creating
service-oriented enterprises because individual service inventories can be
established (and separately standardized) within different enterprise domains.

• Although fundamental to much of service-orientation, if reusability were to be
omitted as a design characteristic, significant interoperability-related benefit
would still be attainable.

4.5 Effects of Service-Orientation on the Enterprise 91

4.5 Effects of Service-Orientation on the Enterprise

There are good reasons to have high expectations from the service-orientation para-
digm. But, at the same time, there is much to learn and understand before it can be suc-
cessfully applied. The following sections explore some of the more common examples.

Service-Orientation and the Concept of “Application”

Having just stated that reuse is not an absolute requirement, it is important to acknowl-
edge the fact that service-orientation does place an unprecedented emphasis on reuse.
By establishing a service inventory with a high percentage of reusable and agnostic serv-
ices, we are now positioning those services as the primary (or only) means by which the
solution logic they represent can and should be accessed.

As a result, we make a very deliberate move away from the silos in which applications
previously existed. Because we want to share reusable logic whenever possible, we auto-
mate existing, new, and augmented business processes through service composition.
This results in a shift where more and more business requirements are fulfilled not by
building or extending applications, but by simply composing existing services into new
composition configurations.

When compositions become more common, the traditional concept of an application, a
system, or a solution actually begins to fade, along with the silos that contain them.
Applications no longer consist of self-contained bodies of programming logic responsi-
ble for automating a specific set of tasks (Figure 4.15). What was an application is now
just another service composition. And it’s a composition made up of services that very
likely participate in other compositions (Figure 4.16).

Figure 4.15
The traditional application, delivered to automate specific business process logic.

An application in this environment loses its individuality. One could argue that a serv-
ice-oriented application actually does not exist because it is, in fact, just one of many
service compositions. However, upon closer reflection, we can see that some of the serv-
ices are actually not business process-agnostic. The task service, for example, intention-
ally represents logic that is dedicated to the automation of just one business task and
therefore is not necessarily reusable.

What this indicates is that non-agnostic services can still be associated with the notion
of an application. However, within service-oriented computing, the meaning of this
term can change to reflect the fact that a potentially large portion of the application logic
is no longer exclusive to the application.

Service-Orientation and the Concept of “Integration”

When we revisit the idea of a service inventory consisting of services that have, as per
our service-orientation principles, been shaped into standardized and (for the most part)
reusable units of solution logic, we can see that this can challenge the traditional per-
ception of “integration.”

In the past, integrating something implied connecting two or more applications or pro-
grams that may or may not have been compatible (Figure 4.17). Perhaps they were based
on different technology platforms or maybe they were never designed to connect with
anything outside of their own internal boundary. The increasing need to hook up dis-
parate pieces of software to establish a reliable level of data exchange is what turned
integration into an important, high profile part of the IT industry.

92 Chapter 4: Service-Orientation

Figure 4.16
The service composition, intended to fulfill the role of the traditional application by leveraging agnostic and non-
agnostic services from a service inventory. This essentially establishes a “composite application.”

4.5 Effects of Service-Orientation on the Enterprise 93

Services designed to be “intrinsically interoperable” are built with the full awareness
that they will need to interact with a potentially large range of service consumers, most
of which will be unknown at the time of their initial delivery. If a significant part of our
enterprise solution logic is represented by an inventory of intrinsically interoperable
services, it empowers us with the freedom to mix and match these services into infinite
composition configurations to fulfill whatever automation requirements come our way.

As a result, the concept of integration begins to fade. Exchanging data between different
units of solution logic becomes a natural and secondary design characteristic (Figure
4.18). Again, though, this is something that can only transpire when a substantial per-
centage of an organization’s solution logic is represented by a quality service inventory.

Figure 4.17
The traditional integration architecture, comprised of two or more applications
connected in different ways to fulfill a new set of automation requirements (as
dictated by the new Business Process G).

While working toward achieving this environment, there will likely be many require-
ments for traditional integration between existing legacy systems and also between
legacy systems and these services.

94 Chapter 4: Service-Orientation

Figure 4.18
A new combination of services is composed together to fulfill the role of
traditional integrated applications.

The Service Composition

Applications, integrated applications, solutions, systems, all of these terms and what
they have traditionally represented can be directly associated with the service composi-
tion (Figure 4.19). However, given the fact that many SOA implementations consist of a
mixture of legacy environments and services, these terms are sure to survive for quite
some time.

In fact, as SOA transition initiatives continue to progress within an enterprise, it can be
helpful to make a clear distinction between a traditional application (one which may
reside alongside an SOA implementation or which may be actually encapsulated by a
service) and the service compositions that eventually become more commonplace.

4.5 Effects of Service-Orientation on the Enterprise 95

Application, Integration, and Enterprise Architectures

Because applications have existed for as long as IT, when technology architecture as a
profession and perspective within the enterprise came about, it made perfect sense to
have separate architectural views dedicated to individual applications, integrated appli-
cations, and the enterprise as a whole.

When standardizing on service-orientation, the manner in which we document technol-
ogy architecture is also in for a change. The enterprise-level perspective becomes pre-
dominant as it represents a master view of the service inventory. It can still encompass
the traditional parts of a formal architecture, including conceptual views, physical
views, and supporting technologies and governance platforms—but all these views are
likely to now become associated with the service inventory.

A new type of technical specification that gains prominence in service-oriented enter-
prise initiatives is the service composition architecture. Even though we talk about the sim-
plicity of combining services into new composition configurations on demand, it is by
no means an easy process. It is a design exercise that requires the detailed documenta-
tion of the planned composition architecture.

For example, each service needs to be assessed as to its competency to fulfill its role as a
composition member, and foreseeable service activity scenarios need to be mapped out.

Figure 4.19
A service-oriented solution, application, or system is the equiva-
lent of a service composition. If we were to build an enterprise-
wide SOA from the ground up, it would likely be comprised of
numerous service compositions capable of fulfilling the traditional
roles associated with these terms.

Message designs, messaging routes, exception handling, cross-service transactions,

policies, and many more considerations go into making a composition capable of
automating its designated business process.

96 Chapter 4: Service-Orientation

SUMMARY OF KEY POINTS

• The traditional concept of an application can change as more agnostic
services become established parts of the enterprise.

• The traditional concept of integration can change as the proliferation of
standardized, intrinsic interoperable services increases.

• Architectural views of the enterprise shift in response to the adoption of
service-orientation. Principally, the enterprise perspective becomes
increasingly prominent.

4.6 Origins and Influences of Service-Orientation

It is often said that the best way to understand something is to gain knowledge of its his-
tory. Service-orientation, by no means, is a design paradigm that just came out of
nowhere. It is very much a representation of the evolution of IT and therefore has many

BEST PRACTICE

Although the structure and content of traditional application architecture specifications
are augmented when documenting composition architectures, there can still be a natural
tendency to refer to these documents as architecture specifications for applications.

While an organization is undergoing a transition toward SOA, it can be helpful to make a
clear distinction between an application consisting of a service composition and tradi-
tional, standalone or legacy applications.

One approach is to consistently qualify the term “application.” For example, it can be
prefixed with “service-oriented,” “composite,” “standalone,” or “legacy.” Another option
is to simply limit the use of the term “application” to refer to non-service-composed solu-
tions only.

Furthermore, a composed service encapsulating a legacy application can be docu-
mented in separate specifications: a composition architecture specification that identifies
the service and points to an application architecture specification that defines the corre-
sponding application.

4.6 Origins and Influences of Service-Orientation 97

roots in past paradigms and technologies (Figure 4.20). At the same time, it is still in a
state of evolution itself and therefore remains subject to influences from on-going trends
and movements.

Figure 4.20
The primary influences of service-orientation also highlight its many origins.

The sections that follow describe some of the more prominent origins and thereby help
clarify how service-orientation can relate to and even help further some of the goals
from past paradigms.

Object-Orientation

In the 1990s the IT community embraced a design philosophy that would lead the way
in defining how distributed solutions were to be built. This paradigm was object-orien-
tation, and it came with its own set of principles, the application of which helped ensure
consistency across numerous environments. These principles defined a specific type of
relationship between units of solution logic classified as objects, which resulted in a pre-
dictable set of dynamics that ran through entire solutions.

Service-orientation is frequently compared to object-orientation, and rightly so. The
principles and patterns behind object-oriented analysis and design represent one of the
most significant sources of inspiration for this paradigm.

In fact, a subset of service-orientation principles (Service Reusability, Service Abstrac-
tion, and Service Composability, for example) can be traced back to object-oriented
counterparts. What distinguishes service-orientation, though, are the parts of the object-
oriented school of thought that were left out and the other principles that were added.
See Chapter 14 for a comparative analysis of principles and concepts associated with
these two design approaches.

Web Services

Even though service-orientation as a paradigm and SOA as a technology architecture are
each implementation-neutral, their association with Web services has become common-
place—so much so that the primary SOA vendors have shaped their respective plat-
forms around the utilization of Web services technology.

Although service-orientation remains a fully abstract paradigm, it is one that has his-
torically been influenced by the SOA platforms and roadmaps produced by these ven-
dors. As a result, the Web services framework has influenced and promoted several
service-orientation principles, including Service Abstraction, Service Loose Coupling,

and Service Composability.

Business Process Management (BPM)

BPM places a significant emphasis on business processes within the enterprise both in
terms of streamlining process logic to improve efficiency and also to establish processes
that are adaptable and extensible so that they can be augmented in response to business
change.

