
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134076430
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134076430
https://plusone.google.com/share?url=http://www.informit.com/title/9780134076430
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134076430
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134076430/Free-Sample-Chapter

Introduction
to

Programming in Python

This page intentionally left blank

Introduction
to

Programming in Python

An Interdisciplinary Approach

Robert Sedgewick
Kevin Wayne

Robert Dondero

Princeton University

New York • Boston • Indianapolis • San Francisco
Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business, train-
ing goals, marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Cataloging-in-Publication Data
Sedgewick, Robert, 1946-
 Introduction to programming in Python : an interdisciplinary approach / Robert Sedgewick, Kevin
Wayne, Robert Dondero.
 pages  cm
 Includes indexes.
 ISBN 978-0-13-407643-0 (hardcover : alk. paper)—ISBN 0-13-407643-5
1. Python (Computer program language) 2. Computer programming. I. Wayne, Kevin Daniel, 1971-
II. Dondero, Robert. III. Title.
 QA76.73.P98S43 2015
 005.13'3—dc23

2015011936

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in
a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or likewise. To obtain permission to use material from this work, please submit a writ-
ten request to Pearson Education, Inc., Permissions Department, 200 Old Tappan Road, Old Tappan,
New Jersey 07675, or you may fax your request to 236-3290.

ISBN-13: 978-0-13-407643-0
ISBN-10: 0-13-407643-5

Text printed in the United States on recycled paper at Edwards Brothers Malloy in Ann Arbor,
Michigan.
First printing, June 2015

To Adam, Andrew, Brett, Robbie,

Henry, Iona, Rose, Peter,

and especially Linda

To Jackie and Alex

To my family,

especially Ellen and Meghan

This page intentionally left blank

Contents

Preface xiii

1—Elements of Programming 1
1.1  Your First Program	 2

1.2  Built-in Types of Data	 14

1.3  Conditionals and Loops	 56

1.4  Arrays	 100

1.5  Input and Output	 140

1.6  Case Study: Random Web Surfer	 188

2—Functions and Modules 209
2.1  Defining Functions	 210

2.2  Modules and Clients	 248

2.3  Recursion	 290

2.4  Case Study: Percolation	 322

3—Object-Oriented Programming 351
3.1  Using Data Types	 352

3.2  Creating Data Types	 402

3.3  Designing Data Types	 450

3.4  Case Study: N-Body Simulation	 496

4—Algorithms and Data Structures 511
4.1  Performance	 512

4.2  Sorting and Searching	 556

4.3  Stacks and Queues	 590

4.4  Symbol Tables	 634

4.5  Case Study: Small-World Phenomenon	 684

Context 729

Glossary 733

Index 739

This page intentionally left blank

Functions and Modules

1  Defining Functions
Program 2.1.1  Harmonic numbers (revisited)  . 213
Program 2.1.2  Gaussian functions. 223
Program 2.1.3  Coupon collector (revisited) . . . 225
Program 2.1.4  Play that tune (revisited)  234

2.2  Modules and Clients
Program 2.2.1  Gaussian functions module. . . . 250
Program 2.2.2  Sample Gaussian client 251
Program 2.2.3  Random number module. . . . 261
Program 2.2.4  Iterated function systems 269
Program 2.2.5  Data analysis module 272
Program 2.2.6  Plotting data values 275
Program 2.2.7  Bernoulli trials  277

2.3  Recursion
Program 2.3.1  Euclid’s algorithm 295
Program 2.3.2  Towers of Hanoi 298
Program 2.3.3  Gray code 303
Program 2.3.4  Recursive graphics. 305
Program 2.3.5  Brownian bridge. 307

2.4  Case Study: Percolation
Program 2.4.1  Percolation scaffolding 326
Program 2.4.2  Vertical percolation detection. . . 328
Program 2.4.3  Percolation input/output 330
Program 2.4.4  Visualization client 331
Program 2.4.5  Percolation probability estimate  .333
Program 2.4.6  Percolation detection 335
Program 2.4.7  Adaptive plot client 338

Programs	 ix

Elements of Programming

1.1  Your First Program
Program 1.1.1  Hello, World  4
Program 1.1.2  Using a command-line argument  . 7

1.2  Built-in Types of Data
Program 1.2.1  String concatenation example . . . 23
Program 1.2.2  Integer operators 26
Program 1.2.3  Float operators  29
Program 1.2.4  Quadratic formula. 31
Program 1.2.5  Leap year 35

1.3  Conditionals and Loops
Program 1.3.1  Flipping a fair coin 59
Program 1.3.2  Your first loop 62
Program 1.3.3  Computing powers of 2 64
Program 1.3.4  Your first nested loops  70
Program 1.3.5  Harmonic numbers  73
Program 1.3.6  Newton’s method  75
Program 1.3.7  Converting to binary. 77
Program 1.3.8  Gambler’s ruin simulation 79
Program 1.3.9  Factoring integers  81

1.4  Arrays
Program 1.4.1  Sampling without replacement  . 113
Program 1.4.2  Coupon collector simulation . . . 117
Program 1.4.3  Sieve of Eratosthenes. 119
Program 1.4.4  Self-avoiding random walks  . . 128

1.5  Input and Output
Program 1.5.1  Generating a random sequence  .142
Program 1.5.2  Interactive user input. 150
Program 1.5.3  Averaging a stream of numbers  . 152
Program 1.5.4  A simple filter. 156
Program 1.5.5   Standard input to drawing filter  .162
Program 1.5.6  Function graph  164
Program 1.5.7  Bouncing ball. 169
Program 1.5.8  Digital signal processing  174

1.6  Case Study: Random Web Surfer
Program 1.6.1  Computing the transition matrix. 191
Program 1.6.2  Simulating a random surfer . . . 193
Program 1.6.3  Mixing a Markov chain. 200

Programs

Algorithms and Data Structures

4.1  Performance
Program 4.1.1  3-sum problem  515
Program 4.1.2  Validating a doubling hypothesis  .517

4.2  Sorting and Searching
Program 4.2.1  Binary search (20 questions). . . 558
Program 4.2.2  Bisection search 562
Program 4.2.3  Binary search (in a sorted array)  .565
Program 4.2.4  Insertion sort 569
Program 4.2.5  Doubling test for sorts  571
Program 4.2.6  Mergesort 574
Program 4.2.7  Frequency counts  579

4.3  Stacks and Queues
Program 4.3.1  Stack (resizing array) 594
Program 4.3.2  Stack (linked list). 598
Program 4.3.3  Expression evaluation 605
Program 4.3.4  FIFO queue (linked list) 609
Program 4.3.5  M/M/1 queue simulation 615
Program 4.3.6  Load-balancing simulation  . . . 618

4.4  Symbol Tables
Program 4.4.1  Dictionary lookup. 641
Program 4.4.2  Indexing  643
Program 4.4.3  Hash table  649
Program 4.4.4  Binary search tree  656

4.5  Case Study: Small-World Phenomenon
Program 4.5.1  Graph data type. 691
Program 4.5.2  Using a graph to invert an index  .695
Program 4.5.3  Shortest-paths client 699
Program 4.5.4  Shortest-paths implementation  .705
Program 4.5.5  Small-world test. 710
Program 4.5.6  Performer–performer graph . . . 712

Object-Oriented Programming

3.1  Data Types
Program 3.1.1  Identifying a potential gene . . . 359
Program 3.1.2  Charged-particle client 363
Program 3.1.3  Albers squares 368
Program 3.1.4  Luminance module 370
Program 3.1.5  Converting color to grayscale. . . 374
Program 3.1.6  Image scaling 376
Program 3.1.7  Fade effect  377
Program 3.1.8  Visualizing electric potential . . . 379
Program 3.1.9  Concatenating files. 383
Program 3.1.10  Screen scraping for stock quotes  .385
Program 3.1.11  Splitting a file  387

3.2  Creating Data Types
Program 3.2.1  Charged particle 409
Program 3.2.2  Stopwatch  413
Program 3.2.3  Histogram  415
Program 3.2.4  Turtle graphics  418
Program 3.2.5  Spira mirabilis  421
Program 3.2.6  Complex numbers. 427
Program 3.2.7  Mandelbrot set  431
Program 3.2.8  Stock account. 435

3.3  Designing Data Types
Program 3.3.1  Complex numbers (polar). . . . 456
Program 3.3.2  Counter  459
Program 3.3.3  Spatial vectors 466
Program 3.3.4  Document sketch  483
Program 3.3.5  Similarity detection  485

3.4  Case Study: N-Body Simulation
Program 3.4.1  Gravitational body 500
Program 3.4.2  N-body simulation. 503

This page intentionally left blank

This page intentionally left blank

xiii

Preface

The basis for education in the last millennium was “reading, writing, and arith-
metic”; now it is reading, writing, and computing. Learning to program is an

essential part of the education of every student in the sciences and engineering.
Beyond direct applications, it is the first step in understanding the nature of com-
puter science’s undeniable impact on the modern world. This book aims to teach
programming to those who need or want to learn it, in a scientific context.

Our primary goal is to empower students by supplying the experience and
basic tools necessary to use computation effectively. Our approach is to teach stu-
dents that composing a program is a natural, satisfying, and creative experience.
We progressively introduce essential concepts, embrace classic applications from
applied mathematics and the sciences to illustrate the concepts, and provide op-
portunities for students to write programs to solve engaging problems.

We use the Python programming language for all of the programs in this
book—we refer to “Python” after “programming in the title to emphasize the idea
that the book is about fundamental concepts in programming, not Python per se.
This book teaches basic skills for computational problem solving that are appli-
cable in many modern computing environments, and is a self-contained treatment
intended for people with no previous experience in programming.

This book is an interdisciplinary approach to the traditional CS1 curriculum,
in that we highlight the role of computing in other disciplines, from materials sci-
ence to genomics to astrophysics to network systems. This approach emphasizes
for students the essential idea that mathematics, science, engineering, and comput-
ing are intertwined in the modern world. While it is a CS1 textbook designed for
any first-year college student interested in mathematics, science, or engineering,
the book also can be used for self-study or as a supplement in a course that inte-
grates programming with another field.

xiv

Coverage  The book is organized around four stages of learning to program:
basic elements, functions, object-oriented programming, and algorithms . We pro-
vide the basic information readers need to build confidence in composing pro-
grams at each level before moving to the next level. An essential feature of our
approach is to use example programs that solve intriguing problems, supported
with exercises ranging from self-study drills to challenging problems that call for
creative solutions.

Basic elements include variables, assignment statements, built-in types of data,
flow of control , arrays, and input/output, including graphics and sound.

Functions and modules are the student’s first exposure to modular program-
ming. We build upon familiarity with mathematical functions to introduce Python
functions, and then consider the implications of programming with functions, in-
cluding libraries of functions and recursion. We stress the fundamental idea of
dividing a program into components that can be independently debugged, main-
tained, and reused.

Object-oriented programming is our introduction to data abstraction. We em-
phasize the concepts of a data type and their implementation using Python’s class
mechanism. We teach students how to use, create, and design data types. Modu-
larity, encapsulation, and other modern programming paradigms are the central
concepts of this stage.

Algorithms and data structures combine these modern programming para-
digms with classic methods of organizing and processing data that remain effective
for modern applications. We provide an introduction to classical algorithms for
sorting and searching as well as fundamental data structures and their application,
emphasizing the use of the scientific method to understand performance charac-
teristics of implementations.

Applications in science and engineering are a key feature of the text. We moti-
vate each programming concept that we address by examining its impact on spe-
cific applications. We draw examples from applied mathematics, the physical and
biological sciences, and computer science itself, and include simulation of physical
systems, numerical methods, data visualization, sound synthesis, image process-
ing, financial simulation, and information technology. Specific examples include a
treatment in the first chapter of Markov chains for web page ranks and case stud-
ies that address the percolation problem, n-body simulation, and the small-world
phenomenon. These applications are an integral part of the text. They engage stu-
dents in the material, illustrate the importance of the programming concepts, and

xv

provide persuasive evidence of the critical role played by computation in modern
science and engineering.

Our primary goal is to teach the specific mechanisms and skills that are need-
ed to develop effective solutions to any programming problem. We work with com-
plete Python programs and encourage readers to use them. We focus on program-
ming by individuals, not programming in the large.

Use in the Curriculum  This book is intended for a first-year college course
aimed at teaching novices to program in the context of scientific applications.
Taught from this book, prospective majors in any area of science and engineering
will learn to program in a familiar context. Students completing a course based on
this book will be well prepared to apply their skills in later courses in science and
engineering and to recognize when further education in computer science might
be beneficial.

Prospective computer science majors, in particular, can benefit from learning
to program in the context of scientific applications. A computer scientist needs the
same basic background in the scientific method and the same exposure to the role
of computation in science as does a biologist, an engineer, or a physicist.

Indeed, our interdisciplinary approach enables colleges and universities to
teach prospective computer science majors and prospective majors in other fields
of science and engineering in the same course. We cover the material prescribed by
CS1, but our focus on applications brings life to the concepts and motivates stu-
dents to learn them. Our interdisciplinary approach exposes students to problems
in many different disciplines, helping them to choose a major more wisely.

Whatever the specific mechanism, the use of this book is best positioned early
in the curriculum. First, this positioning allows us to leverage familiar material
in high school mathematics and science. Second, students who learn to program
early in their college curriculum will then be able to use computers more effectively
when moving on to courses in their specialty. Like reading and writing, program-
ming is certain to be an essential skill for any scientist or engineer. Students who
have grasped the concepts in this book will continually develop that skill through a
lifetime, reaping the benefits of exploiting computation to solve or to better under-
stand the problems and projects that arise in their chosen field.

xvi

Prerequisites  This book is suitable for typical science and engineering students
in their first year of college. That is, we do not expect preparation beyond what is
typically required for other entry-level science and mathematics courses.

Mathematical maturity is important. While we do not dwell on mathematical
material, we do refer to the mathematics curriculum that students have taken in
high school, including algebra, geometry, and trigonometry. Most students in our
target audience automatically meet these requirements. Indeed, we take advan-
tage of their familiarity with the basic curriculum to introduce basic programming
concepts.

Scientific curiosity is also an essential ingredient. Science and engineering stu-
dents bring with them a sense of fascination with the ability of scientific inquiry to
help explain what goes on in nature. We leverage this predilection with examples
of simple programs that speak volumes about the natural world. We do not assume
any specific knowledge beyond that provided by typical high school courses in
mathematics, physics, biology, or chemistry.

Programming experience is not necessary, but also is not harmful. Teaching
programming is our primary goal, so we assume no prior programming experi-
ence. But composing a program to solve a new problem is a challenging intellectual
task, so students who have written numerous programs in high school can benefit
from taking an introductory programming course based on this book . The book
can support teaching students with varying backgrounds because the applications
appeal to both novices and experts alike.

Experience using a computer is not necessary, but also is not at all a problem.
College students use computers regularly, to communicate with friends and rela-
tives, listen to music, to process photos, and as part of many other activities. The
realization that they can harness the power of their own computer in interesting
and important ways is an exciting and lasting lesson.

In summary, virtually all students in science and engineering fields are pre-
pared to take a course based on this book as a part of their first-semester curricu-
lum.

xvii

Goals  What can instructors of upper-level courses in science and engineering
expect of students who have completed a course based on this book?

We cover the CS1 curriculum, but anyone who has taught an introductory
programming course knows that expectations of instructors in later courses are
typically high: each instructor expects all students to be familiar with the comput-
ing environment and approach that he or she wants to use. A physics professor
might expect some students to design a program over the weekend to run a simula-
tion; an engineering professor might expect other students to be using a particular
package to numerically solve differential equations; or a computer science profes-
sor might expect knowledge of the details of a particular programming environ-
ment. Is it realistic to meet such diverse expectations? Should there be a different
introductory course for each set of students?

Colleges and universities have been wrestling with such questions since com-
puters came into widespread use in the latter part of the 20th century. Our answer
to them is found in this common introductory treatment of programming, which
is analogous to commonly accepted introductory courses in mathematics, physics,
biology, and chemistry. An Introduction to Programming in Python strives to pro-
vide the basic preparation needed by all students in science and engineering, while
sending the clear message that there is much more to understand about computer
science than programming. Instructors teaching students who have studied from
this book can expect that they will have the knowledge and experience necessary
to enable those students to adapt to new computational environments and to ef-
fectively exploit computers in diverse applications.

What can students who have completed a course based on this book expect to
accomplish in later courses?

Our message is that programming is not difficult to learn and that harness-
ing the power of the computer is rewarding. Students who master the material in
this book are prepared to address computational challenges wherever they might
appear later in their careers. They learn that modern programming environments,
such as the one provided by Python, help open the door to any computational
problem they might encounter later, and they gain the confidence to learn, evaluate,
and use other computational tools. Students interested in computer science will be
well prepared to pursue that interest; students in science and engineering will be
ready to integrate computation into their studies.

xviii

Booksite  An extensive amount of information that supplements this text may
be found on the web at

http://introcs.cs.princeton.edu/python

For economy, we refer to this site as the booksite throughout. It contains material
for instructors, students, and casual readers of the book. We briefly describe this
material here, though, as all web users know, it is best surveyed by browsing. With
a few exceptions to support testing, the material is all publicly available.

