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Preface

Why is model building such a fun and rewarding activity? Ever since I 
was a kid I have loved to build models. At that time I mostly built mod-
els of cars and airplanes. I am not sure where LEGO was in those days. 
Still, LEGO has been a big part of my son’s life since he was very young. 
It is so fascinating to conceive and build models with those small bricks. 
It’s easy to come up with basic models, and it seems you can extend your 
ideas almost endlessly.

You can probably relate to some kind of youthful model building.
Models occur in so many situations in life. If you enjoy playing board 

games, you are using models. It might be a model of real estate and prop-
erty owners, or models of islands and survivors, or models of territories 
and building activities, and who knows what all. Similarly, video games are 
models. Perhaps they model a fantasy world with fanciful characters play-
ing fantastic roles. A deck of cards and related games model power. We use 
models all the time and probably so often that we don’t give most models a 
well-deserved acknowledgment. Models are just part of our lives.

But why? Every person has a learning style. There are a number of 
learning styles, but three of the most discussed are auditory, visual, and 
tactile styles. The auditory learners learn by hearing and listening. The 
visual learners learn by reading or seeing imagery. The tactile learners 
learn by doing something that involves touching. It’s interesting that 
each learning style is heavily favored by the individual to the extent that 
he or she can sometimes have trouble with other types of learning. For 
example, tactile learners likely remember what they have done but may 
have problems remembering what was said during the process. With 
model building, you would think that visual and tactile learners would 
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have a huge advantage over the auditory learners, because model build-
ing seems to mostly involve visual and tactile stimulation. However, that 
might not always hold true, especially if a team of model builders uses 
audible communication in their building process. In other words, model 
building holds out the possibility to accommodate the learning style of 
the vast majority of individuals. 

With our natural affinity to learning through model building, why 
would we not naturally desire to model the software that ever increas-
ingly assists and influences our lives? In fact, to model software appears 
to be, well, human. And model software we should. It seems to me that 
humans should be elite software model builders.

It is my strong desire to help you be as human as you can possibly be 
by modeling software using some of the best software modeling tools 
available. These tools are packaged under the name “Domain-Driven 
Design,” or DDD. This toolbox, actually a set of patterns, was first cod-
ified by Eric Evans in the book Domain-Driven Design: Tackling Com-
plexity in the Heart of Software [DDD]. It is my vision to bring DDD to 
everyone possible. To make my point, if I must say that I want to bring 
DDD to the masses, then so be it. That is where DDD deserves to be, 
and DDD is the toolbox that model-oriented humans deserve to use to 
create their most advanced software models. With this book, I am deter-
mined to make learning and using DDD as simple and easy as possible 
and to bring that to the broadest conceivable audience.

For auditory learners, DDD holds out the prospect of learning through 
the team communication of building a model based on the development 
of a Ubiquitous Language. For visual and tactile learners, the process 
of using DDD tools is very visual and hands-on as your team models 
both strategically and tactically. This is especially true when drawing 
Context Maps and modeling the business process using Event Storming. 
Thus, I believe that DDD can support everyone who wants to learn and 
achieve greatness through model building.

Who Is This Book For?

This book is for everyone interested in learning the most important DDD 
aspects and tools and in learning quickly. The most common readers 
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are software architects and software developers who will put DDD into 
practice on projects. Very often, software developers quickly discover 
the beauty of DDD and are keenly attracted to its powerful tooling. 
Even so, I have made the subject understandable for executives, domain 
experts, managers, business analysts, information architects, and testers 
alike. There’s really no limit to those in the information technology (IT) 
industry and research and development (R&D) environments who can 
benefit from reading this book.

If you are a consultant and you are working with a client to whom you 
have recommended the use of DDD, provide this book as a way to bring 
the major stakeholders up to speed quickly. If you have developers— 
perhaps junior or midlevel or even senior—working on your project 
who are unfamiliar with DDD but need to use it very soon, make sure 
that they read this book. By reading this book, at minimum, all the 
project stakeholders and developers will have the vocabulary and under-
stand the primary DDD tools being used. This will enable them to share 
things meaningfully as they move the project forward.

Whatever your experience level and role, read this book and then 
practice DDD on a project. Afterward, reread this book and see what 
you can learn from your experiences and where you can improve in the 
future.

What This Book Covers

The first chapter, “DDD for Me,” explains what DDD can do for you 
and your organization and provides a more detailed overview of what 
you will learn and why it’s important.

Chapter 2, “Strategic Design with Bounded Contexts and the Ubiq-
uitous Language,” introduces DDD strategic design and teaches the cor-
nerstones of DDD, Bounded Contexts and the Ubiquitous Language. 
Chapter 3, “Strategic Design with Subdomains,” explains Subdomains 
and how you can use them to deal with the complexity of integrating 
with existing legacy systems as you model your new applications. Chap-
ter 4, “Strategic Design with Context Mapping,” teaches the variety of 
ways that teams work together strategically and ways that their soft-
ware can integrate. This is called Context Mapping.
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Chapter 5, “Tactical Design with Aggregates,” switches your atten-
tion to tactical modeling with Aggregates. An important and powerful 
tactical modeling tool to be used with Aggregates is Domain Events, 
which is the subject of Chapter 6, “Tactical Design with Domain 
Events.”

Finally, in Chapter 7, “Acceleration and Management Tools,” the 
book highlights some project acceleration and project management tools 
that can help teams establish and maintain their cadence. These two 
topics are seldom if ever discussed in other DDD sources and are sorely 
needed by those who are determined to put DDD into practice.