The business process layer represents a core part of any service-oriented architecture.
From a composition perspective, it usually assumes the role of the parent service com-
position controller. The advent of orchestration technology reaffirmed this role from an
implementation perspective.

A primary goal of service-orientation is to establish a highly agile automation environ-
ment fully capable of adapting to change. This goal can be realized by abstracting busi-
ness process logic into its own layer, thereby alleviating other services from having to
repeatedly embed process logic.

While service-orientation itself is not as concerned with business process reengineering,

it fully supports process optimization as a primary source of change for which services
can be recomposed.

Enterprise Application Integration (EAI)

Integration became a primary focal point in the late 90’s, and many organizations were
ill prepared for it. Numerous systems were built with little thought given to how data
could be shared outside of the system boundary. As a result, point-to-point integration

98 Chapter 4: Service-Orientation

4.6 Origins and Influences of Service-Orientation 99

channels were often created when data sharing requirements emerged. This led to well
known problems associated with a lack of stability, extensibility, and inadequate inter-
operability frameworks.

EAI platforms introduced middleware that allowed for the abstraction of proprietary
applications through the use of adapters, brokers, and orchestration engines. The result-
ing integration architectures were, in fact, more robust and extensible. However, they
also became notorious for being overwhelmingly complex and expensive, as well as
requiring long-term commitments to the middleware vendor’s platform and roadmap.

The advent of the open Web services framework and its ability to fully abstract propri-
etary technology changed the face of integration middleware. Vendor ties could be bro-
ken by investing in mobile services as opposed to proprietary platforms, and
organizations gained more control over the evolution of their integration architectures.

Several innovations that became popularized during the EAI era were recognized as
being useful to the overall goals associated with building SOA using Web services. One
example is the broker component, which allows for services using different schemas
representing the same type of data to still communicate through runtime transforma-
tion. The other is the orchestration engine, which can actually be positioned to represent
an entire service layer within larger SOA implementations. These parts of the EAI
platform support several service-orientation principles, including Service Abstraction,

Service Statelessness, Service Loose Coupling, and Service Composability.

Aspect-Oriented Programming (AOP)

A primary goal of AOP is to approach the separation of concerns with the intent of iden-
tifying specific concerns that are common to multiple applications or automation sce-
narios. These concerns are then classified as “cross-cutting,” and the corresponding
solution logic developed for cross-cutting concerns becomes naturally reusable.

Aspect-orientation emerged from object-orientation by building on the original goals of
establishing reusable objects. Although not a primary influential factor of service-orien-
tation, AOP does demonstrate a common goal in emphasizing the importance of invest-
ing in units of solution logic that are agnostic to business processes and applications and
therefore highly reusable. It further promotes role-based development, allowing devel-
opers with different areas of expertise to collaborate.

SUMMARY OF KEY POINTS

• Service-orientation represents a design paradigm that has its roots in several
origins. It emphasizes successful and proven approaches and supplements
them with new principles that leverage recent conceptual and technology
innovation.

• Service-orientation, as a design paradigm, is comparable with object-
orientation. In fact, several key object-oriented principles have persisted
in service-orientation.

• The Web services technology platform is primarily responsible for the popular-
ity of SOA and is therefore also a significant influence in service-orientation.
Conversely, the rise of service-oriented computing has repositioned and
formalized the Web services technology set from its original incarnation.

100 Chapter 4: Service-Orientation

NOTE

The actual events and timeline associated with the emergence of SOA
are documented in Chapter 4 of the book Service-Oriented Architecture:
Concepts, Technology, and Design.

4.7 CASE STUDY BACKGROUND

Cutit’s immediate priority is to streamline their internal supply chain process. The
order process in particular needs to be supported by the planned services so that
orders and back-orders can be fulfilled as soon as possible.

Below are brief descriptions of the service candidates shown in Figure 4.21 in rela-
tion to how they inter-relate based on their entity-centric functional contexts:

• Everything originates with the manufacturing of chain blades in the Cutit
lab, which requires the use of specific materials that are applied as per prede-
fined formulas.

• The assembly of chains results in products being added to their overall
inventory.

• Saws and kits are items Cutit purchases from different manufacturers to com-
plement their chain models.

• Notifications need to be issued when stock levels fall below certain levels or if
other urgent conditions occur.

• Finally, a periodic patent sweep is conducted to search for recently issued
patents with similarities to Cutit’s planned chain designs.

Note that all services shown are entity services, with the exception of Patent
Sweep and Notifications, which are based on the utility service model. A task serv-
ice is added in Part II.

4.7 Case Study Background 101

Figure 4.21
The initial set of services planned to support the following types of processes: keeping track of orders and back-
orders, chain manufacturing, tracking required manufacturing materials, and inventory management of manufac-
tured and purchased products. All of the displayed services are based on the entity service model, except for the
bottom two, which are utility services.

This page intentionally left blank

A

absolute isolation, 309, 317
abstract classes (OOAD), 461

designing service-oriented
classes, 474

Abstract Syntax Notation 1
(ASN.1), 128

abstraction (OOAD), 463. See also
Service Abstraction (principle)

access control levels, 232-234
accessor methods (OOAD), 454
active state (state management), 335
aggregates of services. See service

compositions
aggregation (OOAD), 471-472
agile development, 87, 521

organizational agility versus, 63
service-orientation and, 87
Service Reusability design

risks, 287
agility. See organizational agility
agnostic capability candidates, 523
agnostic service references, 63
agnostic services, 62, 82, 91, 407

reusable services versus, 268-269
service contracts, 144
Service Reusability, 268-269

agnostic solution logic, increasing, 82
alignment of business and technology.

See business and technology domain
alignment in service-oriented
computing

analysis phase, measuring service
reusability in, 265-266

analysis scope, defining, 522
AOP (aspect-oriented programming),

as an influence of service-
orientation, 99, 448

API (application programming
interface), 48, 128, 174, 177, 213, 313

functional abstraction, 221
service contracts and, 129

application architectures, 95-96
application programming interface.

See API
application services. See utility services
application-specific solution logic,

reducing, 82-83
applications

composite, 91-92
service compositions versus, 91-92
service-orientation and, 91-92
technology architectures, 95-96

architects. See enterprise
architects (role)

Index

architecture. See also SOA
(service-oriented architecture)

application, 95-96
client-server, 128, 165

state management, 328
defining, 520
distributed, 128, 166

state management, 329, 331
enterprise, 80, 95-96
integration, 81, 92-96, 182-184
mainframe, 166
point-to-point, 80, 405-406
service composition, 96
Service Statelessness design risks,

349-350
of Web services, 48-49, 166

ASN.1 (Abstract Syntax Notation 1),
128

aspect-oriented programming. See AOP
assertions. See policy assertions
association (OOAD)

comparison of object-orientation
and service-orientation, 469-470

designing service-oriented classes,
474

attachments (SOAP), 334
attributes (objects), explained, 454
attributes (OOAD), 473
auditors. See enterprise design

standards custodians (role)
auto-generation (of service contracts),

175, 178
autonomy. See also Service Autonomy

(principle)
composition autonomy, 430
data models and, 308-310
databases and, 308-310
governance and, 298-299
service compositions and, 298, 314

B

base classes (OOAD), 461
benefits of service-oriented computing.

See service-oriented computing,
goals and benefits

best practices
architecture dependency, 350
building Web services, 151
controlled access, 234
discoverability meta

information, 382
Domain Inventory design

pattern, 275
encapsulated legacy

environments, 318
example of, 34
explained, 34-35
measuring consumer coupling, 192
service composition performance

limitations, 437
service contract design risks, 150
for service-orientation, 87

bidirectional coupling, 165
black box concept, 213, 227
books, related, 4-5

Web site, 16
bottom-up processes, 518-519
BPM (business process management),

as an influence of service-
orientation, 98, 448

bridging products, 142
business agility. See organizational

agility
business analysts, 522

discoverability meta information
and, 377

role of, 53
business and technology domain

alignment in service-oriented
computing, 60-61

540 Index

business data (state management), 338
business entity services. See entity

services
business logic. See core service logic in

Web sites
business models. See enterprise

business models
business process definition,

explained, 397
business process instance,

explained, 397
business process management.