One of the most important implications of the booksite is that it empow-
ers instructors and students to use their own computers to teach and learn the
material. Anyone with a computer and a browser can begin learning to program
by following a few instructions on the booksite. The process is no more difficult
than downloading a media player or a song. As with any website, our booksite is
continually evolving. It is an essential resource for everyone who owns this book. In
particular, the supplemental materials are critical to our goal of making computer
science an integral component of the education of all scientists and engineers.

For instructors, the booksite contains information about teaching. This in-
formation is primarily organized around a teaching style that we have developed
over the past decade, where we offer two lectures per week to a large audience,
supplemented by two class sessions per week where students meet in small groups
with instructors or teaching assistants. The booksite has presentation slides for the
lectures, which set the tone.

For teaching assistants, the booksite contains detailed problem sets and pro-
gramming projects, which are based on exercises from the book but contain much
more detail. Each programming assignment is intended to teach a relevant concept
in the context of an interesting application while presenting an inviting and engag-
ing challenge to each student. The progression of assignments embodies our ap-
proach to teaching programming. The booksite fully specifies all the assignments
and provides detailed, structured information to help students complete them in
the allotted time, including descriptions of suggested approaches and outlines for
what should be taught in class sessions.

For students, the booksite contains quick access to much of the material in the
book, including source code, plus extra material to encourage self-learning. Solu-
tions are provided for many of the book’s exercises, including complete program
code and test data. There is a wealth of information associated with programming
assignments, including suggested approaches, checklists, FAQs, and test data.

http://introcs.cs.princeton.edu/python

xix

For casual readers , the booksite is a resource for accessing all manner of extra
information associated with the book’s content. All of the booksite content pro-
vides web links and other routes to pursue more information about the topic under
consideration. There is far more information accessible than any individual could
fully digest, but our goal is to provide enough to whet any reader’s appetite for
more information about the book’s content.

Acknowledgments  This project has been under development since 1992, so
far too many people have contributed to its success for us to acknowledge them
all here. Special thanks are due to Anne Rogers, for helping to start the ball rolling;
to Dave Hanson, Andrew Appel, and Chris van Wyk, for their patience in explain-
ing data abstraction; and to Lisa Worthington, for being the first to truly relish
the challenge of teaching this material to first-year students. We also gratefully ac-
knowledge the efforts of /dev/126 ; the faculty, graduate students, and teaching
staff who have dedicated themselves to teaching this material over the past 25 years
here at Princeton University; and the thousands of undergraduates who have dedi-
cated themselves to learning it.

						 	 Robert Sedgewick
							 Kevin Wayne
							 Robert Dondero

							 April 2015

Functions and Modules

2.1  Defining Functions

You have been composing code that calls Python functions since the beginning of
this book, from writing strings with stdio.writeln() to using type conversion
functions such as str() and int() to computing mathematical functions such
as math.sqrt() to using all of the func-
tions in stdio, stddraw, and stdaudio.
In this section, you will learn how to de-
fine and call your own functions.

In mathematics, a function maps
an input value of one type (the domain)
to an output value of another type (the
range). For example, the square function
f (x) = x 2 maps 2 to 4, 3 to 9, 4 to 16, and so forth. At first, we work with Python
functions that implement mathematical functions, because they are so familiar.
Many standard mathematical functions are implemented in Python’s math module,
but scientists and engineers work with a broad variety of mathematical functions,
which cannot all be included in the module. At the beginning of this section, you
will learn how to implement and use such functions on your own.

Later, you will learn that we can do more with Python functions than imple-
ment mathematical functions: Python functions can have strings and other types
as their domain or range, and they can have side effects such as writing output. We
also consider in this section how to use Python functions to organize programs and
thereby simplify complicated programming tasks.

From this point forward, we use the generic term function to mean either Py-
thon function or mathematical function depending on the context. We use the more
specific terminology only when the context requires that we do so.

Functions support a key concept that will pervade your approach to pro-
gramming from this point forward: Whenever you can clearly separate tasks within
a computation, you should do so. We will be overemphasizing this point throughout
this section and reinforcing it throughout the rest of the chapter (and the rest of
the book). When you write an essay, you break it up into paragraphs; when you
compose a program, you break it up into functions. Separating a larger task into
smaller ones is much more important when programming than when writing an
essay, because it greatly facilitates debugging, maintenance, and reuse, which are all
critical in developing good software.

2.1.1  Harmonic numbers (revisited). . . 213
2.1.2  Gaussian functions 223
2.1.3  Coupon collector (revisited) 225
2.1.4  Play that tune (revisited). 234

Programs in this section

2112.1 Defining Functions

Using and defining functions  As you know from the functions you have been
using, the effect of calling a Python function is easy to understand. For example,
when you place math.sqrt(a-b) in a program, the effect is as if you had replaced
that code with the return value that is produced by Python’s math.sqrt() function
when passed the expression a-b as an argument. This usage is so intuitive that we
have hardly needed to comment on it. If you think about what the system has to
do to create this effect, however, you will see that it involves changing a program’s
control flow. The implications of being able to change the control flow in this way
are as profound as doing so for conditionals and loops.

You can define functions in any Python program, using the def statement
that specifies the function signature, followed by a sequence of statements that
constitute the function. We will consider the details shortly, but begin with a simple
example that illustrates how functions affect control flow. Our first example, Pro-
gram 2.1.1 (harmonicf.py), includes a function named harmonic() that takes an
argument n and computes the nth harmonic number (see Program 1.3.5). It also
illustrates the typical structure of a Python program, having three components:

•	 A sequence of import statements
•	 A sequence of function definitions
•	 Arbitrary global code, or the body of the program

Program 2.1.1 has two import statements, one function definition, and four lines
of arbitrary global code. Python executes the global code when we invoke the pro-
gram by typing python harmonicf.py on the command line; that global code calls
the harmonic() function defined earlier.

The implementation in harmonicf.py is preferable to our original imple-
mentation for computing harmonic numbers (Program 1.3.5) because it clearly
separates the two primary tasks performed by the program: calculating harmonic
numbers and interacting with the user. (For purposes of illustration, we have made
the user-interaction part of the program a bit more complicated than in Program
1.3.5.) Whenever you can clearly separate tasks within a computation, you should do
so. Next, we carefully examine precisely how harmonicf.py achieves this goal.

Control flow.  The diagram on the next page illustrates the flow of control for the
command python harmonicf.py 1 2 3. First, Python processes the import
statements, thus making all of the features defined in the sys and stdio modules
available to the program. Next, Python processes the definition of the harmonic()
function at lines 4 through 8, but does not execute the function—Python executes

212 Functions and Modules

a function only when it is called. Then, Python executes the first statement in the
global code after the function definition, the for statement, which proceeds nor-
mally until Python begins to execute the statement value = harmonic(arg), start-
ing by evaluating the expression harmonic(arg) when arg is 1. To do so it trans-

fers control to the harmonic()
function—the flow of control
passes to the code in the func-
tion definition. Python initial-
izes the “parameter” variable
n to 1 and the “local” vari-
able total to 0.0 and then
executes the for loop within
harmonic(), which terminates
after one iteration with total
equal to 1.0. Then, Python
executes the return statement
at the end of the definition
of harmonic(), causing the
flow of control to jump back
to the calling statement val-
ue = harmonic(arg), con-
tinuing from where it left off,
but now with the expression
harmonic(arg) replaced by
1.0. Thus, Python assigns 1.0
to value and writes it to stan-
dard output. Then, Python it-
erates the loop once more, and
calls the harmonic() function
a second time with n initial-
ized to 2, which results in 1.5
being written. The process

is then repeated a third time with arg (and then n) equal to 4, which results in
2.083333333333333 being written. Finally, the for loop terminates and the whole
process is complete. As the diagram indicates, the simple code masks a rather intri-
cate flow of control.

Flow of control for python harmonicf.py 1 2 4

 arg = int(sys.argv[i])

 value = harmonic(arg)

for i in range(1, len(sys.argv)):

 total = 0.0

 for i in range(1, n+1):

 total += 1.0 / i

 return total

def harmonic(n):

import sys

import stdio

 stdio.writeln(value)

n=1

i=1 i=2 i=3

n=2

n=4

1.0
1.5

2.08333...

2132.1 Defining Functions

Program 2.1.1  Harmonic numbers (revisited)  (harmonicf.py)

import sys
import stdio

def harmonic(n):
 total = 0.0
 for i in range(1, n+1):
 total += 1.0 / i
 return total

for i in range(1, len(sys.argv)):
 arg = int(sys.argv[i])
 value = harmonic(arg)
 stdio.writeln(value)

This program writes to standard output the harmonic numbers specified as command-line
arguments. The program defines a function harmonic() that, given an int argument n, com-
putes the nth harmonic number 1 + 1/2 + 1/3 + … + 1/n.

% python harmonicf.py 1 2 4

1.0

1.5

2.083333333333333

n parameter variable

i loop index

total return value

i argument index

arg argument

value Harmonic number

% python harmonicf.py 10 100 1000 10000

2.9289682539682538

5.187377517639621

7.485470860550343

9.787606036044348

Abbreviation alert.  We continue to use the abbreviations that we intro-
duced in Section 1.2 for functions and function calls. For example, we might
say, “The function call harmonic(2) returns the value 1.5,” instead of the
more accurate but verbose “When we pass to harmonic() a reference to an
object of type int whose value is 2, it returns a reference to an object of type
float whose value is 1.5.” We strive to use language that is succinct and only
as precise as necessary in a given context.

214 Functions and Modules

Informal function call/return trace.  One simple approach to following the con-
trol flow through function calls is to imagine that each function writes its name

and argument(s) when it is called and its return value just
before returning, with indentation added on calls and sub-
tracted on returns. The result enhances the process of trac-
ing a program by writing the values of its variables, which
we have been using since Section 1.2. An informal trace for
our example is shown at right. The added indentation ex-
poses the flow of the control, and helps us check that each
function has the effect that we expect. Generally, adding calls
on stdio.writef() to trace any program’s control flow in
this way is a fine approach to begin to understand what it is
doing. If the return values match our expectations, we need
not trace the function code in detail, saving us a substantial
amount of work.

For the rest of this chapter, your programming will be cen-
tered on creating and using functions, so it is worthwhile to
consider in more detail their basic properties and, in particu-
lar, the terminology surrounding functions. Following that,
we will study several examples of function implementations
and applications.

Basic terminology.  As we have been doing throughout, it
is useful to draw a distinction between abstract concepts
and Python mechanisms to implement them (the Python if

statement implements the conditional, the while statement implements the loop,
and so forth). There are several concepts rolled up in the idea of a mathematical
function and there are Python constructs corresponding to each, as summarized
in the table at the top of the following page. While you can rest assured that these
formalisms have served mathematicians well for centuries (and have served pro-
grammers well for decades), we will refrain from considering in detail all of the
implications of this correspondence and focus on those that will help you learn to
program.

When we use a symbolic name in a formula that defines a mathematical func-
tion (such as f (x) = 1 + x + x2), the symbol x is a placeholder for some input value

Informal trace with function call/return
for python harmonicf.py 1 2 4

i = 1
arg = 1
harmonic(1)
 total = 0.0
 total = 1.0
 return 1.0
value = 1.0
i = 2
arg = 2
harmonic(2)
 total = 0.0
 total = 1.0
 total = 1.5
 return 1.5
value = 1.5
i = 3
arg = 4
harmonic(4)
 total = 0.0
 total = 1.0
 total = 1.5
 total = 1.8333333333333333
 total = 2.083333333333333
 return 2.083333333333333
value = 2.083333333333333

2152.1 Defining Functions

that will be substituted into the formula to determine the output value. In Python,
we use a parameter variable as a symbolic placeholder and we refer to a particular
input value where the function is to be evaluated as an argument.

Function definition.  The first line of a function
definition, known as its signature, gives a name to the
function and to each parameter variable. The signa-
ture consists of the keyword def; the function name; a
sequence of zero or more parameter variable names
separated by commas and enclosed in parentheses;
and a colon. The indented statements following the
signature define the function body. The function
body can consist of the kinds of statements that we
discussed in Chapter 1. It also can contain a return
statement, which transfers control back to the point
where the function was called and returns the result
of the computation or return value. The body may also define local variables, which
are variables that are available only inside the function in which they are defined.

Function calls.  As we have seen throughout, a Python function call is nothing
more than the function name followed by its arguments, separated by commas and
enclosed in parentheses, in precisely the same form as is customary for mathemati-

cal functions. As noted in Section 1.2, each
argument can be an expression, which is
evaluated and the resulting value passed as
input to the function. When the function
finishes, the return value takes the place of
the function call as if it were the value of
a variable (perhaps within an expression).

concept Python construct description

function function mapping

input value argument input to function

output value return value output of function

formula function body function definition

independent variable parameter variable symbolic placeholder for input value

Anatomy of a function call

function
call

argument

for i in range(1, len(sys.argv)):

 arg = int(sys.argv[i])

 value = harmonic(arg)

 stdio.writeln(value)

Anatomy of a function definition

signature
parameter
variable

function
name

function
body

return
statement

local
variable

return
value

def harmonic (n):

 total= 0.0

 for i in range(1, n+1):

 total += 1.0 / i

 return total

216 Functions and Modules

Multiple arguments.  Like a mathematical function, a Python function can have
more than one parameter variable, so it can be called with more than one argu-
ment. The function signature lists the name of each parameter variable, separated
by commas. For example, the following function computes the length of the hypot-
enuse of a right triangle with sides of length a and b:

def hypot(a, b)
 return math.sqrt(a*a + b*b)

Multiple functions.  You can define as many functions as you want in a .py file.
The functions are independent, except that they may refer to each other through
calls. They can appear in any order in the file:

def square(x):
 return x*x

def hypot(a, b):
 return math.sqrt(square(a) + square(b))

However, the definition of a function must appear before any global code that calls
it. That is the reason that a typical Python program contains (1) import statements,
(2) function definitions, and (3) arbitrary global code, in that order.

Multiple return statements.  You can put return statements in a function wher-
ever you need them: control goes back to the calling program as soon as the first
return statement is reached. This primality-testing function is an example of a
function that is natural to define using multiple return statements:

def isPrime(n):
 if n < 2: return False
 i = 2
 while i*i <= n:
 if n % i == 0: return False
 i += 1
 return True

Single return value.  A Python function provides only one return value to the
caller (or, more precisely, it returns a reference to one object). This policy is not as
restrictive as it might seem, because Python data types can contain more informa-

2172.1 Defining Functions

tion than a single number, boolean, or string. For example, you will see later in this
section that you can use arrays as return values.

Scope.  The scope of a variable is the set of statements that can refer to that vari-
able directly. The scope of a function’s local and parameter variables is limited to
that function; the scope of a variable defined in global code—known as a global
variable—is limited to the .py file containing that variable. Therefore, global code
cannot refer to either a function’s local or parameter variables. Nor can one func-
tion refer to either the local or parameter variables that are defined in another func-
tion. When a function defines a local (or
parameter) variable with the same name
as a global variable (such as i in Program
2.1.1), the variable name in the function
refers to the local (or parameter) variable,
not the global variable.

A guiding principle when designing
software is to define each variable so that
its scope is as small as possible. One of
the important reasons that we use func-
tions is so that changes made to one part
of a program will not affect an unrelated
part of the program. So, while code in
a function can refer to global variables,
it should not do so: all communication
from a caller to a function should take place via the function’s parameter vari-
ables, and all communication from a function to its caller should take place via the
function’s return value. In Section 2.2, we consider a technique for removing most
global code, thereby limiting scope and the potential for unexpected interactions.

Default arguments.  A Python function may designate an argument to be optional
by specifying a default value for that argument. If you omit an optional argument
in a function call, then Python substitutes the default value for that argument.
We have already encountered a few examples of this feature. For example, math.
log(x, b) returns the base-b logarithm of x. If you omit the second argument, then
b defaults to math.e—that is, math.log(x) returns the natural logarithm of x. It
might appear that the math module has two different logarithm functions, but it
actually has just one, with an optional argument and a default value.

Scope of local and parameter variables

scope of
n and total

this code should not
refer to arg or value

this code cannot
refer to n or total

scope of i

scope of i

two different
variables

scope of
arg and value

def harmonic(n):

 total = 0.0

 for i in range(1, n+1):

 total += 1.0 / i

 return total

for i in range(1, len(sys.argv)):

 arg = int(sys.argv[i])

 value = harmonic(arg)

 stdio.writeln(value)

218 Functions and Modules

You can specify an optional argument with a default value in a user-defined
function by putting an equals sign followed by the default value after the parameter
variable in the function signature. You can specify more than one optional argu-
ment in a function signature, but all of the optional arguments must follow all of
the mandatory arguments.