See BPM
business process services. See

orchestrated task services;
task services

business requirements fulfillment, as
goal of object-orientation, 450-451

business service candidates, 377
business services. See entity services;

task services

C

candidates. See service candidates
capabilities

granularity and, 116
operations and methods

versus, 115
service compositions, 399-400
services and, 69-70

capability candidates. See service
capability candidates

capability granularity, 486
explained, 116
Service Composability and, 428
service contracts, 143
Service Loose Coupling principle

and, 195-196
Service Reusability and, 277

Capability Name (service profile
field), 481

capability profiles, structure of, 481-482
case study

background, 20-22, 66, 100-101,
119-121

business process description,
119-121

conclusion of, 514-515
coupling in, 202-209
preliminary planning, 101
service abstraction levels, 244-252
Service Autonomy in, 319-323
Service Composability in, 439-441
Service Discoverability in, 382-386
Service Reusability in, 288-292
Service Statelessness in, 351-359
services in, 154
Standardized Service Contract

principle example, 154-161
style, 20

centralization
Contract Centralization design

pattern, 185, 195, 473, 530
example of, 216-217
Logic Centralization and,

272-273
measuring consumer coupling,

191-192
standardized coupling and, 185
technology coupling, 189-190

Logic Centralization design
pattern, 185, 465, 468, 531

Contract Centralization and,
272-273

difficulty in achieving, 274-275
as enterprise design

standard, 272
explained, 271
standardized coupling and, 185
Web services and, 274

Index 541

of policy assertions, 138-139
Schema Centralization design

pattern, 135-137, 531
characteristics. See design

characteristics
chorded circle symbol, explained, 13,

15-16
classes (OOAD)

compared to service contracts, 453
service-oriented classes, 472-474

client-server architectures, 165, 128
state management, 328

coarse-grained design. See granularity
code examples

capability expressed in IDL, 129
capability expressed in WSDL, 129
constraint granularity, 117
fine-grained XML schema simple

type, 143
skeleton (coarse- and fine-grained)

operation definitions, 143
skeleton WSDL definition for

coarse-grained service, 142
SOAP and WS-Addressing headers

for state management, 337
standardized and non-

standardized WSDL message
definitions, 133

UDDI discoveryURL construct, 372
WS-BPEL composition logic, 431
WS-Coordination headers for state

management, 338
WS-MetadataExchange and WS-

Addressing, 373
cohesion

comparison of object-orientation
and service-orientation, 467

service granularity and, 467
collective composability, explained,

400-401

color, in symbols, 13
commercial product design, 62, 276

abstraction and, 214
coupling and, 166
gold-plating versus, 267
meta abstraction types in, 227
measuring service reusability, 262,

264-265
risks associated with, 286-287

communications quality, 365
communications specialists. See

technical communications
specialists (role)

complete reusability, 266, 487
complex compositions. See complex

service compositions
complex service activities, 402
complex service compositions,

406-407, 487
characteristics of, 410-411
preparation for, 411
service inventory evolution, 407,

409-410
complexity, in traditional solution

delivery, 80
components, coupling and, 176-177
composability. See Service

Composability (principle)
composition (OOAD), 470-471. See also

service compositions; Service
Composability (principle)

composition autonomy, 430
Service Composability and, 430

composition candidates. See service
composition candidates

composition controller capabilities,
394, 400

composition controllers, 435, 487
explained, 398-401
service consumers as, 404

542 Index

composition initiators, 487
explained, 403-405
service consumers as, 404

composition instances, 397
composition member capabilities,

393, 400
Composition Member Capabilities

(service profile field), 481
composition members, 487

design of. See Service
Composability (principle)

explained, 398-401
Web service region of influence

for, 395
Composition Role (service profile

field), 481
composition sub-controllers, 487
concise contract abstraction, 232, 487
conflict symbol, 13
constraint granularity, 486

explained, 117-118
Service Abstraction and, 239
Service Composability and, 428
service contracts, 143
Service Loose Coupling principle

and, 195-196
Service Reusability and, 278

consumer coupling
measuring, 191-192
Service Abstraction and, 192
Service Composability and, 191
service consumers, 48-49

as composition initiators and
controllers, 404

coupling and, 167
coupling types, 181-192
policy dependencies, 138

consumer-specific functional
coupling, 180

consumer-to-contract coupling, 185-
191, 473, 486

risks with, 214
Web services and, 186

consumer-to-implementation coupling,
182, 184, 486

integration architectures and,
182-184

containers, objects as, 458
content abstraction, 246
context data (state management), 337-

338
context rules (state management), 337
Contract Centralization design pattern,

185, 195, 473, 530
example of, 216-217
Logic Centralization and, 272-273
measuring consumer coupling,

191-192
standardized coupling and, 185
technology coupling, 189-190

contract content abstraction levels,
231-232

Contract Denormalization design
pattern, 242, 305, 312, 530

service contract autonomy and,
304-305

contract first design, 53, 131, 173, 194
contract-to-functional coupling,

180, 486
indirect consumer coupling and,

188
contract-to-implementation coupling,

177-179, 486
examples of, 177
indirect consumer coupling

and, 189
service composability, 200

Index 543

contract-to-logic coupling, 174-175, 486
policies and, 179
Service Composability and, 199

contract-to-technology coupling,
176-177, 486

direct consumer coupling and, 188
Service Composability and, 199

contracts. See service contracts
controlled access (access control level),

233-234, 487
controller capabilities, 400
controllers. See composition controllers
core service logic in Web services, 48
coupling. See also Service Loose

Coupling (principle)
architectural, 168
auto-generation and, 175
in case study, 202-209
in client-service architectures, 165
commercial product design

and, 166
compared to dependency, 165
data models and, 175
database tables and, 175
design principles, relationship

with, 197-200
design risks, 200

logic-to-contract coupling,
200-201

performance problems, 201-202
design-time autonomy and, 181,

315-316
in distributed architectures, 166
explained, 164-165
integration architectures and,

182-184
mainframe and, 166
multi-consumer coupling

requirements (Service
Abstraction principle), 242

negative types, 193, 195
in object-orientation, 166
origins of, 165-166
performance, 202
policies and, 179
positive types, 193, 195
proprietary components and,

176-177
risks with, 214
Service Composability and, 191
service consumer coupling types,

181-182
consumer-to-contract coupling,

185-191
consumer-to-implementation

coupling, 182, 184
Contract Centralization design

pattern, 185
measuring consumer coupling,

191-192
service contract coupling types,

169-173
contract-to-functional

coupling, 180
contract-to-implementation

coupling, 177-179
contract-to-logic coupling,

174-175
contract-to-technology coupling,

176-177
logic-to-contract coupling,

173-174
service granularity and, 195-196
service models and, 196-197
service-orientation and, 193-195
symbols for, 165
Web services and, 166

coupling quality, 146
cross-cutting functions, 313, 347
CRUD, 44, 464

544 Index

cultural issues, Service Reusability
design risks, 281-283

Custodian (service profile field), 482
Cutit Saws case study. See case study

D

data granularity, 486
explained, 116
Service Composability and, 428
service contracts, 143
Service Loose Coupling principle

and, 195-196
Service Reusability and, 278

data models
autonomy and, 308-310
contract-to-implementation

coupling and, 177-178
coupling and, 175
data granularity and, 116
example of coupling, 206
global, 136
logical, 52
service contracts and, 134-137
standardization, 50, 89, 134-137

data representation standardization,
134-137

case study, 155
data transformation, avoiding,

140-142
sample design standards, 155

data transformation
avoidance, 135-136, 140-142
design standards and, 135-136
performance issues, 140
problems, 140
standardization and, 140-142
Standardized Service Contract

principle and, 135-136, 140-142

databases
autonomy and, 308-310
contract-to-implementation

coupling and, 177-178
coupling and, 175
for state management, 329, 331,

339-343
dedicated controllers, 487
deferral. See state deferral
delegation (OOAD), 468-469. See also

state delegation
delivery processes. See processes
delivery strategies. See processes
denormalization. See also normalization

service contracts and, 301-305
dependency, coupling compared to,

165
design characteristics

example of, 27
explained, 27-28
implementation of, 111-114
importance of, 69
list of, 81
loose coupling, 166
regulation of, 111-114

design framework, 35-36
design granularity. See granularity
design paradigm

example of, 29
explained, 29-30
relationships with design

framework, 36
service-orientation as, 70-71

design pattern language
example of, 32
explained, 31-32

Index 545

design patterns
Contract Centralization design

pattern, 185, 195, 242, 473, 530
example of, 216-217
Logic Centralization and,

272-273
measuring consumer coupling,

191-192
standardized coupling and, 185
technology coupling, 189-190

Contract Denormalization, 242,
305, 312

service contract autonomy and,
304-305

Domain Inventory, 136, 275
example of, 31
explained, 30-31
how they are referenced, 111
Logic Centralization, 185, 465, 468

Contract Centralization and,
272-273

difficulty in achieving, 274-275
as enterprise design

standard, 272
explained, 271
Web services and, 274

referenced in design principles, 530
relationships with design

framework, 36
Schema Centralization, 135-137
Service Normalization, 272,

305, 465
service contract autonomy and,

302-304
design phase (service composition), 413

assessment, 413, 415
design principles

application levels, vocabularies
for, 487-488

best practices versus, 34

business and technology
alignment in, 502-503

compared to object-oriented
design principles, 457-472

design pattern references, 111, 530
design standards and, 33, 107-108
documentation for, 109-110
example of, 28
explained in abstract, 28-29
extent of implementation, 108
federation in, 501
in formal service design processes,

106-107
granularity, types of, 115-118
guidelines for working with,

104-110, 115-121
implementation mediums and,

114-115
implementation of design

characteristics, 111-114
interoperability and, 74-75
intrinsic interoperability in,

498, 500
list of, 71-73
mapping to strategic goals, 498-509
organizational agility in, 505, 507
principle profiles, explained,

109-110
reduced IT burden in, 507, 509
regulation of design

characteristics, 111-114
ROI in, 504
Service Abstraction, relationship

with, 239-241. See also Service
Abstraction (principle)

Service Autonomy, relationship
with, 314-317. See also Service
Autonomy (principle)

546 Index

Service Composability,
relationship with, 432-436. See
also Service Composability
(principle)

service contracts. See service
contracts

Service Coupling (principle),
relationship with, 197-200

Service Discoverability,
relationship with, 378-380. See
also Service Discoverability
(principle)