For example, consider the problem of computing the nth generalized har-
monic number of order r : Hn, r = 1 + 1/2r + 1/3r + … + 1/nr . For example, H1, 2 = 1,
H2, 2 = 5/4, and H2, 2 = 49/36. The generalized harmonic numbers are closely related
to the Riemann zeta function from number theory. Note that the nth generalized
harmonic number of order r = 1 is equal to the nth harmonic number. Therefore it
is appropriate to use 1 as the default value for r if the caller omits the second argu-
ment. We specify by writing r=1 in the signature:

def harmonic(n, r=1):
 total = 0.0
 for i in range(1, n+1):
 total += 1.0 / (i ** r)
 return total

With this definition, harmonic(2, 2) returns 1.25, while both harmonic(2, 1)
and harmonic(2) return 1.5. To the client, it appears that we have two different
functions, one with a single argument and one with two arguments, but we achieve
this effect with a single implementation.

Side effects.  In mathematics, a function maps one or more input values to some
output value. In computer programming, many functions fit that same model: they
accept one or more arguments, and their only purpose is to return a value. A pure
function is a function that, given the same arguments, always return the same value,
without producing any observable side effects, such as consuming input, producing
output, or otherwise changing the state of the system. So far, in this section we have
considered only pure functions.

However, in computer programming it is also useful to define functions that
do produce side effects. In fact, we often define functions whose only purpose is
to produce side effects. An explicit return statement is optional in such a func-
tion: control returns to the caller after Python executes the function’s last statement.
Functions with no specified return value actually return the special value None,
which is usually ignored.

2192.1 Defining Functions

For example, the stdio.write() function has the side effect of writing the
given argument to standard output (and has no specified return value). Similarly,
the following function has the side effect of drawing a triangle to standard drawing
(and has no specified return value):

def drawTriangle(x0, y0, x1, y1, x2, y2):
 stddraw.line(x0, y0, x1, y1)
 stddraw.line(x1, y1, x2, y2)
 stddraw.line(x2, y2, x0, y0)

It is generally poor style to compose a function that both produces side effects and
returns a value. One notable exception arises in functions that read input. For ex-
ample, the stdio.readInt() function both returns a value (an integer) and pro-
duces a side effect (consuming one integer from standard input).

Type checking.  In mathematics, the definition of a function specifies both the do-
main and the range. For example, for the harmonic numbers, the domain is the
positive integers and the range is the positive real numbers. In Python, we do not
specify the types of the parameter variables or the type of the return value. As long
as Python can apply all of the operations within a function, Python executes the
function and returns a value.

If Python cannot apply an operation to a given object because it is of the
wrong type, it raises a run-time error to indicate the invalid type. For example, if
you call the square() function defined earlier with an int argument, the result is
an int; if you call it with a float argument, the result is a float. However, if you
call it with a string argument, then Python raises a TypeError at run time.

This flexibility is a popular feature of Python (known as polymorphism) be-
cause it allows us to define a single function for use with objects of different types.
It can also lead to unexpected errors when we call a function with arguments of un-
anticipated types. In principle, we could include code to check for such errors, and
we could carefully specify which types of data each function is supposed to work
with. Like most Python programmers, we refrain from doing so. However, in this
book, our message is that you should always be aware of the type of your data, and
the functions that we consider in this book are built in line with this philosophy,
which admittedly clashes with Python’s tendency toward polymorphism. We will
discuss this issue in some detail in Section 3.3.

220 Functions and Modules

The table below summarizes our discussion by collecting together the function defi-
nitions that we have examined so far. To check your understanding, take the time
to reread these examples carefully.

Implementing mathematical functions  Why not just use the Python built-
in functions and those that are defined in the standard or extension Python mod-
ules? For example, why not use the math.hypot() function instead of defining our
own hypot() function? The answer to this question is that we do use such func-
tions when they are present (because they are likely to be faster and more accurate).
However, there is an unlimited number of functions that we may wish to use and
only a finite number of functions is defined in the Python standard and extension
modules. When you need a function that is not defined in the Python standard or
extension modules, you need to define the function yourself.

primality test

def isPrime(n):
 if n < 2: return False
 i = 2
 while i*i <= n:
 if n % i == 0: return False
 i += 1
 return True

hypotenuse of a right triangle
def hypot(a, b)
 return math.sqrt(a*a + b*b)

generalized harmonic number

def harmonic(n, r=1):
 total = 0.0
 for i in range(1, n+1):
 total += 1.0 / (i ** r)
 return total

draw a triangle

def drawTriangle(x0, y0, x1, y1, x2, y2):
 stddraw.line(x0, y0, x1, y1)
 stddraw.line(x1, y1, x2, y2)
 stddraw.line(x2, y2, x0, y0)

Typical code for implementing functions

2212.1 Defining Functions

As an example, we consider the kind of code required for a familiar and im-
portant application that is of interest to many potential college students in the
United States. In a recent year, over 1 million students took the Scholastic Aptitude
Test (SAT). The test consists of two major sections: critical reading and mathemat-
ics. Scores range from 200 (lowest) to 800 (highest) on each section, so overall test
scores range from 400 to 1600. Many universities consider these scores when mak-
ing important decisions. For example, student athletes are required by the National
Collegiate Athletic Association (NCAA), and thus by many universities, to have a
combined score of at least 820 (out of 1600), and the minimum eligibility require-
ment for certain academic scholarships is 1500 (out of 1600). What percentage of
test takers is ineligible for athletics? What percentage is eligible for the scholarships?

Two functions from statistics enable us to compute accurate answers to these
questions. The standard normal (Gaussian) probability
density function is characterized by the familiar bell-shaped
curve and defined by the formula (x)  ex22 2 .
The standard normal (Gaussian) cumulative distribution
function F(z) is defined to be the area under the curve
defined by f(x) above the x-axis and to the left of the
vertical line x = z. These functions play an important role
in science, engineering, and finance because they arise as
accurate models throughout the natural world and be-
cause they are essential in understanding experimental
error. In particular, these functions are known to accu-
rately describe the distribution of test scores in our ex-
ample, as a function of the mean (average value of the
scores) and the standard deviation (square root of the
average of the squares of the differences between each
score and the mean), which are published each year. Giv-
en the mean  and the standard deviation  of the test
scores, the percentage of students with scores less than
a given value z is closely approximated by the function
(z, , ) = ((z )/). Functions to calculate  and 
are not available in Python’s math module, so we develop
our own implementations.

Gaussian probability functions

cumulative �

0

�(z0)

z

distribution

0

1

1

�(x)

�

x

area is �(z0)

z0

z0

222 Functions and Modules

Closed form.  In the simplest situation, we have a closed-form mathematical for-
mula defining our function in terms of functions that are implemented in Python’s
math module. This situation is the case for  —the math module includes func-
tions to compute the exponential and the square root functions (and a constant
value for ), so a function pdf() corresponding to the mathematical definition is
easy to implement. For convenience, gauss.py (Program 2.1.2) uses the default
arguments  = 0 and  = 1 and actually computes (x, , ) = ((x ) / ) / .

No closed form.  If no formula is known, we may need a more complicated algo-
rithm to compute function values. This situation is the case for —no closed-form
expression exists for this function. Algorithms to compute function values some-
times follow immediately from Taylor series approximations, but developing reli-
ably accurate implementations of mathematical functions is an art and a science
that needs to be addressed carefully, taking advantage of the knowledge built up in
mathematics over the past several centuries. Many different approaches have been
studied for evaluating . For example, a Taylor series approximation to the ratio of
 and  turns out to be an effective basis for evaluating the function:

 F(z)  12  f(z) (z  z 3  3  z 5  (35)  z 7  (357) . . .).

This formula readily translates to the Python code for the function cdf() in Pro-
gram 2.1.2. For small (respectively large) z, the value is extremely close to 0 (respec-
tively 1), so the code directly returns 0 (respectively 1); otherwise, it uses the Taylor
series to add terms until the sum converges. Again, for convenience, Program 2.1.2
actually computes (z, , ) = ((z ) / ), using the defaults  = 0 and  = 1.

Running gauss.py with the appropriate arguments on the command line
tells us that about 17% of the test takers were ineligible for athletics in a year when
the mean was 1019 and the standard deviation was 209. In the same year, about 1%
percent qualified for academic scholarships.

Computing with mathematical functions of all sorts plays a central role in science
and engineering. In a great many applications, the functions that you need are
expressed in terms of the functions in Python’s math module, as we have just seen
with pdf(), or in terms of a Taylor series approximation or some other formula-
tion that is easy to compute, as we have just seen with cdf(). Indeed, support for
such computations has played a central role throughout the evolution of comput-
ing systems and programming languages.

2232.1 Defining Functions

Program 2.1.2  Gaussian functions  (gauss.py)

import math
import sys
import stdio

def pdf(x, mu=0.0, sigma=1.0):
 x = float(x - mu) / sigma
 return math.exp(-x*x/2.0) / math.sqrt(2.0*math.pi) / sigma

def cdf(z, mu=0.0, sigma=1.0):
 z = float(z - mu) / sigma
 if z < -8.0: return 0.0
 if z > +8.0: return 1.0
 total = 0.0
 term = z
 i = 3
 while total != total + term:
 total += term
 term *= z * z / i
 i += 2
 return 0.5 + total * pdf(z)

z = float(sys.argv[1])
mu = float(sys.argv[2])
sigma = float(sys.argv[3])
stdio.writeln(cdf(z, mu, sigma))

This code implements the Gaussian (normal) probability density (pdf) and cumulative dis-
tribution (cdf) functions, which are not implemented in Python’s math library. The pdf()
implementation follows directly from its definition, and the cdf() implementation uses a Tay-
lor series and also calls pdf() (see accompanying text at left and Exercise 1.3.36). Note: If you
are referring to this code for use in another program, please see gaussian.py (Program 2.2.1),
which is designed for reuse.

total cumulated sum

term current term

% python gauss.py 820 1019 209

0.17050966869132106

% python gauss.py 1500 1019 209

0.9893164837383885

224 Functions and Modules

Using functions to organize code  Beyond evaluating mathematical func-
tions, the process of calculating an output value as a function of input values is
important as a general technique for organizing control flow in any computation.
Doing so is a simple example of an extremely important principle that is a prime
guiding force for any good programmer: Whenever you can clearly separate tasks
within a computation, you should do so.

Functions are natural and universal mechanism for expressing computational
tasks. Indeed, the “bird’s-eye view” of a Python program that we began with in Sec-
tion 1.1 was equivalent to a function: we began by thinking of a Python program
as a function that transforms command-line arguments into an output string. This
view expresses itself at many different levels of computation. In particular, it is
generally the case that you can express a long program more naturally in terms of
functions instead of as a sequence of Python assignment, conditional, and loop
statements. With the ability to define functions, you can better organize your pro-
grams by defining functions within them when appropriate.

For example, coupon.py (Program 2.1.3) on the facing page is an improved
version of couponcollector.py (Program 1.4.2) that better separates the individ-
ual components of the computation. If you study Program 1.4.2, you will identify
three separate tasks:

•	 Given the number of coupon values n, compute a random coupon value.
•	 Given n, do the coupon collection experiment.
•	 Get n from the command line, then compute and write the result.

Program 2.1.3 rearranges the code to reflect the reality that these three activities
underlie the computation. The first two are implemented as functions, the third as
global code.

With this organization, we could change getCoupon() (for example, we might
want to draw the random numbers from a different distribution) or the global code
(for example, we might want to take multiple inputs or run multiple experiments)
without worrying about the effect of any of these changes on collect().

Using functions isolates the implementation of each component of the collec-
tion experiment from others, or encapsulates them. Typically, programs have many
independent components, which magnifies the benefits of separating them into
different functions. We will discuss these benefits in further detail after we have
seen several other examples, but you certainly can appreciate that it is better to
express a computation in a program by breaking it up into functions, just as it is
better to express an idea in an essay by breaking it up into paragraphs. Whenever
you can clearly separate tasks within a computation, you should do so.

2252.1 Defining Functions

Program 2.1.3  Coupon collector (revisited)  (coupon.py)

import random
import sys
import stdarray
import stdio

def getCoupon(n):
 return random.randrange(0, n)

def collect(n):
 isCollected = stdarray.create1D(n, False)
 count = 0
 collectedCount = 0
 while collectedCount < n:
 value = getCoupon(n)
 count += 1
 if not isCollected[value]:
 collectedCount += 1
 isCollected[value] = True
 return count

n = int(sys.argv[1])
result = collect(n)
stdio.writeln(result)

This version of Program 1.4.2 illustrates the style of encapsulating computations in functions.
This code has the same effect as couponcollector.py, but better separates the code into its
three constituent pieces: generating a random integer between 0 and n-1, running a collection
experiment, and managing the I/O.

% python coupon.py 1000

6522

% python coupon.py 1000

6481

% python coupon.py 1000000

12783771

n # of coupon values (0 to n-1)
isCollected[i] has coupon i been collected?

count # of coupons collected

collectedCount # of distinct coupons collected

value value of current coupon

226 Functions and Modules

Passing arguments and returning values  Next, we examine the specifics of
Python’s mechanisms for passing arguments to and returning values from func-
tions. These mechanisms are conceptually very simple, but it is worthwhile to take
the time to understand them fully, as the effects are actually profound. Understand-
ing argument-passing and return-value mechanisms is key to learning any new
programming language. In the case of Python, the concepts of immutability and
aliasing play a central role.

Call by object reference.  You can use parameter variables anywhere in the body of
the function in the same way as you use local variables. The only difference between
a parameter variable and a local variable is that Python initializes the parameter
variable with the corresponding argument provided by the calling code. We refer
to this approach as call by object reference. (It is more commonly known as call by
value, where the value is always an object reference—not the object’s value.) One
consequence of this approach is that if a parameter variable refers to a mutable ob-
ject and you change that object’s value within a function, then this also changes the
object’s value in the calling code (because it is the same object). Next, we explore
the ramifications of this approach.

Immutability and aliasing.  As discussed in Section 1.4, arrays are mutable data
types, because we can change array elements. By contrast, a data type is immutable
if it is not possible to change the value of an object of
that type. The other data types that we have been us-
ing (int, float, str, and bool) are all immutable. In
an immutable data type, operations that might seem
to change a value actually result in the creation of a
new object, as illustrated in the simple example at
right. First, the statement i = 99 creates an integer
99, and assigns to i a reference to that integer. Then
j = i assigns i (an object reference) to j, so both i
and j reference the same object—the integer 99. Two
variables that reference the same objects are said to
be aliases. Next, j += 1 results in j referencing an
object with value 100, but it does not do so by chang-
ing the value of the existing integer from 99 to 100! In-
deed, since int objects are immutable, no statement Immutability of integers

i = 99

j = i

j += 1

99

100

i

1j

99i

j

99i

object-level trace

informal trace

i = 99

j = i

j += 1

i

99

99

99

j

99

100

2272.1 Defining Functions

can change the value of that existing integer. Instead, that statement creates a new
integer 1, adds it to the integer 99 to create another new integer 100, and assigns to
j a reference to that integer. But i still references the original 99. Note that the new
integer 1 has no reference to it in the end—that is the system’s concern, not ours.
The immutability of integers, floats, strings, and booleans is a fundamental aspect
of Python. We will consider the advantages and disadvantages of this approach in
more detail in Section 3.3.

Integers, floats, booleans, and strings as arguments.  The key point to remember
about passing arguments to functions in Python is that whenever you pass argu-
ments to a function, the arguments and the function’s parameter variables become
aliases. In practice, this is the predominant use of aliasing in Python, and it is im-
portant to understand its effects. For purposes of illustration, suppose that we need
a function that increments an integer (our discussion applies to any more compli-
cated function as well). A programmer new to Python might try this definition:

def inc(j):
 j += 1

and then expect to increment an integer i with the call
inc(i). Code like this would work in some program-
ming languages, but it has no effect in Python, as shown
in the figure at right. First, the statement i = 99 assigns
to global variable i a reference to the integer 99. Then,
the statement inc(i) passes i, an object reference, to
the inc() function. That object reference is assigned
to the parameter variable j. At this point i and j are
aliases. As before, the inc() function’s j += 1 state-
ment does not change the integer 99, but rather creates
a new integer 100 and assigns a reference to that integer
to j. But when the inc() function returns to its caller,
its parameter variable j goes out of scope, and the vari-
able i still references the integer 99.

This example illustrates that, in Python, a function
cannot produce the side effect of changing the value of an
integer object (nothing can do so). To increment vari-
able i, we could use the definition Aliasing in a function call

i = 99

inc(i)

j += 1

99

100

i

1j

99i

j

99i

object-level trace

informal trace

i = 99

inc(i)

j += 1

i

99

99

99

99

j

99

100

100

99

100

i

1

(after return)

(after return)

228 Functions and Modules

def inc(j):
 j += 1
 return j

and call the function with the assignment statement i = inc(i).
The same holds true for any immutable type. A function cannot change the

value of an integer, a float, a boolean, or a string.

Arrays as arguments.  When a function takes an array as an argument, it imple-
ments a function that operates on an arbitrary number of objects. For example, the
following function computes the mean (average) of an array of floats or integers:

def mean(a):
 total = 0.0
 for v in a:
 total += v
 return total / len(a)

We have been using arrays as arguments from the beginning of the book. For ex-
ample, by convention, Python collects the strings that you type after the program
name in the python command into an array sys.argv[] and implicitly calls your
global code with that array of strings as the argument.

Side effects with arrays.  Since arrays are mutable, it is often the case that the pur-
pose of a function that takes an array as argument is to produce a side effect (such
as changing the order of array elements). A prototypical example of such a func-
tion is one that exchanges the elements at two given indices in a given array. We can
adapt the code that we examined at the beginning of Section 1.4:

def exchange(a, i, j):
 temp = a[i]
 a[i] = a[j]
 a[j] = temp

This implementation stems naturally from the Python array representation. The
first parameter variable in exchange() is a reference to the array, not to all of the
array’s elements: when you pass an array as an argument to a function, you are giv-
ing it the opportunity to operate on that array (not a copy of it). A formal trace of a
call on this function is shown on the facing page. This diagram is worthy of careful
study to check your understanding of Python’s function-call mechanism.

2292.1 Defining Functions

A second prototypical example of a function that takes an array argument
and produces side effects is one that randomly shuffles the elements in the array,
using this version of the algorithm that we examined in Section 1.4 (and the ex-
change() function just defined):

def shuffle(a):
 n = len(a)
 for i in range(n):
 r = random.randrange(i, n)
 exchange(a, i, r)

Incidentally, Python’s standard function random.shuffle() does the same task.
As another example, we will consider in Section 4.2 functions that sort an array
(rearrange its elements so that they are in order).

Arrays as return values.  A function that sorts,
shuffles, or otherwise modifies an array taken
as argument does not have to return a refer-
ence to that array, because it is changing the
contents of a client array, not a copy. But there
are many situations where it is useful for a func-
tion to provide an array as a return value. Chief
among these are functions that create arrays for
the purpose of returning multiple objects of the
same type to a client.

As an example, consider the following
function, which returns an array of random
floats:

def randomarray(n):
 a = stdarray.create1D(n)
 for i in range(n):
 a[i] = random.random()
 return a

Later in this chapter, we will be developing nu-
merous functions that return huge amounts of
data in this way.

Exchanging two elements in an array

exchange(x, 0, 2)

temp = a[i]

a[i] = a[j]

a[j] = temp

.10

.60

.30

0

2

x

a

i

j

0
1
2

.10

.60

.30

0

2

x

a

i

j

temp

0
1
2

x = [.30, .60, .10]

.10

.60

.30

x

0
1
2

(after return)

.10

.60

.30

x

0
1
2

3

3

3

3

230 Functions and Modules

The table below concludes our discussion of arrays as function arguments by high-
lighting some typical array-procession functions.

mean
of an array

def mean(a):
 total = 0.0
 for v in a:
 total += v
 return total / len(a)

dot product
of two vectors

of the same length

def dot(a, b):
 total = 0
 for i in range(len(a)):
 total += a[i] * b[i]
 return total

exchange two elements
in an array

def exchange(a, i, j):
 temp = a[i]
 a[i] = a[j]
 a[j] = temp

write a one-dimensional array
(and its length)

def write1D(a):
 stdio.writeln(len(a))
 for v in a:
 stdio.writeln(v)

read a two-dimensional
array of floats

(with dimensions)

def readFloat2D():
 m = stdio.readInt()
 n = stdio.readInt()
 a = stdarray.create2D(m, n, 0.0)
 for i in range(m):
 for j in range(n):
 a[i][j] = stdio.readFloat()
 return a

Typical code for implementing functions with arrays

2312.1 Defining Functions

Example: superposition of sound waves  As discussed in Section 1.5, the
simple audio model that we studied there needs to be embellished to create sound
that resembles the sound produced by a musical instrument. Many different em-
bellishments are possible; with functions, we can systematically apply them to pro-
duce sound waves that are far more complicated than the simple sine waves that we
produced in Section 1.5. As an illustration of the effective use of functions to solve
an interesting computational problem, we consider a program that has essentially
the same functionality as playthattune.py (Program 1.5.8), but adds harmonic
tones one octave above and one octave below each note to produce a more realistic
sound.

Chords and harmonics.  Notes like concert A have a pure sound that is not very
musical, because the sounds that you are accustomed to hearing have many other

components. The sound from a guitar
string echoes off the wooden part of the
instrument, the walls of the room that
you are in, and so forth. You may think
of such effects as modifying the basic
sine wave. For example, most musical in-
struments produce harmonics (the same
note in different octaves and not as loud),
or you might play chords (multiple notes
at the same time). To combine multiple
sounds, we use superposition: simply
add their waves together and rescale to
make sure that all values stay between

1 and 1. As it turns out, when we su-
perpose sine waves of different frequencies in this way, we can get arbitrarily com-
plicated waves. Indeed, one of the triumphs of 19th-century mathematics was the
development of the idea that any smooth periodic function can be expressed as a
sum of sine and cosine waves, known as a Fourier series. This mathematical idea
corresponds to the notion that we can create a large range of sounds with musi-
cal instruments or our vocal cords and that all sound consists of a composition of
various oscillating curves. Any sound corresponds to a curve and any curve corre-
sponds to a sound, so we can create arbitrarily complex curves with superposition.

440.00
554.37
659.26

440.00
220.00
880.00

A major chord

concert A with harmonics

 A
 C♯
 E

A
A
A

Superposing waves to make composite sounds

232 Functions and Modules

Computing with sound waves.  In Section 1.5, we saw how to represent sound
waves by arrays of numbers that represent their values at the same sample points.
Now, we will use such arrays as return values and arguments to functions to pro-
cess such data. For example, the following function takes a frequency (in hertz) and
a duration (in seconds) as arguments and returns a representation of a sound wave
(more precisely, an array that contains values sampled from the specified wave at
the standard 44,100 samples per second).

def tone(hz, duration, sps=44100):
 n = int(sps * duration)
 a = stdarray.create1D(n+1, 0.0)
 for i in range(n+1):
 a[i] = math.sin(2.0 * math.pi * i * hz / sps)
 return a

The size of the array returned depends on the duration: it contains about
sps*duration floats (nearly half a million floats for 10 seconds). But we can now
treat that array (the value returned from tone) as a single entity and compose code
that processes sound waves, as we will soon see in Program 2.1.4.

Weighted superposition.  Since we represent sound waves by arrays of numbers
that represent their values at the same sample points, superposition is simple to
implement: we add together their sample values at each sample point to produce
the combined result. For greater control, we also specify a relative weight for each
of the two waves to be superposed, with the following function:

def superpose(a, b, aWeight, bWeight):
 c = stdarray.create1D(len(a), 0.0)
 for i in range(len(a)):
 c[i] = aWeight*a[i] + bWeight*b[i]
 return c

(This code assumes that a[] and b[] are of the same length.) For example, if we have
a sound represented by an array a[] that we want to have three times the effect of the
sound represented by an array b[], we would call superpose(a, b, 0.75, 0.25).
The figure at the top of the next page shows the use of two calls on this function
to add harmonics to a tone (we superpose the harmonics, then superpose the re-
sult with the original tone, which has the effect of giving the original tone twice

2332.1 Defining Functions

the weight of each harmonic). As long as the weights are positive and sum to 1,
superpose() preserves our convention of keeping the values of all waves between

1 and 1.

Program 2.1.4 (playthattunedeluxe.py) is an implementation that applies these
concepts to produce a more realistic sound than that produced by Program 1.5.8.
To do so, it makes use of functions to divide the computation into four parts:

•	 Given a frequency and duration, create a pure tone.
•	 Given two sound waves and relative weights, superpose them.
•	 Given a pitch and duration, create a note with harmonics.
•	 Read and play a sequence of pitch/duration pairs from standard input.

lo = tone(220, 1.0/220.0)
lo[44] = 0.982

hi = tone(880, 1.0/220.0)
hi[44] = -0.693

harmonics = superpose(lo, hi, 0.5, 0.5)
harmonics[44]
 = 0.5*lo[44] + 0.5*hi[44]
 = 0.5*0.982 + 0.5*0.693
 = 0.144

concertA = tone(440, 1.0/220.0)
concertA[44] = 0.374

superpose(harmonics, concertA, 0.5, 0.5)
0.5*harmonics[44] + 0.5*concertA[44])
 = 0.5*.144 + 0.5*0.374
 = 0.259

0.259

44

0.374

0.144

-0.693

0.982

Adding harmonics to concert A (1/220 second at 44,100 samples/second)

234 Functions and Modules

% python playthattunedeluxe.py < elise.txt

Program 2.1.4  Play that tune (revisited)  (playthattunedeluxe.py)

import math
import stdarray
import stdaudio
import stdio

def superpose(a, b, aWeight, bWeight):
 c = stdarray.create1D(len(a), 0.0)
 for i in range(len(a)):
 c[i] = aWeight*a[i] + bWeight*b[i]
 return c

def tone(hz, duration, sps=44100):
 n = int(sps * duration)
 a = stdarray.create1D(n+1, 0.0)
 for i in range(n+1):
 a[i] = math.sin(2.0 * math.pi * i * hz / sps)
 return a

def note(pitch, duration):
 hz = 440.0 * (2.0 ** (pitch / 12.0))
 lo = tone(hz/2, duration)
 hi = tone(2*hz, duration)
 harmonics = superpose(lo, hi, 0.5, 0.5)
 a = tone(hz, duration)
 return superpose(harmonics, a, 0.5, 0.5)

while not stdio.isEmpty():
 pitch = stdio.readInt()
 duration = stdio.readFloat()
 a = note(pitch, duration)
 stdaudio.playSamples(a)
stdaudio.wait()

This program reads sound samples, embellishes the sounds by adding harmonics to create a
more realistic tone than Program 1.5.8, and plays the resulting sound to standard audio.

hz frequency
lo[] lower harmonic

hi[] upper harmonic

h[] combined harmonics

a[] pure tone

% more elise.txt
7 .125 6 .125
7 .125 6 .125 7 .125
2 .125 5 .125 3 .125
0 .25

2352.1 Defining Functions

These tasks are all amenable to implemen-
tation as functions, which depend on one
another. Each function is well defined
and straightforward to implement. All of
them (and stdaudio) represent sound as
a series of discrete values kept in an array,
corresponding to sampling a sound wave
at 44,100 samples per second.

Up to this point, our use of func-
tions has been somewhat of a notational
convenience. For example, the control
flow in Program 2.1.1, Program 2.1.2, and
Program 2.1.3 is simple—each function
is called in just one place in the code. By
contrast, Program 2.1.4 is a convincing ex-
ample of the effectiveness of defining func-
tions to organize a computation because
each function is called multiple times. For
example, as illustrated in the figure below,
the function note() calls the function
tone() three times and the function su-
perpose() twice. Without functions, we
would need multiple copies of the code in
tone() and superpose(); with functions,
we can deal directly with concepts close to
the application. Like loops, functions have
a simple but profound effect: one sequence
of statements (those in the function defini-
tion) is executed multiple times during the
execution of our program—once for each
time the function is called in the control
flow in the global code.

Flow of control among several functions

def superpose(a, b, aWeight, bWeight):

 c = stdarray.create1D(len(a), 0.0)

 for i in range(len(a)):

 c[i] = aWeight*a[i] + bWeight*b[i]

 return c

import math
import stdarray
import stdaudio
import stdio

def tone(hz, duration, sps=44100):

 n = int(sps * duration)

 a = stdarray.create1D(n+1, 0.0)

 for i in range(n+1):

 a[i] = math.sin(2 * math.pi * i * hz / sps)

 return a

def note(pitch, duration):

 hz = 440.0 * (2.0 ** (pitch / 12.0))

 lo = tone(hz/2, duration)

 hi = tone(2*hz, duration)

 harmonics = superpose(lo, hi, 0.5, 0.5)

 a = tone(hz, duration)

 return superpose(harmonics, a, 0.5, 0.5)

while not stdio.isEmpty():

 pitch = stdio.readInt()

 duration = stdio.readFloat()

 a = note(pitch, duration)

 stdaudio.playArray(a)

stdaudio.wait()

236 Functions and Modules

Functions are important because they give us the ability to extend the Python
language within a program. Having implemented and debugged functions such
as harmonic(), pdf(), cdf(), mean(), exchange(), shuffle(), isPrime(),
superpose(), tone(), and note(), we can use them almost as if they were built
into Python. The flexibility to do so opens up a whole new world of programming.
Before, you were safe in thinking about a Python program as a sequence of state-
ments. Now you need to think of a Python program as a set of functions that can
call one another. The statement-to-statement control flow to which you have been
accustomed is still present within functions, but programs have a higher-level con-
trol flow defined by function calls and returns. This ability enables you to think in
terms of operations called for by the application, not just the operations that are
built into Python.

Whenever you can clearly separate tasks within a computation, you should do so.
The examples in this section (and the programs throughout the rest of the book)
clearly illustrate the benefits of adhering to this maxim. With functions, we can

•	 Divide a long sequence of statements into independent parts.
•	 Reuse code without having to copy it.
•	 Work with higher-level concepts (such as sound waves).

This point of view leads to code that is easier to understand, maintain, and debug
compared to a long program composed solely of Python assignment, conditional,
and loop statements. In the next section, we discuss the idea of using functions
defined in other files, which again takes us to another level of programming.

2372.1 Defining Functions

Q&A

Q.	Can I use the statement return in a function without specifying a value?

A.	 Yes. Technically, it returns the None object, which is the sole value of the type
NoneType.

Q.	What happens if a function has one control flow that leads to a return state-
ment that returns a value but another control flow that reaches the end of the func-
tion body?

A.	 It would be poor style to define such a function, because doing so would place
a severe burden on the function’s callers: the callers would need to know under
which circumstances the function returns a value, and under which circumstances
it returns None.

Q.	What happens if I compose code in the body of a function that appears after the
return statement?

A.	 Once a return statement is reached, control returns to the caller. So any code
in the body of a function that appears after a return statement is useless; it is never
executed. In Python, it is poor style, but not illegal to define such a function.

Q.	What happens if I define two functions with the same name (but possibly a dif-
ferent number of arguments) in the same .py file?

A.	 This is known as function overloading, which is embraced by many program-
ming languages. Python, however, is not one of those languages: the second func-
tion definition will overwrite the first one. You can often achieve the same effect by
using default arguments.

Q.	What happens if I define two functions with the same name in different files?

A.	 That is fine. For example, it would be good design to have a function named
pdf() in gauss.py that computes the Gaussian probability density function and
another function named pdf() in cauchy.py that computes the Cauchy probabil-
ity density function. In Section 2.2 you will learn how to call functions defined in
different .py files.

Q.	Can a function change the object to which a parameter variable is bound?

238 Functions and Modules

A.	 Yes, you can use a parameter variable on the left side of an assignment state-
ment. However, many Python programmers consider it poor style to do so. Note
that such an assignment statement has no effect in the client.

Q.	The issue with side effects and mutable objects is complicated. Is it really all that
important?

A.	 Yes. Properly controlling side effects is one of a programmer’s most important
tasks in large systems. Taking the time to be sure that you understand the difference
between passing arrays (which are mutable) and passing integers, floats, booleans,
and strings (which are immutable) will certainly be worthwhile. The very same
mechanisms are used for all other types of data, as you will learn in Chapter 3.

Q.	How can I arrange to pass an array to a function in such a way that the function
cannot change the elements in the array?

A.	 There is no direct way to do so. In Section 3.3 you will see how to achieve the
same effect by building a wrapper data type and passing an object of that type
instead. You will also see how to use Python’s built-in tuple data type, which rep-
resents an immutable sequence of objects.

Q.	Can I use a mutable object as a default value for an optional argument?

A.	 Yes, but it may lead to unexpected behavior. Python evaluates a default value
only once, when the function is defined (not each time the function is called). So,
if the body of a function modifies a default value, subsequent function calls will
use the modified value. Similar difficulties arise if you initialize the default value by
calling an impure function. For example, after Python executes the code fragment

def append(a=[], x=random.random()):
 a += [x]
 return a

b = append()
c = append()

b[] and c[] are aliases for the same array of length 2 (not 1), which contains one
float repeated twice (instead of two different floats).

2392.1 Defining Functions

Exercises

2.1.1  Compose a function max3() that takes three int or float arguments and
returns the largest one.

2.1.2  Compose a function odd() that takes three bool arguments and returns
True if an odd number of arguments are True, and False otherwise.

2.1.3  Compose a function majority() that takes three bool arguments and re-
turns True if at least two of the arguments are True, and False otherwise. Do not
use an if statement.

2.1.4  Compose a function areTriangular() that takes three numbers as argu-
ments and returns True if they could be lengths of the sides of a triangle (none of
them is greater than or equal to the sum of the other two), and False otherwise.

2.1.5  Compose a function sigmoid() that takes a float argument x and returns
the float obtained from the formula 1  (1+ex).