Service Reusability (principle),
relationship with, 278, 280-281

Service Statelessness, relationship
with, 347-349. See also Service
Statelessness (principle)

in service-oriented analysis,
105-106

service-oriented computing
elements, relationship with, 41

SOA goals and benefits,
relationship with, 498-499

standard structure, 109-110
standardization of service

contracts, relationship with,
144-148

vendor diversification in, 501-502
vocabularies for, 486-487

design standards
data representation design

standard samples, 155
design principles and, 107-108
example of, 33
explained, 32-33
functional expression design

standard samples, 155
granularity and, 144
importance of, 86
industry standards versus, 34
level required, 89

naming conventions, 147
in service-orientation, 86
Standardized Service Contract

principle and, 132
design taxonomy, 35
design-time autonomy, 486

coupling and, 315-316
explained, 298-299
logic-to-contract coupling and, 181
service contracts and, 301-305

design-time discovery, 371-373, 486
design-time isolation, 309
designated controllers, explained, 400
detailed contract abstraction level,

231, 487
development tool deficiencies, 151-152
direct consumer coupling

example of, 188
indirect consumer coupling versus,

186, 188-189
discoverability, explained, 364. See also

Service Discoverability (principle)
discovery. See also Service

Discoverability (principle)
explained, 364-366
meta information and, 362
origins of, 367-368
processes, 363-367
of resources, 362-368
types of, 371-373

distributed architectures, 128, 166
state management, 329, 331

DLL (dynamic link library), 390
document-centric messages, 117
Domain Inventory design pattern, 136,

275, 531
don’t repeat yourself. See DRY (OOAD)
DRY (OOAD), 465-466
dynamic link library. See DLL

Index 547

E

EAI, 213, 448
as an influence of service-

orientation, 98-99, 448
encapsulation

of legacy logic, 318
Service Abstraction versus, 235
service encapsulation, 235-237

encapsulation (OOAD), 458
Endpoint References, 345
enterprise application integration.

See EAI
enterprise architects (role), 494-495
enterprise architectures, 80, 95-96
enterprise business models,

defining, 520
enterprise design standards custodians

(role), 495
entity schemas, 136
entity services

coupling and, 196
design processes, 526
example of, 44
explained, 44
Service Abstraction principle, 239
Service Autonomy and, 312-313
service contracts, 144
Service Statelessness and, 346

entity-centric business services. See
entity services

entity-centric schemas, 137
errata, 16
event-driven, 48
examples. See case study; code

examples; For Example sections
extends attribute, 460
extensibility, as goal of object-

orientation, 450-451

F

façade classes (OOAD), designing
service-oriented classes, 474

federated service architecture, 59
federation

in service-oriented computing,
58-59

with services, 58
Web services and, 59

fine-grained design. See granularity
first-generation Web services platform,

47. See also Web services
flexibility, as goal of object-orientation,

450, 452
For Example sections

composition initiators, 404-405
contract-to-implementation

coupling, 179
contract-to-logic coupling, 175
contract-to-technology

coupling, 177
design standards, 108
formal service design

processes, 107
logic-to-contract coupling, 174
messaging, 344
Service Abstraction principle,

216-217
service contract autonomy, 303
service modeling process, 106
Service Reusability, 284-285
XML schema standardization, 137

fully deferred state management,
measuring service statelessness,
342-343

functional abstraction, 221-222, 225, 486
example of, 246

functional context, 70, 312, 468
service granularity and, 116

548 Index

functional coupling. See contract-to-
functional coupling

functional expression
standardization, 155

functional isolation, 308
functional meta data, 374, 486

example of, 383-386
functional scope, Service Autonomy

design risks, 317
functional service expression,

standardization of, 133-134
case study, 155

fundamental concepts, comparison of
object-orientation and service-
orientation, 453-454, 456-457

G

generalization (OOAD), 461-462
global data models, 136
glossary Web site, 16, 533
goals

comparison of object-orientation
and service-orientation, 449-452

mapping to design principles,
498-509

goals of service-oriented computing.
See service-oriented computing,
goals and benefits

gold-plating, 267
governance

autonomy and, 298-299, 316
design-time autonomy and,

298-299
pure autonomy, 308
reuse and, 316
Service Composability design

risks, 438
Service Reusability design risks,

283-285
of service-orientation, 88

governance phase (service
composition), 413

assessment, 417, 419
granularity. See also capability

granularity; constraint granularity;
data granularity; service granularity

design standards and, 144
levels, 118
types of, 115-118

Guidelines for Policy Assertion Authors
(W3C), 493

H

hardware accelerators, 334
has-a relationships (OOAD),

469-471, 474
hidden compositions, 402, 434
hiding information. See Service

Abstraction (principle)
high statelessness, 342-343
history. See origins

I

IDL (Interface Definition
Language), 128

implementation coupling, example of,
206-207

implementation mediums, design
principles and, 114-115

implementation phase, measuring
service reusability in, 267

implementation principles, 111-114
implementation requirement, service

contracts, 131
increased intrinsic interoperability, 75
indirect consumer coupling

direct consumer coupling versus,
186, 188-189

example of, 188-189, 207

Index 549

industry standards, design standards
versus, 34. See also Web services

information architecture models, 52
information hiding. See Service

Abstraction (principle)
infrastructure services. See utility

services
inheritance (OOAD), 166

comparison of object-orientation
and service-orientation, 459-460

designing service-oriented
classes, 473

service granularity and, 473
Input/Output (service profile field), 481
integration

of architectures, 81
consumer-to-implementation

coupling, 182-184
coupling and, 182-184
EAI (enterprise application

integration), 98-99
service compositions and, 92-94
service-orientation and, 84, 92-94
in traditional solution delivery,

80-81
integration architectures, 95-96
Interface Definition Language. See IDL
interface element, 456
interfaces (OOAD)

compared to service contracts,
456-457

compared to WSDL portType and
interface elements, 456

designing service-oriented
classes, 473

measuring service
statelessness, 342

interoperability
of services, 84
service-orientation and, 74-75, 84
in service-oriented computing,

56-57
interpretability. See also Service

Discoverability (principle)
defined, 365
explained, 365

interpretation process, 364-367
explained, 365

intrinsic interoperability. See
interoperability

inventory analysis, 520-521, 523
is-a relationships (OOAD), 459
is-a-kind-of relationships (OOAD), 461
isolation

levels of, 308-310
partially isolated services, 306-308
of services, 308-310

IT roles. See organizational roles

J–K

JDBC, 166

Keywords (service profile field), 481

L

LDAP directories, 367
legacy systems

effect on, 523
mainframe architectures, 166
Service Autonomy design

risks, 318
service encapsulation, 236

lifecycle phases of service
composability, 412-413

logic abstraction. See programmatic
logic abstraction

550 Index

Logic Centralization design pattern,
185, 465, 468, 531

Contract Centralization and, 272-
273

difficulty in achieving, 274-275
as enterprise design standard, 272
explained, 271
standardized coupling and, 185
Web services and, 274

Logic Description (service profile
field), 481

logic-to-contract coupling, 173-174, 486
design-time autonomy and, 181
example of, 174
limitations, 200-201
Web services and, 201

logic-to-implementation coupling, 178
logical data models, 52
loose coupling. See Service Loose

Coupling (principle)
low-to-no statelessness, 340

M

mainframe architectures, 166
measuring

consumer coupling, 191-192
Service Abstraction, 231

access control abstraction levels,
232-234

contract content abstraction
levels, 231-232

quality of service meta
information, 234

Service Autonomy, 300-301
mixed autonomy, 310
pure autonomy, 308-310
service contract autonomy,

301-305
service logic autonomy, 306-308
shared autonomy, 305-306

Service Composability, 412
checklists, 419-420, 426-427
design phase assessment,

413, 415
governance phase assessment,

417, 419
lifecycle phases, 412-413
runtime phase assessment,

415, 417
Service Discoverability

baseline measures checklist,
375-376

custom measures, 376
Service Reusability, 262-263

in analysis/design phase,
265-266

commercial design approach,
262, 264-265

gold-plating, 267
in implementation phase, 267

Service Statelessness, 339
fully deferred state management,

342-343
internally deferred state

management, 342
non-deferred state

management, 340
partially deferred memory,

340-341
partially deferred state

management, 341-342
message correlation, 337
message processing logic for Web

services, 48
messages. See also SOAP

comparison of object-orientation
and service-orientation, 454-456

data granularity and, 116
document-centric, 117
RPC-style, 117
as state deferral option, 343-344

Index 551

meta abstraction types, 218-219
in commercial software, 227
in custom-developed software,

228-229
functional abstraction, 221-222
in open source software, 227-228
programmatic logic abstraction,

222-223
quality of service abstraction, 224
technology information

abstraction, 219-221
Web service design and, 225-226
in Web services, 229-230

meta information types. See Service
Discoverability (principle)

methods (objects), explained, 454
mixed autonomy, 310, 313
mixed detailed contract abstraction

level, 232, 487
moderate statelessness, 341-342
modularization of policy assertions,

138-139
monolithic executables, 390
multi-consumer coupling

requirements (Service Abstraction
principle), 242

multi-purpose logic, 268
multi-purpose programs, 255-256
multi-purpose services, 468

N

naming conventions. See vocabularies
negative types of coupling, 193, 195
nested policy assertions, 138
.NET, 177, 216-217
no access (access control level), 234, 487
non-agnostic capability candidates, 523
non-deferred state management, 340

non-technical service contracts,
152-153. See also SLA

Service Abstraction and, 237-238
normalization

Contract Denormalization design
pattern, 305, 312, 530

service contract autonomy and,
304-305

entity services, 313
service contracts and, 301-305
Service Normalization design

pattern, 272, 305, 465, 531
service contract autonomy and,

302-304
of services, 65, 83
utility services, 313

notification service for updates to
Prentice Hall Service-Oriented
Computing Series from Thomas Erl
books, 17, 533