2.1.6  Compose a function lg() that takes an integer n as an argument and returns
the base-2 logarithm of n. You may use Python’s math module.

2.1.7  Compose a function lg() that takes an integer n as an argument and returns
the largest integer not larger than the base-2 logarithm of n. Do not use the math
module.

2.1.8  Compose a function signum() that takes a float argument n and returns
-1 if n is less than 0, 0 if n is equal to 0, and +1 if n is greater than 0.

2.1.9  Consider this function duplicate():

def duplicate(s):
 t = s + s

What does the following code fragment write?

s = 'Hello'
s = duplicate(s)
t = 'Bye'
t = duplicate(duplicate(duplicate(t)))
stdio.writeln(s + t)

240 Functions and Modules

2.1.10  Consider this function cube():

def cube(i):
 i = i * i * i

How many times is the following while loop iterated?

i = 0
while i < 1000:
 cube(i)
 i += 1

Solution:  Just 1,000 times. A call to cube() has no effect on the client code. It
changes the parameter variable i, but that change has no effect on the variable i
in the while loop, which is a different variable. If you replace the call to cube(i)
with the statement i = i * i * i (maybe that was what you were thinking), then
the loop is iterated five times, with i taking on the values 0, 1, 2, 9, and 730 at the
beginning of the five iterations.

2.1.11  What does the following code fragment write?

for i in range(5):
 stdio.write(i)
for j in range(5):
 stdio.write(i)

Solution:  0123444444. Note that the second call to stdio.write() uses i, not j.
Unlike analogous loops in many other programming languages, when the first for
loop terminates, the variable i is 4 and it remains in scope.

2.1.12  The following checksum formula is widely used by banks and credit card
companies to validate legal account numbers:

	 d0  f (d1)  d2  f (d3)  d4  f (d5)  . . . = 0 (mod 10)

The di are the decimal digits of the account number and f (d) is the sum of the
decimal digits of 2d (for example, f (7) = 5 because 2  7 = 14 and 1  4 = 5). For
example 17327 is valid because 1 + 5 + 3 + 4 + 7 = 20, which is a multiple of 10.

2412.1 Defining Functions

Implement the function f and compose a program to take a 10-digit integer as a
command-line argument and write a valid 11-digit number with the given integer
as its first 10 digits and the checksum as the last digit.

2.1.13  Given two stars with angles of declination and right ascension (d1, a1) and
(d2, a2), respectively, the angle they subtend is given by the formula

2 arcsin((sin2(d/2) + cos (d1)cos(d2)sin2(a/2))1/2),

where a1 and a2 are angles between 180 and 180 degrees, d1 and d2 are angles
between 90 and 90 degrees, a = a2  a1, and d = d2  d1. Compose a program to
take the declination and right ascension of two stars as command-line arguments
and write the angle they subtend. Hint : Be careful about converting from degrees
to radians.

2.1.14  Compose a readBool2D() function that reads a two-dimensional matrix
of 0 and 1 values (with dimensions) into an array of booleans.

Solution : The body of the function is virtually the same as for the corresponding
function given in the table in the text for two-dimensional arrays of floats:

def readBool2D():
 m = stdio.readInt()
 n = stdio.readInt()
 a = stdarray.create2D(m, n, False)
 for i in range(m):
 for j in range(n):
 a[i][j] = stdio.readBool()
 return a

2.1.15  Compose a function that takes an array a[] of strictly positive floats as its
argument and rescales the array so that each element is between 0 and 1 (by sub-
tracting the minimum value from each element and then dividing each element by
the difference between the minimum and maximum values). Use the built-in max()
and min() functions.

242 Functions and Modules

2.1.16  Compose a function histogram() that takes an array a[] of integers and
an integer m as arguments and returns an array of length m whose ith element is
the number of times the integer i appears in the argument array. Assume that the
values in a[] are all between 0 and m-1, so that the sum of the values in the returned
array should be equal to len(a).

2.1.17  Assemble code fragments in this section and in Section 1.4 to develop a
program that takes an integer n from the command line and writes n five-card
hands, separated by blank lines, drawn from a randomly shuffled card deck, one
card per line using card names like Ace of Clubs.

2.1.18  Compose a function multiply() that takes two square matrices of the
same dimension as arguments and returns their product (another square matrix
of that same dimension). Extra credit : Make your program work whenever the
number of columns in the first matrix is equal to the number of rows in the second
matrix.

2.1.19  Compose a function any() that takes an array of booleans as an argument
and returns True if any of the elements in the array is True, and False otherwise.
Compose a function all() that takes an array of booleans as an argument and
returns True if all of the elements in the array are True, and False otherwise. Note
that all() and any() are built-in Python functions; the goal of this exercise is to
understand them better by creating your own versions.

2.1.20  Develop a version of getCoupon() that better models the situation when
one of the n coupons is rare: choose one value at random, return that value with
probability 1/(1000n), and return all other values with equal probability. Extra
credit: How does this change affect the average value of the coupon collector func-
tion?

2.1.21  Modify playthattune.py to add harmonics two octaves away from each
note, with half the weight of the one-octave harmonics.

2432.1 Defining Functions

Creative Exercises

2.1.22  	Birthday problem.  Compose a program with appropriate functions for
studying the birthday problem (see Exercise 1.4.35).

2.1.23  	Euler’s totient function.  Euler’s totient function is an important function
in number theory: (n) is defined as the number of positive integers less than or
equal to n that are relatively prime with n (no factors in common with n other than
1). Compose a function that takes an integer argument n and returns (n). Include
global code that takes an integer from the command line, calls the function, and
writes the result.

2.1.24  	Harmonic numbers.  Create a program harmonic.py that defines three
functions harmonic(), harmonicSmall(), and harmonicLarge() for comput-
ing the harmonic numbers. The harmonicSmall() function should just compute
the sum (as in Program 2.1.1), the harmonicLarge() function should use the ap-
proximation Hn = loge(n )    1/(2n )  1/(12n 2)  1/(120n 4) (the number
 = 0.577215664901532… is known as Euler’s constant), and the harmonic() func-
tion should call harmonicSmall() for n < 100 and harmonicLarge() otherwise.

2.1.25  	Gaussian random values.  Experiment with the following function for gen-
erating random variables from the Gaussian distribution, which is based on gener-
ating a random point in the unit circle and using a form of the Box-Muller formula
(see Exercise 1.2.24).

def gaussian():
 r = 0.0
 while (r >= 1.0) or (r == 0.0):
 x = -1.0 + 2.0 * random.random()
 y = -1.0 + 2.0 * random.random()
 r = x*x + y*y
 return x * math.sqrt(-2.0 * math.log(r) / r)

Take a command-line argument n and generate n random numbers, using an array
a[] of 20 integers to count the numbers generated that fall between i*.05 and
(i+1)*.05 for i from 0 to 19. Then use stddraw to plot the values and to compare
your result with the normal bell curve. Remark: This approach is faster and more

244 Functions and Modules

accurate than the one described in Exercise 1.2.24. Although it involves a loop, the
loop is executed only 4 /  (about 1.273) times on average. This reduces the overall
expected number of calls to transcendental functions.

2.1.26  	Binary search.  A general function that we study in detail in Section 4.2 is
effective for computing the inverse of a cumulative distribution function like cdf().
Such functions are continuous and nondecreasing from (0, 0) to (1, 1). To find the
value x0 for which f (x0) = y0, check the value of f (0.5). If it is greater than y0, then
x0 must be between 0 and 0.5; otherwise, it must be between 0.5 and 1. Either way,
we halve the length of the interval known to contain x0. Iterating, we can compute
x0 to within a given tolerance. Add a function cdfInverse() to gauss.py that uses
binary search to compute the inverse. Change the global code to take a number p
between 0 and 100 as a third command-line argument and write the minimum
score that a student would need to be in the top p percent of students taking the SAT
in a year when the mean and standard deviation were the first two command-line
arguments.

2.1.27  	Black-Scholes option valuation.  The Black-Scholes formula supplies the
theoretical value of a European call option on a stock that pays no dividends, given
the current stock price s, the exercise price x, the continuously compounded risk-
free interest rate r, the standard deviation  of the stock’s return (volatility), and the
time (in years) to maturity t. The value is given by the formula s F(a)  x e r t F(b),
where F(z) is the Gaussian cumulative distribution function, a = (ln(s x)  
(r  2 2) t) / (t), and b = a  t. Compose a program that takes s, x, r, sigma,
and t from the command line and writes the Black-Scholes value.

2.1.28  	Implied volatility.  Typically the volatility is the unknown value in the
Black-Scholes formula. Compose a program that reads s, x, r, t, and the current
price of the European call option from the command line and uses binary search
(see Exercise 2.1.26) to compute .

2.1.29  	Horner’s method.  Compose a program horner.py with a function
evaluate(x, a) that evaluates the polynomial a(x) whose coefficients are the ele-
ments in the array a[]:

a0  a1x1  a2 x2  . . .  an2 xn2  an1 xn1

2452.1 Defining Functions

Use Horner’s method, an efficient way to perform the computations that is sug-
gested by the following parenthesization:

a0 x (a1  x (a2  . . .  x (an2 x an1) . . .))

Then compose a function exp() that calls evaluate() to compute an approxima-
tion to e x, using the first n terms of the Taylor series expansion e x = 1 + x + x 2/2! +
x 3/3! + …. Take an argument x from the command line, and compare your result
against that computed by math.exp(x).

2.1.30  	Benford’s law.  The American astronomer Simon Newcomb observed a
quirk in a book that compiled logarithm tables: the beginning pages were much
grubbier than the ending pages. He suspected that scientists performed more com-
putations with numbers starting with 1 than with 8 or 9, and postulated the first
digit law, which says that under general circumstances, the leading digit is much
more likely to be 1 (roughly 30%) than 9 (less than 4%). This phenomenon is
known as Benford’s law and is now often used as a statistical test. For example, IRS
forensic accountants rely on it to discover tax fraud. Compose a program that reads
in a sequence of integers from standard input and tabulates the number of times
each of the digits 1–9 is the leading digit, breaking the computation into a set of
appropriate functions. Use your program to test the law on some tables of informa-
tion from your computer or from the web. Then, compose a program to foil the IRS
by generating random amounts from $1.00 to $1,000.00 with the same distribution
that you observed.

2.1.31  	Binomial distribution.  Compose a function binomial() that accepts an
integer n, an integer k, and a float p, and computes the probability of obtaining
exactly k heads in n biased coin flips (heads with probability p) using the formula

	 f (k, n, p) = pk(1p)nk n!  (k!(nk)!)

Hint : To avoid computing with huge integers, compute x = ln f (k, n, p) and then
return ex. In the global code, take n and p from the command line and check that
the sum over all values of k between 0 and n is (approximately) 1. Also, compare
every value computed with the normal approximation

	 f (k, n, p)  (k + 1/2, np, np(1  p))  (k  1/2, np, np(1  p))

246 Functions and Modules

2.1.32  	Coupon collecting from a binomial distribution.  Compose a version of get-
Coupon() that uses binomial() from the previous exercise to return coupon val-
ues according to the binomial distribution with p = 1/2. Hint : Generate a uniformly
distributed random number x between 0 and 1, then return the smallest value of
k for which the sum of f (j, n, p) for all j < k exceeds x. Extra credit : Develop a hy-
pothesis for describing the behavior of the coupon collector function under this
assumption.

2.1.33  	Chords.  Compose a version of playthattunedeluxe.py that can handle
songs with chords (three or more different notes, including harmonics). Develop
an input format that allows you to specify different durations for each chord and
different amplitude weights for each note within a chord. Create test files that exer-
cise your program with various chords and harmonics, and create a version of Für
Elise that uses them.

2.1.34  	Postal barcodes.  The barcode used by the U.S. Postal System to route mail is
defined as follows: Each decimal digit in the ZIP code is encoded using a sequence
of three half-height and two full-height bars. The
barcode starts and ends with a full-height bar (the
guard rail) and includes a checksum digit (after the
five-digit ZIP code or ZIP+4), computed by sum-
ming up the original digits modulo 10. Define the
following functions:

•	 Draw a half-height or full-height bar on stddraw.
•	 Given a digit, draw its sequence of bars.
•	 Compute the checksum digit.

Also define global code that reads in a five- (or nine-) digit ZIP code as the com-
mand-line argument and draws the corresponding postal barcode.

2.1.35  	Calendar.  Compose a program cal.py that takes two command-line ar-
guments m and y and writes the monthly calendar for the mth month of year y, as in
this example:

0

1

2

3

4

5

6

7

8

9

08540

0 8 5 4 0 7
guard
rail

checksum
digit

guard
rail

2472.1 Defining Functions

% python cal.py 2 2015
February 2015
 S M Tu W Th F S
 1 2 3 4 5 6 7
 8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28

Hint: See leapyear.py (Program 1.2.5) and Exercise 1.2.26.

2.1.36  	Fourier spikes.  Compose a program that takes a command-line argument
n and plots the function

(cos(t)  cos(2 t)  cos(3 t) . . . + cos(N t)) / N

for 500 equally spaced samples of t from 10 to 10 (in radians). Run your program
for n  5 and n  500. Note : You will observe that the sum converges to a spike
(0 everywhere except a single value). This property is the basis for a proof that any
smooth function can be expressed as a sum of sinusoids.

This page intentionally left blank

This page intentionally left blank

739

functions, 36–38, 256–259
gaussian module, 257
Graph, 689–690
Histogram, 414
implementation, 259
InStream, 381
iterables, 662
list, 531
OutStream, 382
PathFinder, 697–698
Picture, 372
Queue, 608
random numbers, 260
set, 665
Sketch, 481
Stack, 592–593
standard audio, 175
standard drawing, 158, 161,

165–168
standard input, 147
standard output, 143
statistics, 271
Stopwatch, 412
str, 354–356
symbol tables, 635–637
tuple, 468
Turtle, 416
Universe, 501
Vector, 464–465

Arctangent function, 37
Arguments

command-line, 6, 11, 141
constructors, 361
formatted output, 145–146
functions, 36–38, 215–218
methods, 353
passing, 226–230

argv feature, 6

depth-first search, 336
Euclid’s, 295–296
extended Euclid’s, 492
insertion sort, 567–568
introduction, 511
Mandelbrot set, 428
mergesort, 573–575
order of growth, 520–526
performance guarantees, 529
perspective, 541
shuffling, 112

Aliasing
arrays, 106
bugs, 461
in functions, 226–227
objects, 361

amino.csv file, 640
Amortized analysis, 533
and operator, 32–33
Angles in polar representation, 455
Animation, 168–170
Antisymmetry in a total order, 476
Appending list items, 532–533
Application programming interface

(API)
Account, 432
arrays, 109, 264–265
Body, 498
Charge, 360
Color, 366
Complex, 425–426
conversion functions, 40
Counter, 458
data types, 402–403, 410
designing, 260, 451–453
dict, 664
documentation, 258
encapsulation, 454–455

A
abs() built-in function, 37
Complex, 425
Vector, 465

__abs__() method, 477
Abstractions

data, 402
defined, 351
function-call, 606–607
layers, 486
modular programming, 255–259
piping, 155
standard audio, 158
standard drawing, 158
standard input, 143, 151
standard output, 83, 143

Accuracy
challenges, 203
numerical, 506

Adaptive plots, 337–340
__add__() method, 425–426, 472
addints.py, 148–149
Addition

Cartesian coordinate system, 455
complex numbers, 424
floating-point numbers, 28
integers, 25
matrices, 123–124
vectors, 464

Adjacency-matrix, 706
Albers, Josef, 367
alberssquares.py, 367–368
Alex, 400
Algorithms. See also Performance

binary search, 557
breadth-first search, 698, 703
brute-force, 559

Index

740 Index

Bernoulli, Jacob, 420
bernoulli.py, 276–277
BFS (breadth-first search), 698, 703
Big-O notation, 543–544
Binary logarithm function, 521
Binary number system

conversions, 76–78
description, 44

Binary operators, 16
binary.py, 76–78
Binary-reflected Gray code, 302
Binary search trees (BSTs)

dictionaries, 664
inserting nodes into, 655
iterables, 661–662
ordered operations, 663
overview, 651–657
performance, 658–659
perspective, 666
recursion, 654–655
sets, 665
symbol tables, 634
terminology, 653
traversing, 660

Binary search algorithm
applications, 561
binary representation, 560
correctness proof, 559
description, 244
inverting functions, 560–561
linear–logarithmic chasm, 559–560
questions.py, 557–558
running time analysis, 559
sorted arrays, 564–566
symbol tables, 647
twentyquestions.py, 149
weighing objects, 561

binarysearch.py, 564–566
Binding, 15
Binomial coefficients, 138–139
Binomial distribution, 138–139,

245–246, 276
Bipartite graphs, 696
bisection.py, 561–562

writing, 105
zero-based indexing, 102

arraystack.py, 601
ASCII characters, 43
AssertionError, 487
Assertions, 487–488
Assignment statements, 15

augmented, 66
binding, 15
chaining, 49
defined, 17–18
equals signs, 17
shorthand notation, 66