O

object-orientation, 129
abstract classes, 461

designing service-oriented
classes, 474

abstraction, 213, 463. See also
Service Abstraction (principle)

accessor methods, 454
aggregation, 471-472
association

comparison of object-orientation
and service-orientation,
469-470

designing service-oriented
classes, 474

attributes, 473
base classes, 461

552 Index

classes
compared to service

contracts, 453
service-oriented classes, 472-474

composition, 470-471. See also
service compositions; Service
Composability (principle)

coupling, 166
delegation, 468-469. See also state

delegation
as design paradigm, 30
DRY, 465-466
encapsulation, 458
façade classes, designing service-

oriented classes, 474
generalization, 461-462
has-a relationships, 469-471, 474
as influence of Service

Composability, 391
as influence of service-

orientation, 97
inheritance, 166

comparison of object-orientation
and service-orientation,
459-460

designing service-oriented
classes, 473

service granularity and, 473
interfaces

compared to service contracts,
456-457

compared to WSDL portType and
interface elements, 456

designing service-oriented
classes, 473

measuring service
statelessness, 342

is-a relationships, 459
is-a-kind-of relationships, 461

OCP, 465
polymorphism, 463-464
reuse and, 257
RPC, 448
service-orientation compared, 97,

446-475
common goals, 449-452
design principles, 457-472
fundamental concepts, 453-457

specialization, 461-462
SRP, 466-468
sub-classes, 459, 461, 463
super-classes, 459
uses-a relationships, 469, 471, 474

object-oriented design principles,
compared to service-orientation
design principles, 457-458, 460-471

objects
compared to services, 453
as containers, 458

OCP (OOAD), 465
ODBC, 166
ontologies, 52
OOAD (object-oriented analysis and

design). See object-orientation
open access (access control level),

233, 487
open source software, meta abstraction

types in, 227-228
open-closed principle. See OCP
optimized contract abstrction level,

232, 487
orchestrated task services

coupling and, 197
defined, 45
Service Abstraction principle, 239
Service Autonomy and, 313-314

Index 553

Service Composability and,
430, 432

Service Statelessness and, 347
orchestration. See orchestracted task

services; WS-BPEL
orchestration services. See orchestrated

task services
organizational agility

agile development versus, 63
project delivery timelines and, 64
responsiveness and, 63
Service Abstraction principle

support for, 506
service compositions and, 64
Service Loose Coupling principle

support for, 506
Service Reusability principle

support for, 64, 506
service-orientation and, 63
in service-oriented computing,

63-64
organizational culture. See cultural

issues
organizational roles, 488-490

enterprise architects, 494-495
enterprise design standards

custodians, 495
policy custodians, 493
schema custodians, 492
service analysts, 491
service architects, 491
service custodians, 492
service registry custodians, 493-494
technical communications

specialists, 494
origins

of autonomy, 295
of composition, 390-392
of coupling, 165-166

of discovery, 367-368
of information hiding, 213
of reuse, 257-258
of service-orientation, 96-99

AOP (aspect-oriented
programming), 99

BPM (business process
management), 98

EAI (enterprise application
integration), 98-99

object-orientation, 97
Web services, 98

of service contracts, 127-129
of state management, 328-331

overestimating service usage
requirements, 318

P

paradigm. See design paradigm
parameters in policy assertions, 138
parent process coupling, 180
partially deferred memory, 340-341
partially deferred state management,

341-342
partially isolated services, 306-308
passive state (state management), 335
pattern languages. See design pattern

languages
patterns. See design patterns
performance

data transformation, 140
schema coupling and, 202
Service Composability design

risks, 437-438
service loose coupling, 201-202
state management and, 334

Plain Old XML. See POX
planned reuse, measures of, 265-266

554 Index

point-to-point data exchanges,
explained, 80, 405-406

policies, 48, 137-139, 274, 493
centralization and, 138
contract-to-logic coupling, 179
editors, 152
processors, 138
Service Abstraction and, 238
service consumer dependencies

and, 138
service profiles and, 483
structural standards, 139

policy alternatives, 378
policy assertions, 146, 493

centralization, 138-139
modularization, 138-139
nested policy assertions, 138
parameters, 138
proprietary vocabularies for

discoverability, 378
Service Discoverability and, 378
structural design, 139
structural standards and, 139
vocabularies for, 137-138

policy custodians (role), 493
policy parameters, 378
policy vocabularies, 493
polymorphism (OOAD), 463-464
portType element, 456
positive types of coupling, 193, 195
post-implementation application of

service discoverability, 381
poster Web site, 16, 534
POX (Plain Old XML), 50
Prentice Hall Service-Oriented Computing

Series from Thomas Erl, 4, 111, 284,
495, 531

Web site, 16, 533

primitive compositions, 406, 487
primitive service activities, 402, 405
principle profiles

explained, 109-110
Service Abstraction, 214-217
Service Autonomy, 296-297
Service Composability, 392,

395-396
Service Discoverability, 368, 370
Service Loose Coupling, 167, 169
service profiles versus, 110
Service Reusability, 259-261
Service Statelessness, 331-332, 334
Standardized Service Contract,

130-132
principles. See design principles
privacy concerns, Service Abstraction

principle, 243
process services. See orchestrated task

services
process-specific services, service

contracts for, 144
processes

bottom-up, 518-519
choosing, 521-522
discovery, 363-367
interpretation, 364-367
inventory analysis cycle, 520-521
service delivery, 518, 521-528
service modeling, 105-106, 523
service-oriented analysis,

105-106, 521
service-oriented design, 106-107
SOA delivery, 518, 521-528
top-down, 518-519

productivity, as goal of object-
orientation, 450, 452

profiles. See principle profiles; service
profiles

Index 555

programmatic logic abstraction,
222-223, 226, 486

proprietary assertion vocabularies, 378
proprietary vocabularies, 137-138
proxies, 128
pure autonomy, 308-310, 317, 488
Purpose Description (service profile

field), 481

Q

QoS Requirements (service profile
field), 481

quality of service abstraction, 224,
226, 486

quality of service meta information,
374, 486

abstraction levels and, 234
example of, 386

R

reduced IT burden, as supported by
Service Composability principle, 509

reduced statefulness, 340-341
redundancy

avoidance of, 64, 465-466
reducing, 83
in silo-based applications, 78
in traditional solution delivery,

78-79
registries. See service registries
regulatory presence, 241
regulatory principles, 111-114
reliability, 317

Service Reusability design
risks, 286

repository versus registry, 367
REST (Representational State

Transfer), 50

return on investment. See ROI
reusability, 69. See also Service

Reusability (principle)
as goal of object-orientation,

450, 452
level required, 90
reuse versus, 256

reusable components (Standardized
Service Contract principle), 129

reuse, 62-63, 69, 82, 90. See also Service
Reusability (principle)

explained in abstract, 254-256
governance rigidity and, 438
origins of, 257-258
reusability versus, 256
traditional approaches, 258
traditional problems with, 257-258
Web services and, 258

risks
with consumer-to-contract

coupling, 214
of gold-plating, 267
Service Abstraction design, 242

human misjudgment, 242-243
multi-consumer coupling

requirements, 242
security and privacy

concerns, 243
Service Autonomy design

functional scope, 317
overestimating service usage

requirements, 318
wrapper services, 318

Service Composability design
governance rigidity, 438
performance limitations,

437-438
single points of failure, 437

556 Index

Service Contract design, 149
development tool deficiencies,

151-152
technology dependencies, 150
versioning, 149-150

Service Discoverability design
communication limitations,

381-382
post-implementation

application, 381
Service Loose Coupling design,

200
logic-to-contract coupling,

200-201
performance problems, 201-202

Service Reusability design, 281
agile delivery, 287
commercial design, 286-287
governance structure, 283-285
organizational culture, 281-283
reliability, 286
security, 286

Service Statelessness design
architecture dependency, 349-

350
runtime performance, 350
underestimating effort

requirements, 350
robustness, as goal of object-

orientation, 450-451
ROI (return on investment)

Service Composability principle
support for, 505

Service Discoverability principle
support for, 505

Service Statelessness principle
support for, 505

in service-oriented computing,
61-62

roles. See organizational roles
RPC, 150, 448, 455
RPC-style messages, 117
runtime autonomy, 486

explained, 298
normalization design patterns, 305
service contracts and, 301-305

runtime discovery, 371-373, 486
runtime performance (Service

Statelessness design risks), 350

S

scalability, 326, 333, 340, 348
Schema Centralization design pattern,

135-137, 531
schema custodians (role), 492
scope

of analysis, defining, 522
comparison of object-orientation

and service-orientation, 447
second-generation Web services

platform, 47. See also Web services
security

Service Abstraction principle, 243
Service Reusability design

risks, 286
separation of concerns, 70

in relation to service
compositions, 390

Service Abstraction (principle), 72, 212-
251, 402

application level terminology, 487
associated terminology, 486
in case study, 244-252
commercial product design

and, 214

Index 557

compared to abstraction
(OOAD), 463

considerations when designing
service-oriented classes, 473

constraint granularity and, 239
consumer coupling and, 192
contribution to realizing

organizational agility, 506
design principles, relationship

with, 239-241
design risks, 242

human misjudgment, 242-243
multi-consumer coupling

requirements, 242
security and privacy

concerns, 243
effect on other design principles,

239-241
encapsulation versus, 235-237
explained, 212
goals, 215
impact on composition design

process, 418
implementation requirements, 216
interoperability and, 74
measuring, 231

access control abstraction levels,
232-234

contract content abstraction
levels, 231-232

quality of service meta
information, 234

meta abstraction types, 218-219
in commercial software, 227
in custom-developed software,