Associative arrays, 635
Associative operations, 16–17
Asterisk symbols (*)

exponentiation, 25, 28, 30, 45
multiplication, 25, 28

AttributeError, 391
Audio. See Standard audio
Automatic promotion, 40
Average magnitude, 181
Average path length, 707–708
Average power, 181
average.py, 149, 151–152

B
Background canvas, 158
Backslash symbols (\)

line continuation, 87
strings, 22

Bacon, Kevin, 698–699
Balanced binary trees, 675
Barnsley fern, 267–270
Base case

binary searches, 557
mathematical induction, 294
mergesort, 573, 575
missing, 309
recursive functions, 293

Base classes, 479
Beckett, Samuel, 301–303
beckett.py, 302–303
Benford’s law, 245

Ariane 5 rocket, 41
Arithmetic expressions

operators for, 41
stacks for, 602–604

Arithmetic operators
floating-point numbers, 28–30
integers, 25–27
overloading, 472

Arrays
aliasing, 106
API, 264–265
applications, 110–115
as arguments, 228
associative, 635
bitonic, 587
bounds checking, 103–104
copying and slicing, 107
coupon collector, 116–118
creating, 101–102
exchanging elements in, 111
exercises, 132–139
functions, 105
iteration, 105
initialization, 108–109
length, 102, 532
memory representation, 103, 538
multidimensional, 126
mutability, 104, 462
objects, 538–539
overview, 100
parallel, 434
performance, 530–533
for precomputed values, 114–115
Q&A, 131
ragged, 125–126
resizing. See Resizing arrays
as return values, 229–230
side effects, 228–229
Sieve of Eratosthenes, 118–120
standard audio, 172
summary, 130
system support, 107–110
two-dimensional. See Two-

dimensional arrays

741Index

Cartesian coordinate system
arrays for, 126
operations, 455
spatial vectors, 464

Case studies
See N-body simulation case study
See Percolation case study
See Web surfer case study
See Small-world case study

cat.py, 383
Centroids, 181
Chaining

assignment statements, 49
comparisons, 49

Characters. See Strings
Charge data type, 360

API for, 360
file conventions, 361
memory, 539
method calling, 362
object creation, 361
sample program, 362–364
string representation, 362

charge.py file, 361, 409
chargeclient.py, 362–364
Checksums, 95, 240–241
Chords, 231, 246
Chung, Fan, 725
Circular queues, 629
Circular shifts of strings, 394
class keyword, 403
Class variables, 438
Classes, 402

data-type implementation, 403
inheritance, 479
instance variables, 404–405
methods, 407

Client programs
data type design for, 452
description, 256
functions, 249–253
graph query methods, 690

Clustering coefficient, 707–708
CMYK color format, 54–55

Built-in data types
bool, 32–33
converting, 39–41
definitions, 15–21
dict, 665
exercises, 50–55
floating-point numbers, 28–31
int, 25–27
list, 530–531
memory management, 388–390
methods, 353–354
overview, 14, 351–352
Q&A, 43–48
string processing, 354–359
set, 666
str, 22–25
tuple, 468
summary, 41
vs. user-defined, 365

Built-in functions
arrays, 105
overloading, 477
overview, 34–38
strings, 356

Built-in string operators, 356
Bytecode, 283
Bytes, 536

C
C language, 1

formatted output, 143
legacy code, 730
memory leaks, 389
strings, 535

C++ language, 1
Caching, 527, 538
Calculator, Python as, 42
Calling

functions, 3, 36–37, 215
methods, 353, 362
by object reference, 226

Canvas, 158
Caret operator (^), 45
Carroll, Lewis, 722

bit_length() method, 353–354
Bit-mapped images, 371
Bitonic arrays, 587
Bits, 44, 536
Black–Scholes formula, 244
Blank lines, 4
Blocks of code, 57
Bodies

functions, 215
loops, 61

Body data type, 497–498
body.py, 499–500
Bollobás, Béla, 725
Booksite, 2–3

functions, 35–37
module availability, 11, 176
precedence rules table, 17
Python installation, 8
stdarray module, 108

Boolean logic, 33
Boolean matrices, 324
Booleans and bool data type

arguments, 227–228
comparisons, 33–34
memory, 537
overview, 32–33

bouncingball.py, 168–170
Bounding boxes, 161
Bounds checking for arrays,

103–104
Box–Muller formula, 53
Breadth-first search (BFS), 698, 703
break statement, 83
Brin, Sergey, 202
Brown, Robert, 422
Brownian bridges, 306–309
Brownian islands, 321
Brownian motion, 422–423
brownian.py, 307–309
Brute-force algorithms, 559
bst.py, 644, 656–657, 661
BSTs. See Binary search trees.
Buffer overflow, 103–104
Bugs. See Debugging

742 Index

summary, 85
while statements, 60–66

Connected components, 721
Connecting two programs, 154
Constant order of growth, 521, 523
Constant variables

defined, 16
math, 38

Constructors
objects, 361, 388, 404
user-defined data types, 360, 404

continue statement, 87
Contour plots, 448–449
Contracts

design-by-contract, 487–488
for functions, 256

Control flow. See also Conditionals
and loops

modular programming, 253–255
overview, 211–213

Conversion specifications, 144–145
Converting

color, 54–55
data types, 39–41
program for, 76–78
strings and numbers, 24

Conway’s game of life, 348–349
Coordinate systems

arrays for, 126
drawings, 160–162
operations, 455
spatial vectors, 464

Copying arrays, 107
Corner cases, 263
Cosine function, 37
Cosine similarity measure, 484
Costs. See Performance
Coulomb’s constant, 360
Coulomb’s law, 360
Counter data type, 458–460,

578–580
counter.py, 458–460, 476
Counting loops, 66
Coupon collector problem,

mergesort, 573
symbol tables, 637, 642, 644
system sort, 577

Comparisons
chaining, 49
operator overloading, 475–476
operators, 33–34
program performance, 526
sketches, 484–486
strings, 43, 584

Compatible color, 369–370
Compile-time errors, 5
Compilers, 3, 604
Complete graphs, 708–709
Complex conjugates, 470
complex data type (Python), 424
Complex data type (user-defined),

424–427, 456
Complex numbers, 424–425

immutability, 426
instance variables, 426
Mandelbrot set, 429
special methods, 425–426

complex.py, 426–427
complexpolar.py, 455–457
Composing programs, 2–3
Computer science, 729
Computer systems, 731
Concatenating

arrays, 102
files, 383
strings, 22–24, 535

Concert A, 171
Concordances, 672
Conditionals and loops, 56

applications, 72–82
else clauses, 58–60
exercises, 89–98
for loops, 66–68
if statements, 56–57
infinite loops, 83–84
loop and a half, 82–83
nesting, 69–72
Q&A, 86–88

Code
defined, 2
encapsulation for, 460

Code reuse, 248, 280, 715. See also
Modular programming

Codons, 358
Coercion, 40
Coin-flipping program, 59
Collatz problem, 320
Collections, 590
Colon symbols (:)

class definition, 403
else clause, 58
for statement, 66
function definition, 215
if statement, 16
while statement, 6

Color and Color data type
compatibility, 369–370
conversion exercise, 54–55
drawings, 166–167
grayscale, 367
luminance, 367
overview, 366–367

color.py, 366
Column-major array order, 123
Column vectors, 124–125
Columns in two-dimensional ar-

rays, 120, 133
Comma-separated-value (.csv)

files, 386, 640
Command-line arguments, 6, 11,

141
Commas (,)

arguments, 36, 215–216, 353
arrays, 101, 105
delimiters, 386
tuples, 468
vectors, 464

Comments, 4
Comparable data types, 476

binary search, 572
binary search trees, 651
insertion sort, 572

743Index

Dijkstra’s algorithm, 706
Directed graphs, 723
Directed percolation, 340
Direction in spatial vectors, 464
Discrete distributions, 190, 192
Distances

Euclidean, 132, 484
Hamming, 318
shortest-path, 701–702

__div__() method, 472
Divide-and-conquer approach

benefits, 581
mergesort, 573

Division, 45
floating-point numbers, 28–30
integers, 25–27
polar representation, 455

divisorpattern.py, 69–71
djia.csv file, 448, 640
DNA application, 358–359
Documentation for functions, 258
Dot operator (.), 249, 353
Dot products for vectors, 101–102,

230, 464
Double buffering technique, 158
Double quotes (") for strings, 43
Doublet game, 722
Doubling arrays, 532–533
Doubling hypotheses, 514, 516–520
doublingtest.py, 514, 516–517
Dragon curves, 446
Drawings. See Graphics; Standard

drawing
Duck typing, 469–471
Dutch-national-flag problem, 588
Dynamic dictionaries, 638
Dynamic programming, 311

E
Eccentricity of vertices, 723
Edges

graphs, 685, 688–690
vertices, 692

Effective brightness, 367

difficulty, 203
encapsulation for, 454
files for, 324
immutable data types, 464
linked lists, 611
modularity, 248, 278–281, 341
off-by-one errors, 102
unit testing for, 262, 273

Decimal number system, 44
def statement, 211, 406
Default arguments, 36, 217–218
Defensive copies, 463
Defining variables, 21
Degree of vertices, 685
Degrees of separation, 698–699
__delitem__() method, 636
Denial-of-service attacks, 529
Dependency graphs, 278–279
Depth-first search, 334, 340
Deques, 628
Derivative functions, 478
Derived classes, 479
Descartes, René, 420–421
Design-by-contract, 487–488
Diameters of graphs, 688, 723
Dice

craps, 287
Sicherman, 287
simulation, 135

Dictionaries and dict data type
initializers, 667
overview, 664

Dictionaries
binary search, 564, 664
symbol tables, 638–642

Digital image processing, 371–372
fade effect, 375, 377
grayscale, 373
potential visualization, 378–379
scaling, 373, 375–376

Digital signal processing, 171
Dijkstra, Edsgar

Dutch national flag, 588
two-stack algorithm, 603–604

116–118
coupon.py, 224–225
couponcollector.py, 116–118, 522
Craps game, 287
Crichton, Michael, 446
Cross products of vectors, 491–492
.csv (comma-separated-value)

files, 386, 640
Cubic order of growth, 522–523
Cumulative distribution function

(cdf), 221
Curves

dragon, 446
fractal dimension of, 308
Hilbert, 446–447
Koch, 419

D
Data abstraction, 352, 402
Data-driven code, 153–154, 189,

203
Data extraction, 386–387
Data mining application, 480–486
Data structures, 511

arrays. See Arrays
BSTs. See Binary search trees
commercial data processing, 433
defined, 100
hash tables, 647–650
linked lists. See Linked lists
queues. See Queues
stacks. See Stacks
symbol tables. See Symbol tables

Data types
built-in. See Built-in data types
user-defined. See User-defined

data types
user-defined vs. built-in, 365

Data visualization, 329
Dead Sea Scrolls, 672
deal.py, 133
Debugging, 203

assertions for, 488
corner cases, 263

744 Index

fade.py, 375, 377
False values, 32–33
Falsifiable hypotheses, 513
Feasibility estimates, 525
Fecundity parameter, 98
Fermat’s Last Theorem, 98
Ferns, 267–270
Fibonacci sequence, 91
FIFO (first-in first-out) policy, 590
FIFO queues, 607–608

applications, 613–616
linked-list, 608–611
random, 612
resizing array, 611

Files and file formats
arrays, 264–265
commercial data processing, 433
concatenating and filtering, 383
input/output, 140
N-body simulation, 501–502
redirection from, 153–154
redirection to, 152–153
user-defined data types, 361

Filled shapes, 165–166
Filters

exception, 566
files, 383
piping, 155–157
standard drawing data, 163

Finite sums, 73
First digit law, 245
First-in first-out (FIFO) policy, 590
flip.py, 59
float() built-in function, 39–40
__float__() method, 477
Floating-point numbers and float

data type
arguments, 227–228
comparisons, 34
description, 46
memory, 537
overview, 28–31
Q&A, 46–49
representation, 46

Euclid’s algorithm, 94, 295–296
Euler, Leonhard, 98
Euler’s constant, 38
Euler method, 507
Euler’s sum-of-powers conjecture,

98
Euler’s totient function, 243
evaluate.py, 604–605
Evaluating expressions, 16
Event-based simulations, 614–616
Exception filters, 566
Exceptions

debugging. See Debugging
design-by-contract, 487

Exchanging
arrays elements, 111
variables, 20

Exclamation point symbol (!) for
comparisons, 33–34, 473

Executing programs, 3
Existence problem, 564
Explicit type conversion, 39–40
Exponential distribution, 613
Exponential order of growth,

523–524
Exponential time, 300–301, 311
Exponentiation, 25, 30, 45
Expressions, 15

as arguments, 36
defined, 16, 18
operators for, 41
stacks for, 602–604

Extended Euclid’s algorithm, 492
Extensible modules, 479
Extension modules, 11
Extracting

data, 386–387
strings, 356

F
Factorial function, 292–293
Factoring integers, 80–82
factors.py, 80–82
Fade effect, 375, 377

Efficiency, 203, 556
Einstein, Albert, 422
Elements, array, 100
elif clauses, 72
else clauses, 58–60
Empirical analysis, 514, 516–517
Empty arrays, 102
Encapsulation, 454

API for, 454–455
for code clarity, 460
functions for, 224
implementation changes, 455
limiting error potential, 458–460
modular programming, 454
planning for future, 457–458
privacy, 455, 457

End-of-file sequence, 151
Enqueue operations, 608
Entropy

relative, 679
Shannon, 398

EOFError, 177
Epicycloids, 184
__eq__() method, 473, 475–476
Equality

objects, 361, 473
overloading, 473–474

Equals signs (=)
arguments, 218
assignment statements, 17
comparisons, 33–34, 473–474
overloading, 475–476
uses, 48–49

Equipotential surfaces, 448–449
Erdös, Paul, 700
Erdös–Renyi graph model, 724
Error function, 37
Errors

debugging. See Debugging
tolerance, 337–339

Escape sequences for strings, 22
estimatev.py, 332–334, 336
euclid.py, 295–296
Euclidean distance, 132, 484

745Index

Glider pattern, 349
Global clustering coefficient, 725
Global code, eliminating, 252
Global variables, 217
Golden ratio, 91
Gore, Al, 458, 460
Gosper island, 447
graph.py, 690–692
Graphics

recursive, 304–305, 419
standard drawing. See Standard

drawing
turtle, 416–422

Graphs, 684
bipartite, 696
client example, 693–696
complete, 708–709
connected components, 721
dependency, 278–279
diameters, 688, 723
directed, 723
function, 163–165, 274
Graph, 689–693
grid, 720
random, 709
ring, 708–709, 713
shortest paths in, 697–706
small-world, 707–714
systems using, 685–688
web, 709
web model, 188

Gray codes, 301–303
Grayscale
Picture, 371, 373
RGB color, 367

grayscale.py, 373–375
Greater than signs (>)

comparison operator, 33–34
overloading, 475–476
redirection, 153

Greatest common divisor, 295–296
grep filters, 155–156
Grid graphs, 720
__gt__() method, 476

modular programming. See
Modular programming

as objects, 478
overloading, 237, 477
overview, 209
plotting, 163–165, 274
private, 257
Q&A, 237–238
recursion. See Recursion
return values, 36–37, 211,

215–217, 226–230
scope, 217
side effects, 218–219
strings, 356
superposition of waves, 231–236
terminology, 214–215
timesort.py, 570
tracing, 214
type checking, 219–220
types, 34–38
user-defined data types, 407

G
gambler.py, 78–80
Gambler’s ruin problem, 78–80
Game of life, 348–349
Game simulation for Let’s Make a

Deal, 98
Gamma function, 37
Garbage collection, 389, 540
Gardner, Martin, 446
gauss.py, 222–223
Gaussian distribution

cumulative distribution function,
221

probability density function, 221
random numbers from, 243–244

gaussian.py, 249–250
gaussiantable.py, 249–254
__ge__() method, 476
Gene prediction, 358–359
Geometric mean, 179
Get operation, 634–635
__getitem__() method, 635

floatops.py, 28–29
__floordiv__() method, 472
Flow of control. See also Condi-

tionals and loops
modular programming, 253–255
overview, 211–213

Flowcharts, 59–60
Fonts for drawings, 166
for statements, 66–68
Format strings, 144–145
Formatted input, 149
Formatted output, 144–145
Forth language, 604
Fortran language, 730
Fourier series, 231
Fractal dimension of curves, 308
fraction.py module, 442
Fractional Brownian motion, 306
Fragile base class problem, 479
Frequency analyses, 516
Frequency counts, 578–580
frequencycount.py, 578–582
Fully parenthesized arithmetic

expressions, 602
Function abstraction, 351
Function-call abstraction, 606–607
Function-call trees, 297, 299
functiongraph.py, 163–165
Functions

arguments, 36–38, 215–218,
226–230

arrays, 105
availability, 11
booksite, 35–37
calling, 3, 36–37, 215
for code organization, 224–225
control flow, 211–213
defining, 210
definition, 215
documentation, 258
exercises, 239–247
inverting, 560–561
mathematical, 220–223
vs. methods, 354