228-229
functional abstraction, 221-222
in open source software, 227-228
programmatic logic abstraction,

222-223

quality of service
abstraction, 224

technology information
abstraction, 219-221

Web service design and, 225-226
in Web services, 229-230

non-technical contract documents
and, 237-238

origins of, 213
policies and, 238
policy assertions, 238
principle profile, 214-217
Service Autonomy and, 316
Service Composability and, 241,

433-435
Service Discoverability and,

241, 379
service granularity and, 238-239
Service Loose Coupling and, 114,

198, 241
service models and, 239
Service Reusability and, 241, 279
Standardized Service Contract

principle and, 146, 240
Web services and, 50
WS-Policy definitions, 238

service activities, explained,
402-403, 487

service adapters, 142, 174, 213
service agents, 114

in message processing logic, 48
service analysts (role), 491
service architects (role), 491
Service Autonomy (principle), 72, 276,

294-323
application level terminology, 488
associated terminology, 486
in case study, 319-323
composition autonomy and, 430

558 Index

considerations when designing
service-oriented classes, 473

coupling and, 178
design principles, relationship

with, 314-317
design risks

functional scope, 317
overestimating service usage

requirements, 318
wrapper services, 318

design-time autonomy, explained,
298-299

effect on other design principles,
314-317

explained, 294-295
interoperability and, 74
measuring, 300-301

mixed autonomy, 310
pure autonomy, 308-310
service contract autonomy,

301-305
service logic autonomy, 306-308
shared autonomy, 305-306

origins of, 295
principle profile, 296-297
runtime autonomy, explained, 298
scalability, 261
Service Abstraction and, 316
Service Composability and, 317,

435-436
service contracts, 301-305
service granularity and, 311-312
Service Loose Coupling and, 178,

199, 315-316
service models and, 105, 311-314,

525
Service Reusability and, 280, 316
Service Statelessness and, 316, 348
service-oriented analysis processes

and, 105

Standardized Service Contract
and, 301-305, 315

service candidates, 269, 276. See also
service modeling

explained, 52
Service Discoverability and, 377
service inventory blueprint

definition, 520
service modeling and, 52
service-oriented design and, 53
services versus, 52

service capabilities
composition design support,

assessment for, 422
composition governance support,

assessment for, 426
composition runtime support,

assessment for, 424
explained, 115
granularity and, 116
operations and methods

versus, 115
service capability candidates, 523, 525.

See also service candidates
service catalogs, service profiles

and, 483
Service Composability (principle), 73,

388-441. See also composition
(OOAD)

associated terminology, 487
in case study, 439-441
composition autonomy and, 430
composition controllers, explained,

398-401
composition initiators, explained,

403-405
composition members, explained,

398-401
considerations when designing

service-oriented classes, 473-474

Index 559

consumer coupling and, 191
contract-to-implementation

coupling and, 200
contract-to-logic coupling and, 199
contract-to-technology coupling

and, 199
contribution to realizing reduced

IT burden, 509
contribution to realizing ROI, 505
design principles, relationship

with, 432-436
design risks

governance rigidity, 438
performance limitations, 437-

438
single points of failure, 437

effect on other design principles,
432-436

explained, 388
interoperability and, 75
measuring, 412

checklists, 419-420, 426-427
design phase assessment,

413, 415
governance phase assessment,

417, 419
lifecycle phases, 412-413
runtime phase assessment,

415, 417
orchestration and, 430, 432
point-to-point data exchanges,

explained, 405-406
principle profile, 392, 395-396
Service Abstraction and, 241,

433-435
service activities, explained,

402-403
Service Autonomy and, 317,

435-436

service composition instances,
explained, 397

service compositions
capabilities, 399-400
explained, 397

Service Discoverability and,
380, 436

service granularity and, 427-428
Service Loose Coupling and,

199-200, 433
service models and, 428-430
Service Reusability and, 280, 435
Service Statelessness and, 436
Standardized Service Contract

and, 148, 432
Web service region of influence,

395-396
Web services and, 50, 401

service composition candidates, 523
service composition instances,

explained, 397
service composition references, 63
service compositions, 82

agnostic services, 62
applications versus, 91-92
architecture of, 95-96
autonomy and, 298, 314
capabilities, 399-400
compared to applications and

integrated applications, 94-95
complex service compositions, 407

characteristics of, 410-411
preparation for, 411
service inventory evolution, 407,

409-410
composition autonomy, 430
consumer coupling and, 191
defined, 39
design assessment, 413

560 Index

evolutionary cycles, 412-413
design phase, 413
governance phase, 413
runtime phase, 413

explained, 39-40, 94-95,
388-390, 397

governance assessment, 417
governance considerations, 438
hidden, 434
implementation, 42
integrated applications versus,

92-94
naming, 96
origins of, 390-392
as related to service

inventories, 407
relationship with service-oriented

computing elements, 40
roles

composition controllers, 398-399
composition initiators, 403-404
composition members, 398-399
designated controllers, 400
examples of, 404-405

runtime assessment, 415, 417
scope of, 405-406
service contracts and, 148
state management and, 340
types of, 406

service consumers, 48-49
as composition initiators and

controllers, 404
coupling and, 167
coupling types, 181-182

consumer-to-contract coupling,
185-191

consumer-to-implementation
coupling, 182, 184

Contract Centralization design
pattern, 185

measuring consumer coupling,
191-192

policy dependencies, 138
service contract autonomy, 301-305, 488
service contracts, 126, 393. See also

Standardized Service Contracts
(principle)

APIs and, 129
auto-generation, 54, 152
in client-service applications, 128
content abstraction levels, 231-232
data models and, 134-137
defined, 126
denormalization and, 301-305
dependencies on, 165
design-time autonomy and,

301-305
discoverability, 364-367
in distributed applications, 128
explained, 126-127
interpretability, 364-367
naming conventions, 133
non-technical contract documents,

Service Abstraction and, 237-238
normalization and, 301-305
runtime autonomy and, 301-305
Service Autonomy and, 301-305
service compositions and, 148
technical versus non-technical, 127
validation coupling and, 190-191
versions, 150
Web services architecture, 48

service coupling. See coupling
service custodians (role), 492
service description documents,

explained, 126
service design

capability granularity and, 116

Index 561

constraint granularity and, 117-118
data granularity and, 116
formal processes, design principles

in, 106-107
granularity levels, 118
granularity types, 118
normalization and, 65
separation of concerns and, 70
service granularity and, 116
Service Reusability principle

design principles, relationship
with, 278, 280-281

service granularity, 277-278
service models, 276-278

service-orientation principles and,
106-107

Service Discoverability (principle), 73,
243, 272, 276, 362-386. See also
discovery

associated terminology, 486
in case study, 382-386
contribution to realizing ROI, 505
design principles, relationship

with, 378-380
design risks

communication limitations,
381-382

post-implementation
application, 381

discovery types, design-time and
runtime discovery, 371-373

effect on other design principles,
378-380

explained, 362-364
implementation requirements, 370
interoperability and, 75
measuring

baseline measures checklist,
375-376

custom measures, 376

meta information types, 373
functional meta data, 374
quality of service meta data, 374

policy assertions and, 378
principle profile, 368, 370
Service Abstraction and, 241, 379
Service Composability and,

380, 436
service granularity and, 378
Service Loose Coupling and, 199
service modeling and, 106,

377-378, 525
Service Reusability and, 280, 380
service-oriented analysis processes

and, 106
Standardized Service Contract

and, 147-148, 379
support for service capability

composition design process, 426
Web service region of

influence, 370
service encapsulation, 235-237, 306
service enterprise models. See service

inventory blueprints
service granularity, 486

cohesion and, 467
coupling and, 195-196
explained, 116
functional context and, 116
inheritance (OOAD) and, 473
Service Abstraction and, 238-239
Service Autonomy and, 311-312
Service Composability and,

427-428
Service Discoverability and, 378
Service Reusability, 277-278
Service Statelessness and, 346
standardization of service

contracts, 142-144

562 Index

service instances, 344-346
Service Statelessness and, 344-346

service inventory. See also service
inventory blueprints

analysis process, 521
defined, 40
delivery processes, 520-521
evolutionary stages, 407, 409-410
modeling, 520-521
example of, 270
explained, 40
implementation, 42
as related to service

compositions, 407
relationship with service-oriented

computing elements, 41
service inventory blueprints, 53, 313,

320. See also service inventory
architecture definition, 520
case study, 66
defining, 520
explained, 51-52
selecting processes, 521
Service Reusability, 269-270

service inventory models. See service
inventory blueprints

service layers, 60, 82
service level agreement. See SLA
service logic autonomy, 306-308, 488
Service Loose Coupling (principle), 71,

164-209, 299. See also coupling
associated terminology, 486
association with Service

Autonomy principle, 299
capability granularity and, 195-196
considerations when designing

service-oriented classes, 473
constraint granularity and, 195-196
contribution to realizing

organizational agility, 506

data granularity and, 195-196
effect on other design principles,

197-200
interoperability and, 74
performance, 202
principle profile, 167, 169
Service Abstraction principle and,