746 Index

symbol tables, 635, 637
in silico experimentation, 340
Incremental code development,

341–342, 715
Incrementing variables, 19–20
Indentation
if statements, 57
nested loops, 71
whitespace, 9

IndentationError, 86
index.py, 642–644
IndexError, 103, 487
Indexes

array elements, 100–103
inverting, 695–696
symbol tables for, 642–644
two-dimensional arrays, 122
zero-based, 102

Induced subgraphs, 718
Infinite loops, 83–84
Infinity, 46
Information content of strings, 398
Inheritance, 479
__init__() method
Charge, 410
constructors, 404–405
graphs, 692–693

Initialization
loops, 61
one-dimensional arrays, 108–109
two-dimensional arrays, 121–122
objects, 404
variables, 21

Inner loops, 71
emphasis on, 518–519
nondominant, 527

Inorder tree traversal, 660
Input and output

command-line arguments, 141
conversions for, 24
data extraction, 386–387
exercises, 179–186
InStream data type, 381–382
OutStream data type, 382

Hyperbolic functions, 47
Hyperlinks, 188
Hypotenuse function, 37, 216
Hypotheses, 514–520

I
I/O. See Input and output
id() built-in function, 48, 473
Identical objects, 361
Identifiers, 15
Identity equality, 473
Identity of objects, 18, 364
IEEE 754 standard, 46
if statements
else clauses, 58–60
elif clauses, 72
overview, 56–57
single-statement blocks, 58

ifs.py, 268–270, 278
Imaginary numbers, 424
Immutability, 461

advantages, 462
and aliases, 226–227
complex numbers, 426
costs, 462
data types, 461–462
defensive copies, 463
enforcing, 462
strings, 534

Implementations
data types, 403–411
functions, 255

Implicit type conversion, 40–41
Implicit vertex creation, 690
Implied volatility, 244
import statement, 3, 249
Importing modules, 3, 249–253
in keyword

arrays, 105
dictionaries, 664
iterables, 662
lists, 531
sets, 665
strings, 355

H
H-tree of order n, 304
Hadamard matrices, 136
Half-open intervals in binary

searches, 557
Halving arrays, 532–533
Hamilton, William, 445
Hamming distance, 318
Hardy, G. H., 95
Harmonic mean exercise, 179
harmonic.py, 73
harmonicf.py, 211–213
Harmonics, 231
__hash__() method, 474–475, 477
Hash codes, 474, 648
hash() built-in function, 648
Hash functions, 474

description, 647
sketches, 482

Hash tables, 647–650
Hash values, 647
Hashable objects, 648
Hashing

overloading, 474–475
overview, 482, 484
symbol tables, 634, 647–650

hashst.py, 640, 648–650
Heap, 540
Heap-ordered binary trees, 675
helloworld.py, 3
help() built-in function, 42
Hertz, 171
Higher-order functions, 478
Hilbert, David, 446
Hilbert curves, 446–447
Histogram data type, 414–415
histogram.py, 414–415
Histograms, 195–196
Hitting time, 206
Hoare, C. A. R., 541
Horner’s method, 244–245
htree.py, 304–305
Hubs, 206
Hurst exponent, 306, 308

747Index

KeyError, 636
Keywords, 15
Kleinberg, Jon, 725
Kleinberg graph model, 725–726
Knuth, Donald

on optimization, 541
prediction models, 514, 516, 519
random numbers, 494

Koch curves, 419
koch.py program, 419

L
Last-in first-out (LIFO) policy,

590–591
Lattices, 126
Layers of abstraction, 486
__le__() method, 476
Leading term of expressions, 518
Leaf nodes in BSTs, 653
Leapfrog method, 506–507
leapyear.py program, 34–35, 521
Left associative operations, 16–17
Left subtrees in BSTs, 653, 655
len() built-in function

arrays, 102
dictionaries, 664
lists, 531
Queue, 608
sets, 665
Stack, 592–593
strings, 355
Vector, 465

__len__() method, 477
Length

arrays, 102, 532
strings, 534–535

Less than signs (<)
comparison operator, 33–34
overloading, 475–476
redirection, 153

Let’s Make a Deal simulation, 98
Lexicographic order, 43, 584
Libraries for modules, 257
LIFO (last-in first-out) policy,

590–591

invert.py, 694–696
Inverting functions, 560–561
Invoking methods, 353
ip.csv file, 640, 642
IP (Internet Protocol), 458
IPv4 vs. IPv6, 458
Isolated vertices, 717
Isomorphic binary trees, 675
iter() built-in function, 662
__iter__() method, 477, 636, 661
Iterable data types, 661–662
Iterated function systems

Barnsley fern, 267–270
Sierpinski triangle, 266–267

Iterations
arrays, 105
dictionaries, 664

Iterators
binary search trees, 661–662
built-in functions, 636
symbol tables, 636

J
Java language, 1

32-bit integers, 27
declaring instance variables, 437
encapsulation, 455
first-class functions, 488
fixed-length arrays, 108
garbage collection, 389
immutability, 462
operator overloading, 477
remainder operator, 45
types of variables, 48, 469

Josephus problem, 628
Julia sets, 449

K
k-grams, 481–482
k-ring graphs, 708–709
Kevin Bacon game, 698–699
Key-sorted order, 660
Key-value pairs in symbol tables,

634–635, 642

overview, 6–7, 140–141, 380
Q&A, 176–178
redirection and piping, 151–157
screen scraping, 384–386
standard audio, 143, 171–175
standard drawing, 142, 158–167
standard input, 142, 146–151
standard output, 141–146
summary, 175

Inserting
binary search tree nodes, 655
collection items, 590
linked-list nodes, 597

insertion.py, 567–568
Insertion sort algorithm, 567–568

comparable keys, 572
input sensitivity, 570–572
running time analysis, 568–570

Instance variables
complex numbers, 426
objects, 404–405

InStream data type
purpose, 380–382
screen scraping, 384–386

instream.py module, 380–381
Instruction time, 527
int() built-in function, 24, 39–40
__int__() method, 477
Integers and int data type

arguments, 227–228
memory, 537
overview, 25–27
Q&A, 44–45
representation, 44

Interactions, limiting, 341
Interactive user input, 149
Internet Protocol (IP), 458
Interpreters

function, 3
stack implementation, 604

Intervals, 442–443
intops.py program, 25–26
Invariants, 488
inverse trigonometric functions, 47

748 Index

Matrix–vector multiplication, 124
max() built-in function

arrays, 105
built-in, 37
iterables, 662
Python lists, 531

Maximum key in a BST, 663
Maxwell–Boltzmann distribution,

284
McCarthy’s 91 function, 319
Mean

array, 230
defined, 271
exercise, 179

Median, 271, 273, 587
Memoization technique, 311
Memory

array representation in, 103, 538
leaks, 389
management, 388–389
performance, 536–540
recursive functions, 310

MemoryError, 543
Mercator projections, 54
merge.py program, 573–575
Mergesort algorithm, 573–575

running time analysis, 576
system sort, 577
von Neumann, John, 577

Methods
calling, 362
defined, 352
vs. functions, 354
instances, 406
overview, 353–354
variables in, 406–407

MIDI Tuning Standard, 178
Midpoint displacement method,

306
Milgram, Stanley, 684
min() built-in function

arrays, 105
built-in, 37
iterables, 662

Loop and a half, 82–83
Loop-continuation conditions, 61
Loops. See Conditionals and loops
__lt__() method, 476
luminance of color, 367
luminance.py, 369–370

M
M/M/1 queues, 37, 613–616
Magnitude

complex numbers, 424
polar representation, 455
spatial vectors, 464

Magritte, René, 364
main() function, 252, 262
__main__() method, 252
Maintenance of modular pro-

grams, 280–281
Mandelbrot, Benoît, 321, 428
mandelbrot.py program, 430–431
Mandelbrot set, 428–431
Markov, Andrey, 194
Markov chains, 194

mixing, 197–202
power method, 198–202
squaring, 197–198

markov.py program, 200, 202
Marsaglia’s method, 94
math module, 30, 37–38, 47
Mathematical analysis, 516–520
Mathematical functions, 220–223
Mathematical induction, 290, 294
Matlab language

matrices, 285, 730
passing mechanism, 488

Matrices, 121. See also Two-dimen-
sional arrays

addition, 123
adjacency-matrix, 706
boolean, 324
Hadamard, 136
multiplication, 123–125
sparse, 681
transition, 190–191

Line continuation, 87
Linear algebra, 464
Linear independence, 465
Linear order of growth, 521–523
Linearithmic order of growth,

522–523
Linked lists

exercises, 625–627
queues, 608–611
stacks, 595–601
symbol tables, 645–647

Linked structures, 511
linkedqueue.py, 609–611
linkedstack.py, 598–600
Links, web, 188
Lissajous, Jules A., 185
Lissajous patterns, 185
list() built-in function, 662
Lists and list data type

arrays, 108. See also Arrays.
memory, 538–539
overview, 530–531
performance, 530–533

Literals
booleans, 32
defined, 18
floating-point numbers, 28
integers, 25
sample, 14
strings, 22
uses, 15
whitespace in, 9

Little’s law, 614
loadbalance.py program, 617–618
Local clustering, 707–708
Local variables, 215
Logarithm function

arguments, 38
math module, 37

Logarithmic order of growth, 521
Logarithmic spirals, 420–421
Logical operators, 32–33
Logo language, 422
lookup.py program, 640–642

749Index

__next__() method, 661
90–10 rule, 188
Node class

binary search trees, 651–653
stacks, 595–597, 600

Nondominant inner loops, 527
None value in symbol tables, 636
Not a number (NaN), 46
Not found in a symbol tables, 636
not operators, 32–33
Notes in standard audio, 172
Null calls, 334
Null nodes in BSTs, 653
Numbering array elements, 100
Numbers

complex, 424–427
converting, 24, 76–78

numbers.py module, 479
Numeric tower, 479
Numerical accuracy, 506
Numerical integration, 478
NumPy library, 257, 285, 730
numpy module, 108
Nyquist frequency, 178

O
Object-based definitions, 18
Object-level traces, 19
Object-oriented programming

data types. See Built-in data
types; User-defined data
types

description, 281
overview, 351–352

Object references
calling by, 226
defined, 18

Objects. See also User-defined data
types

arrays, 538–539
constructors, 361, 388, 404
creating, 15, 361, 405–406
defined, 18
equality, 361, 473

integers, 25
matrices, 123–125
polar representation, 455

Music. See Standard audio
Mutability. See also Immutability

arrays, 104
data types, 461–462

N
N-body simulation, 496–497
body data type, 497–498
exercises, 508–509
file formats, 501–502
force and motion, 498–500
forces among bodies, 499–501
Q&A, 507
summary, 502, 504–505
Universe data type, 501

Named tuples, 540
NameError, 5, 48
Names

arrays, 101
classes, 403
constant variables, 16
functions, 214–215
variables, 16

NaN (not a number), 46
Natural logarithm function, 521
__ne__() method, 473, 475–476
__neg__() method, 472
Negative infinity, 46
Negative numbers, 44–45
Neighbor vertices in graphs, 685
Nesting loops, 69–72
Newcomb, Simon, 245
Newlines, 9
Newton, Isaac

dice odds, 98
n-body simulation, 496–497
square root computation, 74

Newton’s first law, 497
Newton’s law of gravitation, 499
Newton’s method, 74–75, 448
Newton’s second law, 497–498

Python lists, 531
Minimum key in a BST, 663
Minus signs (-)

negation operator, 25
subtraction operator, 25, 28

Mixed-type operators, 33–34
mm1queue.py, 614–616
__mod__() method, 472
Modular programming

abstractions, 255–259
code reuse, 280
debugging, 280
encapsulation, 454
maintenance, 280–281
module size in, 279–280
overview, 253–255, 278–279

Modules
arrays, 264–265
availability, 11
exercises, 284–289
extensible, 479
importing, 3, 249–253
independence among, 454
libraries, 257
Q&A, 282–283
size, 279–280, 341
Python, 730

Monochrome luminance, 367
Monte Carlo simulation

gambler’s ruin, 78–80
percolation case study, 329

Moore’s law, 525
Move-to-front strategy, 630
movies.txt file, 693–696, 700
moviesG.txt file, 713
__mul__() method, 425–426, 472
Multidimensional arrays, 126
Multiple arguments for formatted

output, 145–146
Multiple problem parameters, 528
Multiple streams, 157
Multiplication

complex numbers, 424
floating-point numbers, 28

750 Index

exercises, 545–555
exponential time, 300–301, 311
guarantees, 529
importance of, 716
lists and arrays, 530–533
memory, 536–540
order of growth, 520–524
overview, 512
perspective, 541
predictions, 524–526
program comparisons, 526
Q&A, 542–544
scientific method. See Scientific

method
shortest paths in graphs, 703–704
strings, 534–535

performer.py, 711–713
Permutations, 112–114
Phase transitions, 339
Phone books

binary searches in, 564
dictionaries for, 638

Photographs, 371
pi mathematical constant, 38
Picture object, 371

digital images, 371–372
fade effect, 375, 377
grayscale, 371
potential visualization, 378–379
scaling, 373, 375–376

Piping. See Redirection and piping
Pixels, 371
Plasma clouds, 308–309
Playing cards, 110–112
playthattune.py, 173–175
playthattunedeluxe.py, 233–235
plotfilter.py, 162–163, 521–523
Plotting

experimental results, 276–277
function graphs, 163–165, 274
functions, 273
sound waves, 274–275

Plus signs (+)
addition operator, 25, 28

Page ranks, 192, 194–195, 198–202
Pages, web, 188
Palindromes, 394
Pancake flipping exercise, 318
Papert, Seymour, 422
Parallel arrays, 434
Parallel edges in graphs, 690
Parentheses (())

arguments, 36, 215
arithmetic expressions, 602–603

Pascal’s triangle, 138–139
pass statement, 87
Passing arguments, 226–230
PathFinder data type, 697–701
pathfinder.py, 703–705
Paths

graphs, 688
shortest-path algorithm. See

Shortest paths in graphs
small-world graphs, 707

Peaks, terrain, 184
Pepys, Samuel, 98
Pepys problem, 98
Percent symbol (%)

conversion specification, 144–145
remainder operation, 25, 45

Percolation case study, 322–324
adaptive plots, 337–340
exercises, 345–349
lessons, 341–343
probability estimates, 332–334
Q&A, 344
recursive solution, 334–336
scaffolding, 324–325
testing, 327–331
vertical percolation, 325–328

percolation.py, 335–336
percolation0.py, 325–326
percolationio.py, 329–330
percolationv.py, 327–328
percplot.py, 337–340
Performance

binary search trees, 658–659
caveats, 526–528

functions as, 478
instance variables, 404–405
memory, 539
orphaned, 388
properties, 364

Off-by one-errors, 102
One-dimensional arrays, 100
Open-addressing hash tables, 667
Operands for expressions, 16
Operators and operations

arithmetic, 25–30
comparisons, 33–34
defined, 15
floating-point, 28–31
logical, 32–33
matrices, 123–125
overloading, 472
precedence, 16–17
strings, 355–356

or operator, 32–33
Order of growth function

classifications, 520–524
overview, 518–520

Ordered operations in BSTs, 663
OrderedSymbolTable data type,

637, 656–657
Orphaned objects, 388
Outer loops, 71
Outline shapes, 165–166
Output. See Input and output
OutStream data type, 380, 382
outstream.py module, 380, 382
Overloading

arithmetic operators, 472
comparison operators, 475–476
description, 471
equality, 473–474
functions, 237, 477
hashing, 474–475
special methods, 472

P
Packing tuples, 468
Page, Lawrence, 202

751Index

Queuing theory, 613

R
Ragged arrays, 125–126
Raising exceptions, 487
Ramanujan, S., 95
Ramanujan’s taxi, 95
Random graphs, 709
random module, 37
Random numbers

distributions for, 203
producing, 59–60
random web surfer, 192
seeds, 494
Sierpinski triangle, 266–267
stdrandom module, 259–263

Random queues, 612
Random shortcuts, 713
Random surfer model, 188
Random walks

self-avoiding, 126–129
two-dimensional, 95–96
undirected graphs, 724

RandomQueue data type, 617
randomseq.py, 141–142, 153–154
randomsurfer.py, 192–196
Range count operations, 663
range() built-in function, 88
for loops, 66–67
iterables, 662

Range search operations, 663
rangefilter.py, 155–157
Ranks

binary search trees, 663
web pages, 192–195, 198–202

Raphson, Joseph, 74
Raster images, 371
Real numbers, 28
Real part of complex numbers, 424
Real-world data working with, 715
Rectangle class, 440–441
Rectangle rule, 478
Recurrence relation, 300
Recursion