114, 198, 241
Service Autonomy and, 178, 199,

315-316
Service Composability and,

199-200, 433
Service Discoverability principle

and, 199
Service Reusability and, 199, 279
Standardized Service Contract

principle and, 145-146, 173, 198
technology abstraction and, 221
Web services and, 50

service methods, explained, 115
service modeling, 60, 522-525. See also

service-oriented analysis
alternative terms for, 485
business analysists and, 53
business-centric, 45
classification, 485
coupling and, 196-197
entity services, 44
explained, 43-46, 52
non-business-centric, 46
orchestrated task services, 45
process, 523
Service Abstraction and, 239
Service Autonomy and, 105,

311-314, 525
service candidates, 52
Service Composability and,

428-430
Service Discoverability and, 106,

377-378, 525

Index 563

Service Reusability and, 105,
276-278, 525

Service Statelessness and, 346-347
service-orientation principles and,

105-106
service-oriented design processes

and, 526-527
standardization of service

contracts, 144
task services, 44-45
technology architects and, 53
utility services, 46
wrapper service model, 306

Service Normalization design pattern,
272, 305, 465, 531

service contract autonomy and,
302-304

service operations, explained, 115
service policies, standardization of,

137-139
service profiles, 155

capability profiles, structure of,
481-482

case study, 155, 157
customizing, 482
example of, 383-386
explained, 478-479
policies and, 483
principle profiles versus, 110
service catalogs and, 483
service registries and, 482
structure of, 480

service providers, 48-49
service registries

explained, 366
service profiles and, 482

service registry custodians (role),
493-494

Service Reusability (principle), 62, 72,

254-292, 343, 393, 465, 468
agnostic services, 268-269
application level terminology, 487
in case study, 288-292
contribution to realizing

organizational agility, 506
cultural issues, 281-283
design principles, relationship

with, 278, 280-281
design risks, 281

agile delivery, 287
commercial design, 286-287
governance structure, 283-285
organizational culture, 281-283
reliability, 286
security, 286

Domain Inventory design pattern
and, 275

effect on other design principles,
278-281

explained, 254
governance issues, 283-285
interoperability and, 74
Logic Centralization design

pattern
Contract Centralization and,

272-273
difficulty in achieving, 274-275
as enterprise design

standard, 272
explained, 271
Web services and, 274

measuring, 262-263
in analysis/design phase,

265-266
commercial design approach,

262, 264-265
gold-plating, 267
in implementation phase, 267

principle profile, 259-261

564 Index

reduced IT burden, 64
Service Abstraction and, 241, 279
Service Autonomy and, 280, 316
Service Composability and,

280, 435
service contracts and, 147
Service Discoverability and,

280, 380
service granularity, 277-278
service inventory blueprints,

269-270
Service Loose Coupling and,

199, 279
service modeling and, 105,

276-278, 525
Service Statelessness and, 280, 348
service-oriented analysis processes

and, 105
Standardized Service Contract

and, 147, 278
Web services and, 50

Service Statelessness (principle), 73,
326-359. See also state management

in case study, 351-359
considerations when designing

service-oriented classes, 473
contribution to realizing ROI, 505
design principles, relationship

with, 347-349
design risks

architecture dependency, 349-
350

runtime performance, 350
underestimating effort

requirements, 350
effect on other design principles,

347-349
explained, 326
granularity and, 346
interoperability and, 74

measuring, 339
fully deferred state management,

342-343
internally deferred state

management, 342
non-deferred state

management, 340
partially deferred memory,

340-341
partially deferred state

management, 341-342
messaging as deferral option,

343-344
principle profile, 331-332, 334
scalability, 261
Service Autonomy and, 316, 348
Service Composability and, 436
service instances and, 344-346
service models and, 346-347
Service Reusability and, 280, 348
state, types of, 335

active, 335
business data, 338
context data, 337-338
passive, 335
session data, 336-337
stateful, 336
stateless, 336

state deferral
explained, 329
messaging as, 343-344
state delegation versus, 331

state delegation
explained, 329
state deferral versus, 331

state management
in client-server architectures, 328
databases and, 329, 331,

339-343
in distributed architectures,

329, 331

Index 565

explained, 327-328
origins of, 328-331
performance and, 334
service compositions and, 340
SOAP attachments and, 334

service symbol, explained, 13, 15-16
service-orientation

advantages of, 81-84
applications and, 82, 91-92
applications versus service

compositions, 91-92
challenges introduced by, 85-88
comparison with object-

orientation, 446-475
counter-agile delivery and, 87
coupling types and, 193-195
defined, 39
design characteristics, importance

of, 69
as design paradigm, 30, 70-71
design standards and, 86, 89
evolution of, 89
explained, 68-101
governance demands, 88
integration and, 84, 92-94
interoperability and, 74-75, 84
meta abstraction types in, 229-230
object-orientation compared, 97,

446-449
common goals, 449-452
design principles, 457-472
fundamental concepts, 453-457

origins of, 96-99
AOP (aspect-oriented

programming), 99
BPM (business process

management), 98
EAI (enterprise application

integration), 98-99

object-orientation, 97
Web services, 98

problems solved by, 75-84
relationship with service-oriented

computing elements, 40
reusability, level required, 90
service compositions, explained,

94-95
standardization and, 89
technology architectures and, 95-96
top-down delivery, 86-87

service-orientation principles. See also
design principles

service modeling processes and,
105-106

service-oriented analysis processes
and, 105-106

service-oriented design processes
and, 106-107

service-oriented analysis, 60, 522-523.
See also service modeling

business analysts and, 53
design principles in, 105-106
explained, 52-53
process, 521
service-orientation principles and,

105-106
technology architects and, 53

service-oriented architecture. See SOA
Service-Oriented Architecture: A Field

Guide to Integrating XML and Web
Services, 492

Service-Oriented Architecture: Concepts,
Technology, and Design, 5, 100, 432,
518

service-oriented classes, designing,
472-474

service-oriented computing
elements, 37-42
explained, 37-54
goals and benefits, 55-56

566 Index

business and technology domain
alignment, 61

design principles, relationship
with, 498-499

increased business and
technology domain alignment,
60-61

increased federation, 58-59
increased intrinsic

interoperability, 56-57
increased organizational agility,

63-64
increased ROI, 61-62
increased vendor

diversification, 59
reduced IT burden, 64-65
as related to service-orientation

principles, 104-105
relationships between, 56
vendor diversification, 59-60

governance, 88
implementation, 41-42
relationships among elements,

40-42
service compositions and, 39-40
service inventory and, 40
service inventory blueprints and,

51-52
service models and, 43-46
service-oriented analysis and,

52-53
service-oriented design and, 53-54
services and, 39
SOA and, 38, 56
terminology, 484-485
vision, 55
Web services and, 49-50

service-oriented design, 377, 521, 525,
527-528

contract first design, 53, 131,
173, 194

explained, 53-54
Service Abstraction

design principles, relationship
with, 239-241

encapsulation, 235-237
non-technical contract

documents, 237-238
service granularity and, 238-239
service models and, 239

Service Autonomy
design principles, relationship

with, 314-317
service granularity and, 311-312
service models and, 311-314

Service Composability
composition autonomy and, 430
design principles, relationship

with, 432-436
orchestration and, 430, 432
service granularity and, 427-428
service models and, 428-430

Service Contracts
data transformation, avoiding,

140-142
service granularity, 142-144
service models, 144

Service Discoverability
design principles, relationship

with, 378-380
policy assertions and, 378
service granularity and, 378
service models and, 377-378

service models and, 526-527
Service Statelessness

design principles, relationship
with, 347-349

Index 567

granularity and, 346
messaging as deferral option,

343-344
service instances and, 344-346
service models and, 346-347

service-orientation principles and,
106-107

service-oriented solution logic
defined, 39
implementation, 42
relationship with service-oriented

computing elements, 40
service-to-consumer coupling, 180
services

agnostic, 62, 82, 91
business-centric, 45
in case study, 154
as collections of capabilities, 69-70
communications quality, 365
as components, 176-177
as containers, 70
counter-agile delivery of, 87
defined, 39
dependencies between, 165
discoverability, 364-367
explained, 39, 68-69
as federated endpoints, 58
functional context, 70
implementation, 42, 47
interoperability, 84
interpretability, 364-367
as IT assets, 62
non-business-centric, 46
normalized, 65, 83
ownership, 88
real-world analogy, 68-70
relationship with service-oriented

computing elements, 40
reusable versus agnostic, 268-269

reuse. See reuse; Service
Reusability (principle)

ROI, 62
roles

service consumers, 48-49
service providers, 48-49

scalability, 326, 333, 340, 348
service candidates versus, 52
standardization of, 89
symbols for, 39
usage requirements, 318
Web services versus, 49

session data (state management),
336-337

shared autonomy, 305-306, 488
silo-based applications, 92

advantages of, 76-78
counter-federation and, 80
disadvantages of, 78-81
integration and, 81
redundancy, 78

Simple Object Access Protocol. See
SOAP

single responsibility principle. See SRP
single-purpose programs, 255
SLA (service level agreement), 152-153,

237-238, 249, 382, 386, 483
SOA (service-oriented architecture), 5.