221, 243–244
Problem size, 513
Programming environments, 730
Programming overview, 1

composing programs, 2–3
errors, 5
executing programs, 3
exercises, 12
helloworld.py example, 3–5
input and output, 6–7
Q&A, 8–11

Programs, connecting, 154
Promotion, automatic, 40
Pure functions, 38, 218
Push operation, 591–593
Pushdown stacks, 591–592
Put operation, 634–635
.py files, 2
.pyc files, 283
Pygame library, 176, 257
python command, 42
Python lists. See Lists.
Python language, 1
Python system, 2
Python virtual machine, 451, 604
PYTHONPATH variable, 282

Q
Quad play, 301–303
Quadratic order of growth,

522–523
quadratic.py, 30–31
Quadrature integration, 478
Quaternions, 445–446
questions.py, 557–558
Queue data type, 608
Queues, 607–608

applications, 613–616
circular, 629
exercises, 622–633
linked-lists, 608–611
Q&A, 620–621
random, 612
resizing arrays, 611

arrays, 102
string concatenation operator, 22

Poisson processes, 613
Polar representation, 455
Polymorphism

description, 219
operators and functions, 356
overview, 469–471

Pop operation, 531, 591–593
__pos__() method, 472
Positive infinity, 46
Postconditions, 488
Postfix expressions, 604
Postorder tree traversal, 660
PostScript language, 422, 604
potential.py, 378–379
potentialgene.py, 358–359
Pound symbol (#) for comments, 4
__pow__() method, 472
Power law, 516
Power method, 198–202
powersoftwo.py, 63–65
Precedence

booleans, 32
defined, 16–17

Precision
conversion specifications, 144
floating-point numbers, 30

Preconditions, 488
Predictions, performance, 524–526
Preferred attachment process, 725
Prefix-free strings, 588
Preorder tree traversal, 660
Prime numbers, 118–120
primesieve.py, 118–120
Principia, 497
Principle of superposition, 501
print statement, 176
Privacy

encapsulation, 455, 457
user-defined data types, 408

Private functions, 257
Private variables, 457
Probability density function (pdf),

752 Index

binary search trees, 654–655, 660
Brownian bridges, 306–309
Euclid’s algorithm, 295–296
exercises, 314–321
exponential time, 300–301
function-call trees, 297, 299
graphics, 304–305
Gray codes, 301–303
mathematical induction, 294
overview, 290–291
percolation case study, 334–336
perspective, 312
pitfalls, 309–311
Q&A, 313
sample program, 292–293
towers of Hanoi, 296–298

Recursive graphics, 419
Recursive squares, 318
Recursive step

binary searches, 557
mergesort, 573

Red–black trees, 659
Redirection and piping, 151

connecting programs, 154
from files, 153–154
to files, 151
filters, 155–157
multiple streams, 157

Reduction
mathematical induction, 294
recursive functions, 293
to sorting, 581

Reference equality, 473
References, object, 18, 364
Relative entropy, 679
Remainder operation, 25, 45
Removing

array items, 532–533
binary search tree nodes, 663
collection items, 590
dictionaries, 664
linked-list nodes, 597
symbol table keys, 636

Repetitive code, arrays for, 115

repr() built-in function, 48
Representation in API design, 453
Reproducible experiments, 513
Resizing arrays

FIFO queues, 611
overview, 532–533
stacks, 592–594
symbol tables, 645, 647

Resource allocation, 617–618
Return values

arrays as, 229–230
functions, 36–37, 211, 215–217,

226–230
methods, 353

Reusing software, 248, 280, 715. See
also Modular programming

Reverse Polish notation, 604
reversed() built-in function, 662
RGB color format, 54–55, 366–367
Riemann integral, 478
Right associative operations, 16–17
Right subtrees in BSTs, 653, 655
Riley, J. W., 469
Ring buffers, 629
Ring graphs

description, 708–709
with random shortcuts, 713

Roots in binary search trees, 653
round() built-in function, 39, 47
Round-robin policy, 617
Row-major array order, 122–123
Row vectors, 124–125
Rows in two-dimensional arrays,

120, 133
ruler.py, 24
Run-time errors, 5
Running programs, 3
Running time of programs. See also

Performance
observing, 513
order of growth classifications,

520–524
overview, 518–520

S
sample.py, 112–114
Sample standard deviation, 271
Sample variance, 271
Sampling

digital sound, 172–175
Nyquist frequency, 178
plotting functions, 163–164, 274
scaling, 373
sound waves, 232–234
without replacement, 112–114

Saving
drawings, 160
music, 173–175

Scaffolding, 324–325
scale.py, 375–376
Scaling

drawings, 160–162
Picture, 373, 375–376

Scientific computing, 730
Scientific method, 512

five-step approach, 513
hypotheses, 514–520
observations step, 513–514

Scientific notation, 28
SciPy library, 730
Scope of variables, 217
Screen scraping, 384–386
Scripts, 252
Searches. See Sorting and searching
Seeds for random numbers, 494
Self-avoiding walks, 126–129
Self-loops for graphs, 690
self parameter, 404–405, 410
selfavoid.py, 127–129
Semicolon separators (;), 9
Separate-chaining hash tables, 667
separation.py, 698–700
Sequences of objects. See Arrays
Sequential searches

description, 564
symbol tables, 645

set() built-in function, 372
__setitem__() method

753Index

lessons, 581–582
mergesort, 573–577
Q&A, 583–584
similar documents, 486
system sorts, 577

Sound. See Standard audio
Sound waves

plotting, 274–275
superposition of, 231–236

Space-filling curves, 446–447
Space–time tradeoff, 115, 648
Spaces, 9
Sparse matrices, 681
Sparse vectors, 681
Sparseness

random graphs, 709
small-world graphs, 707

Spatial vectors, 464–467
Special methods

complex numbers, 425–426
overloading, 472
strings, 357
user-defined data types, 404

Specification problem
API design, 452
stacks and queues, 612

Speed of computer, 525–526
Spider traps, 194
Spira mirabilis, 420–421
spiral.py, 420–421
Spirals, logarithmic, 420–421
Spirographs, 184
split.py, 386–387
Spreadsheets, 122–123
sqrt.py, 74–75
Square brackets ([])

arrays, 101
strings, 355–356

Square root function, 30–31, 37
Square roots, computing, 74–75
Squares, recursive, 318
Squaring Markov chains, 197–198
Stack data type, 592
stack.py, 593–594

study
Sine function, 37–38
Single quotes (') for strings, 22
Single-source shortest-path algo-

rithm, 698
Single-value subtrees, 675
Six degrees of separation, 684
Size

arrays, 532–533
binary search trees, 663
modules, 279–280, 341

Sketch data type, 481–484
sketch.py, 481–484
Sketches, 480–481

comparing, 484–486
computing, 481–483
similar documents, 486

Slashes (/) for division, 25–30, 45
Slicing arrays, 107
Slots, 540
Small-world case study, 684

exercises, 718–726
Graph, 689–693
graph client example, 693–696
graph shortest path, 697–706
graph uses, 685–688
lessons, 714–716
Q&A, 717

Small-world graphs, 707–708
classic, 711–713
determining, 708–711
ring graphs, 713

smallworld.py, 710–711
sort command, 155
sort() method, 531, 577
Sorted arrays

binary searches in, 564–566
symbol tables, 647

sorted() built-in function, 577
Sorting and searching, 556

insertion sorts, 557–566
exercises, 585–589
frequency count, 578–580
insertion sorts, 567–572

associative arrays, 635
Vector, 467

Sets
binary search trees, 665
graphs, 690
Julia, 449
Mandelbrot, 428–431

Sets and set data type
initializers, 667
overview, 666

Shannon entropy, 398
Shapes, outline and filled, 165–166
Short-circuiting operations, 34
Shortcut edges, 713
Shortest paths in graphs, 697–698

breadth-first search, 703
degrees of separation, 698–700
distances, 701–702
performance, 703–704
single-source clients, 698
trees, 702–703

Shorthand assignment notation, 66
Shuffling algorithm, 112, 260
Sicherman dice, 287
Side effects

arrays, 228–229
design-by-contract, 488
functions, 38, 218–219

Sierpinski triangle, 266–267
Sieve of Eratosthenes, 118–120
Similar documents, 486
Simple paths, 722
Simulations

coupon collector, 116–118
dice, 135
Let’s Make a Deal, 98
load balancing, 617–618
M/M/1 queues, 613–616
Monte Carlo, 78–80
n-body. See N-body simulation

case study
percolation. See Percolation case

study
web surfer, See Web surfer case

754 Index

arguments, 227–228
circular shifts, 394
comparisons, 43, 584
concatenating, 22–24, 535
converting, 24
format, 144–145
genomics application, 358–359
immutability, 462, 534
memory, 538
operations, 354–357
overview, 22
performance, 534–535
prefix-free, 588
Q&A, 43
representation, 362, 534
Unicode characters, 43
vertices, 689
whitespace in, 9

Strogatz, Stephen, 684, 707, 713
Stubs, 325
__sub__() method, 472
Subclasses, 479
Subtraction

Cartesian coordinate system, 455
complex numbers, 424
floating-point numbers, 28
matrices, 123–124
vectors, 464

Subtree size operations, 663
Successful searches in BSTs, 654
sum() built-in function

arrays, 105
iterables, 662
Python lists, 531

Sum-of-powers conjecture, 98
Superclasses, 479
Superposition

of forces, 501
of sound waves, 231–236

Surfaces, equipotential, 448–449
Symbol tables

BSTs. See Binary search trees
dictionaries, 638–642
elementary, 645–647

Statistics
basic, 271–273
gaussian distribution, 221
plotting, 273–277
sampling, 114

stdarray module, 108–110, 264
stdarray.py, 264–265
stdaudio module

description, 143
music files, 173
plotting, 274

stdaudio.py, 143
stddraw module

plotting, 273
unit testing, 263

stddraw.py, 143, 159
stdio module, 3, 37
stdio.py, 3, 143
stdrandom module, 259–263
stdrandom.py, 259–260, 262
stdstats module, 259, 271–273
stdstats.py, 271–273, 275
Stock prices
djia.csv file, 448, 640
screen scraping, 384–386

StockAccount data type, 432–435
stockaccount.py, 432–435
stockquote.py, 385–386
Stop codons, 358
Stopwatch data type, 412–413, 513
stopwatch.py, 412–413
str() built-in function
Complex, 425
Counter, 458
string conversions, 24, 39–40
Vector, 465

__str__() method
Charge, 407–408
Complex, 425
description, 477
Graph, 692–693
Vector, 465

Stress testing, 263
Strings and str data type, 14

Stacks, 590
applications, 602–607
exercises, 622–633
linked-list, 595–601
memory, 540
pushdown, 591–592
Q&A, 620–621
resizing array, 592–594
resource allocation, 617–618
summary, 619

Standard audio, 140, 171
concert A, 171
description, 143
notes, 172
sampling, 172–173
saving music to files, 173–175

Standard deviation, 179, 271
Standard drawing, 140, 158

animation, 168–170
control commands, 160–162
creating drawings, 158–160
description, 142
filtering data, 163
shapes, 165–166
plotting functions, 163–165
saving drawings, 160
text and color, 166–167

Standard input, 140
arbitrary-size input, 149–151
description, 142
format, 149
functions, 146–147
interactive user input, 149
redirecting, 153–154
typing, 148

Standard input stream, 146
Standard output, 141–142

overview, 143–144
redirecting, 152–153

Standard random, 259–263
Standard statistics, 271–277
Standards in API design, 451
Start codons, 358
Statements, 3

755Index

type() built-in function, 48
TypeError, 145, 219, 469

U
Underscore symbols (_)

instance variables, 405
private elements, 457
special methods, 357, 404

Undirected graphs, 689
Unicode characters, 43
Unit testing, 262–263
Unit vectors, 465
Universe data type, 501
universe.py, 503–504
Unordered arrays, 647
Unordered link lists, 647
Unpacking tuples, 468
Unsolvable problems, 452
Unsuccessful searches in BSTs, 654
useargument.py, 6–7
User-defined data types. See also

Objects
API for, 360, 403, 451–453
Brownian motion, 422–423
vs. built-in, 365
classes, 403
Color, 366–370
complex numbers, 424–427
constructors, 404
creating, 402
data mining application, 480–486
data processing, 432–435
design-by-contract, 487–488
designing, 450
elements, 403–411
encapsulation, 454–460
exercises, 393–400, 440–449,

491–495
file conventions, 361
functions, 407
functions as objects, 478
Histogram, 414–415
immutability, 461–463
inheritance, 479

Transition matrices, 190–191
transition.py, 190–191, 196
Transitivity in a total order, 476
Traversing

binary search trees, 660
linked lists, 600

Trees
BSTs. See Binary search trees
H-tree of order n, 304
shortest-paths, 702–703
traversing, 660

triangle.py, 159–160
Trigonometric functions, 47
True values, 32–33
__truediv__() method, 472
Truth tables, 32–33
Tukey plots, 287–288, 447
tuple() built-in function, 468, 662
Tuples and tuple data type

hash functions, 475
memory, 544
named, 540
overview, 468

Turing, Alan, 433
Turtle data type, 416–419
Turtle graphics, 416–422
turtle.py, 417–418
twentyquestions.py, 149–151, 557
Two-dimensional arrays

boolean, 324
description, 100
indexing, 122
initialization, 121–122
matrices, 123–125
memory, 538–539
overview, 120–121
ragged, 125–126
random walk, 95–96
self-avoiding walks, 126–129
spreadsheets, 122–123
transposition, 133

Two’s complement notation, 44–45
Type, 18, 364
Type checking, 219–220

exercises, 669–682
graphs, 690
hash tables, 647–650
indexes, 642–644
overview, 634–637
Q&A, 667–668
shortest path distances, 701

SymbolTable data type, 635
Syntax errors, 10
SyntaxError, 5
sys module, 6

T
3n+1 problem, 320
Tabs, 9
Tangent function, 37
Taylor series, 74–75, 222–223
Templates, 56
tenhellos.py, 61–63
Terminal windows, 141
Test clients, 252
Testing

importance of, 715
percolation case study, 327–331
random numbers, 262–263

Text in drawings, 166–167
Theoretical computer science, 731
Three-dimensional vectors

cross product, 491
n-body simulation, 506–507

threesum.py, 514–520, 527
Tilde notation (~), 518
time module, 412
timeops.py, 542
timesort.py, 570–571
Tkinter library, 176
Total order, 476.
Towers of Hanoi problem, 296–301
towersofhanoi.py, 297–299
Tracing

arrays, 104
functions, 214
object-level, 19
variables, 17

756 Index

API design, 452
avoiding, 621

Worst-case performance
binary search trees, 659
guarantees, 529

Wrapper data types, 238
Writing arrays, 105

Y
Y2K problem, 457

Z
Zero-based indexing, 102
Zero crossings, 181
ZeroDivisionError, 25, 45–46, 487
ZIP codes, 457
Zipf ’s law, 580

Vector–matrix multiplication, 124
Vector data type, 466–467
vector.py, 466–467
Vectors

cross products, 491–492
dot product, 101–102
n-body simulation, 498–502
sketch comparisons, 484
sparse, 681
spatial, 464–467

Velocity of bouncing ball, 170
Vertical bars (|) for piping, 154
Vertical percolation, 325–328
Vertices

eccentricity, 723
graphs, 685, 688–690, 692
isolated, 717

Virtual machines, 451, 604
visualizev.py, 329, 331, 336
Volatility

Brownian bridges, 306
implied, 244

von Neumann, John, 577

W
Watson–Crick complements, 394
Watts, Duncan, 684, 707, 713
Watts–Strogatz graph model, 725
.wav format, 173
Web graphs, 709
Web searches, indexing for, 644
Web surfer case study, 188–189

exercises, 204–206
input format, 189
lessons, 202–203
Markov chain mixing, 197–202
simulations, 192–196
transition matrix, 190–191

Weighing objects, 561
Weighted averages, 134
while statements, 60–66
Whitelists, 566
Whitespace characters, 9
Wide interfaces

input and output, 380
instance variables, 404–405
logarithmic spirals, 420–421
Mandelbrot set, 428–431
method calling, 362
methods, 406
object creation, 361, 405–406
overloading, 471–477
overview, 360
polymorphism, 469–471
privacy, 408
Q&A, 391–392, 437–439,

489–490
recursive graphics, 419
sample program, 362–364
spatial vectors, 464–467
Stopwatch, 412–413
string representation, 362
summary, 390, 408, 410–411, 436
tuples, 468
turtle graphics, 416–422

User-defined modules, 255–259

V
Vacancy probability, 323
Value equality, 473
ValueError, 30, 149
Values

objects, 18, 364
symbol tables, 634

Variables
class, 438
defined, 15–16, 18
defining and initializing, 21
exchanging, 20
functions, 215
incrementing, 19–20
in methods, 406–407
objects, 404–405
scope, 217
tracing, 17

Variance, 271
Vector fields, 495
Vector graphics, 371

	Contents
	Preface
	2.1 Defining Functions
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