See also service-oriented computing
explained, 38
goals and benefits, 498-499
governance, 88
relationship with service-oriented

computing elements, 40
scalability, 326, 333, 340, 348
service-oriented computing

versus, 56
vendor diversified, 60
vendor-agnostic, 60

568 Index

vision, 55
Web services and, 46-51

architecture, 48-49
standards, 47-48

SOA: Design Patterns, 4, 31-32, 111, 122,
150, 474, 515, 530-531

The SOA Magazine Web site, 533
SOAP (Simple Object Access

Protocol), 47
attachments, 334, 344
headers, 337-338, 344-346, 410
processors, 334

software composition. See composition
(OOAD)

specialization (OOAD), 461-462
SRP (OOAD), 466-468
standardization. See also standards

functional expression, 147
of service contracts

data representation, 134-137,
140-142, 155

design principles, relationship
with, 144-148

functional service expression,
133-134, 155

service granularity, 142-144
service models, 144
service policies, 137-139

of vocabularies, 484
Standardized Service Contract

(principle), 71, 464
agnostic service contracts and, 144
capability granularity, 143
case study, 154-161
considerations when designing

service-oriented classes, 473
constraint granularity, 143
coupling types, 169-173

consumer-to-contract coupling,
185-191, 214, 473, 486

contract-to-functional
coupling, 180

contract-to-implementation
coupling, 177-179

contract-to-logic coupling,
174-175

contract-to-technology coupling,
176-177

logic-to-contract coupling,
173-174

data granularity, 143
design risks, 149

development tool deficiencies,
151-152

technology dependencies, 150
versioning, 149-150

design standards and, 132
effect on other design principles,

144-148
functional meta data, 374
origins of, 127-129
interoperability and, 74
naming conventions, 147
non-agnostic service contracts

and, 144
non-technical service contracts,

152-153
principle profile, 130-132
Service Abstraction and, 146, 240
Service Autonomy and,

301-305, 315
Service Composability and,

148, 432
Service Discoverability and,

147-148, 379
Service Loose Coupling and,

145-146, 173, 198
service models and, 144
Service Reusability and, 147, 278

Index 569

standardization types
data representation, 134-137,

140-142, 155
design principles, relationship

with, 144-148
functional service expression,

133-134, 155
service granularity, 142-144
service models, 144
service policies, 137-139

transformation and, 140-142
Web services and, 50

standards. See also design standards;
standardization

SOA, 5-6
Web services standards, 47-48
www.soaspecs.com Web site, 50

state, types of, 335
active, 335
business data, 338
context data, 337-338
passive, 335
session data, 336-337
stateful, 336
stateless, 336

state data management. See state
management

state databases, 329, 331
state deferral

explained, 329
messaging as, 343-344
state delegation versus, 331

state delegation
explained, 329
state deferral versus, 331

state management. See also Service
Statelessness (principle)

in client-server architectures, 328
databases and, 329, 331, 339-343

in distributed architectures,
329, 331

explained, 327-328
origins of, 328-331
performance and, 334
service compositions and, 340
SOAP attachments and, 334
state deferral and state delegation,

329, 331
state types, 335

active, 335
business data, 338
context data, 337-338
passive, 335
session data, 336-337
stateful, 336
stateless, 336

stateful state (state management), 336
stateless state (state management), 336
statelessness. See Service Statelessness

(principle)
static business process definition,

explained, 397
Status (service profile field), 482
sub-classes (OOAD), 459, 461, 463
sub-controllers, explained, 398, 429
super-classes (OOAD), 459
symbols

color in, 13
conflict symbol, 13
coupling, 165
legend, 13
service symbol, 13, 15-16, 39

T

tactical reusability, 487
measuring, 265

targeted functional coupling, 180
targeted reusability, 487

measuring, 266

570 Index

www.soaspecs.com

targeted reuse, example of, 289
task services, 340

coupling and, 197
example of, 44
explained, 44-45
functional coupling and, 180
Service Abstraction and, 239
Service Autonomy and, 313-314
service contracts, 144
in service inventory, 270
Service Statelessness and, 347

task-centric business services. See task
services

technical communications specialists
(role), 494

technical service contracts, explained
in abstract, 127. See also service
contracts

technology abstraction
Service Loose Coupling and, 221
Web services and, 221

technology and business alignment. See
business and technology domain
alignment in service-oriented
computing

technology architects, role of, 53
technology architecture. See

architecture
technology coupling, Contract

Centralization design pattern,
189-190

technology dependencies of service
contracts, 150

technology information abstraction,
219-221, 225, 486

technology services. See utility services
technology transformation, 142
terminology. See vocabularies
top-down processes, 86-87, 518-519

traditional solution delivery, explained,
76-81

transformation. See also data
transformation

avoidance, 135-136, 140-142
design standards and, 135-136
standardization and, 140-142
Standardized Service Contract

principle and, 135-136, 140-142
technology, 142

U

UDDI, 47, 367, 372
UML (unified modeling language),

447, 453
unidirectional coupling, 165
Universal Description, Discovery, and

Integration. See UDDI
uses-a relationships (OOAD), 469,

471, 474
utility services

coupling and, 197
design processes, 526
explained, 46
Service Abstraction and, 239
Service Autonomy and, 313
service contracts, 144
Service Statelessness and, 347

V

Validation Abstraction design pattern,
531

validation coupling, 190-191
performance and, 202

validation logic
constraint granularity and, 117-118
policies, 137

vendor diversification in service-
oriented computing, 59-60

Version (service profile field), 482

Index 571

versioning, 260, 438
service contracts and, 149-150

vocabularies, 147
for design principle application

levels, 487-488
for design principles, 486-487
for policy assertions, 137-138
service contracts, 133
service models, alternative terms

for, 485
service-oriented computing

terminology, 484-485
standardization of, 484

W

Web Service Contract Design for SOA, 5,
150, 153

Web service regions of influence
composition members, 395
designated controllers, 396
functional abstraction, 225
programmatic logic

abstraction, 226
quality of service abstraction, 226
service autonomy, 297
service contracts, 131-132
service discoverability, 370
service loose coupling, 169
service reusability, 260-261
service statelessness, 334
technology information

abstraction, 225
Web services, 46-51

architecture, 48-49
auto-generation of contracts, 54,

152, 175
avoiding technology

dependencies, 150
consumer-to-contract coupling

and, 186

Contract Centralization design
pattern and, 190, 274

contracts, 134-137
coupling and, 166
design processes, 527
federation via, 59
first-generation platform, 47
implementation coupling and, 166
as implementation medium, 114
as industry standards, 34
as influence of service-orientation,

98, 448
interface element, 456
Logic Centralization and, 274
logic-to-contract coupling and, 201
meta abstraction types and, 225-

226, 229-230
origins of reuse, 258
origins of Standardized Service

Contract principle, 129
policies. See policies; WS-Policy
portType element, 456
reuse and, 258
roles

service consumers, 48-49
service providers, 48-49

Schema Centralization design
pattern and, 135-137

schema custodians (role), 492
second-generation platform, 47
service compositions and, 401,

405-406
service contracts, 127
service description documents, 127
service-oriented computing, 49-50
services versus, 49
standardization, 134-137
standards, 47-48
technology abstraction and, 221

572 Index

technology-to-contract coupling
and, 177

validation coupling and, 190-191
Web Services Business Process

Execution Language. See WS-BPEL
Web Services Description Language.

See WSDL
Web services tutorials Web site, 50, 534
Web sites

www.soabooks.com, 16, 531, 533
www.soaglossary.com, 16, 533
www.soamag.com, 17, 533
www.soaposters.com, 16, 534
www.soaspecs.com, 16, 338, 460,

493, 533
www.thomaserl.com, 17
www.ws-standards.com, 338,

432, 534
www.xmlenterprise.com, 534

wrapper services, 306, 316
Service Autonomy design

risks, 318
WS-* extensions, 47, 395
WS-Addressing, 337-338, 344-346, 373
WS-AtomicTransaction, 338
WS-BPEL, 197, 239, 431-432, 527
WS-Coordination, 338
WS-I Basic Profile, 47, 150-151
WS-MetadataExchange, 372-373
WS-Policy, 48, 129, 131, 483, 493
WS-Policy definitions, 127, 137-139, 146,

151, 153, 274
contract-to-logic coupling, 179
editors, 152
structural standards, 139
wsp:optional attribute, 139

WS-ReliableMessaging, 137
WS-ResourceTransfer (WS-RT), 338

WS-SecurityPolicy, 137
WSDL (Web Services Description

Language), 47, 129, 131, 146, 174, 274
WSDL definitions, 127, 175

auto-generation, 175
standardization, 136
XML schemas and, 136

wsp:ignorable attribute, 143, 238, 378
wsp:optional attribute, 139, 143, 238,

378

X–Z

XML, 194
as industry standards, 34
parsers, 334

XML Schema Definition Language, 47,
129, 131

XML schemas, 127, 137, 146, 174-175,
274, 455

case study, 157
constraint granularity

example, 117
entity schemas, 136
schema custodians (role), 492
standardization, 136
validation coupling and, 190-191
WSDL definitions and, 136

XML tutorials Web site, 534
XSD. See XML Schema Definition

Language; XML schemas
XSLT, 140

Index 573

www.soabooks.com
www.soamag.com
www.soaposters.com
www.soaspecs.com
www.thomaserl.com
www.ws-standards.com
www.xmlenterprise.com

	Contents
	Preface
	Chapter 4: Service-Orientation
	4.1 Introduction to Service-Orientation
	4.2 Problems Solved by Service-Orientation
	4.3 Challenges Introduced by Service-Orientation
	4.4 Additional Considerations
	4.5 Effects of Service-Orientation on the Enterprise
	4.6 Origins and Influences of Service-Orientation
	4.7 Case Study Background

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J–K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X–Z