Conventions

There are only a few conventions to keep in mind while reading. All of 
the DDD tools that I discuss are printed in italics. For example, you will 
read about Bounded Contexts and Domain Events. Another conven-
tion is that any source code is presented in a monospaced Courier font. 
Acronyms and abbreviations for works listed in the References on pages 
136-137 appear in square brackets throughout the chapters.

Even so, what this book emphasizes most, and what your brain should 
like a lot, is visual learning through lots of diagrams and figures. You 
will notice that there are no figure numbers in the book, because I didn’t 
want to distract you with so many of those. In every case the figures 
and diagrams precede the text that discusses them, which means that 
the graphic visuals introduce thoughts as you work your way through 
the book. That means that when you are reading text, you can count on 
referring back to the previous figure or diagram for visual support.
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Chapter 1

DDD for Me

You want to improve your craft and to increase your success on proj-
ects. You are eager to help your business compete at new heights using 
the software you create. You want to implement software that not only 
correctly models your business’s needs but also performs at scale using 
the most advanced software architectures. Learning Domain-Driven 
Design (DDD), and learning it quickly, can help you achieve all of this 
and more.

DDD is a set of tools that assist you in designing and implementing 
software that delivers high value, both strategically and tactically. Your 
organization can’t be the best at everything, so it had better choose 
carefully at what it must excel. The DDD strategic development tools 
help you and your team make the competitively best software design 
choices and integration decisions for your business. Your organization 
will benefit most from software models that explicitly reflect its core 
competencies. The DDD tactical development tools can help you and 
your team design useful software that accurately models the business’s 
unique operations. Your organization should benefit from the broad 
options to deploy its solutions in a variety of infrastructures, whether 
in house or in the cloud. With DDD, you and your team can be the ones 
to bring about the most effective software designs and implementations 
needed to succeed in today’s competitive business landscape.

In this book I have distilled DDD for you, with condensed treat-
ment of both the strategic and tactical modeling tools. I understand the 
unique demands of software development and the challenges you face 
as you work to improve your craft in a fast-paced industry. You can’t 
always take months to read up on a subject like DDD, and yet you still 
want to put DDD to work as soon as possible.

I am the author of the best-selling book Implementing Domain-
Driven Design [IDDD], and I have also created and teach the three-day 
IDDD Workshop. And now I have also written this book to bring you 



Chapter 1 DDD for Me2

DDD in an aggressively condensed form. It’s all part of my commitment 
to bringing DDD to every software development team, where it deserves 
to be. My goal, of course, includes bringing DDD to you.

Will DDD Hurt?

You may have heard that DDD is a complicated approach to software 
development. Complicated? It certainly is not complicated of necessity. 
Indeed, it is a set of advanced techniques to be used on complex software 
projects. Due to its power and how much you have to learn, without 
expert instruction it can be daunting to put DDD into practice on your 
own. You have probably also found that some of the other DDD books 
are many hundreds of pages long and far from easy to consume and 
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apply. It required a lot of words for me to explain DDD in great detail in 
order to provide an exhaustive implementation reference on more than 
a dozen DDD topics and tools. That effort resulted in  Implementing 
Domain-Driven Design [IDDD]. This new condensed book is provided 
to familiarize you with the most important parts of DDD as quickly and 
simply as possible. Why? Because some are overwhelmed by the larger 
texts and need a distilled guide to help them take the initial steps to 
adoption. I have found that those who use DDD revisit the literature 
about it several times. In fact, you might even conclude that you will 
never learn enough, and so you will use this book as a quick reference, 
and refer to others for more detail, a number of times as your craft is 
refined. Others have had trouble selling DDD to their colleagues and the 
all-important management team. This book will help you do that, not 
only by explaining DDD in a condensed format, but also by showing 
that tools are available to accelerate and manage its use.

Of course, it is not possible to teach you everything about DDD in 
this book, because I have purposely distilled the DDD techniques for 
you. For much more in-depth coverage, see my book Implementing 
Domain-Driven Design [IDDD], and look into taking my three-day 
IDDD Workshop. The three-day intensive course, which I have deliv-
ered around the globe to a broad audience of hundreds of developers, 
helps get you up to speed with DDD rapidly. I also provide DDD train-
ing online at http://ForComprehension.com.

The good news is, DDD doesn’t have to hurt. Since you probably 
already deal with complexity on your projects, you can learn to use 
DDD to reduce the pain of winning over complexity.

Good, Bad, and Effective Design

Often people talk about good design and bad design. What kind of 
design do you do? Many software development teams don’t give design 
even a passing thought. Instead, they perform what I call “the task-
board shuffle.” This is where the team has a list of development tasks, 
such as with a Scrum product backlog, and they move a sticky note from 
the “To Do” column of their board to the “In Progress” column. Com-
ing up with the backlog item and performing “the task-board shuffle” 

http://ForComprehension.com
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constitutes the entirety of thoughtful insights, and the rest is left to cod-
ing heroics as programmers blast out the source. It rarely turns out as 
well as it could, and the cost to the business is usually the highest price 
paid for such nonexistent designs.

This often happens due to the pressure to deliver software releases 
on a relentless schedule, where management uses Scrum to primarily 
control timelines rather than allow for one of Scrum’s most important 
tenets: knowledge acquisition.

When I consult or teach at individual businesses, I generally find the 
same situations. Software projects are in peril, and entire teams are 
hired to keep systems up and running, patching code and data daily. 
The following are some of the insidious problems that I find, and inter-
estingly ones that DDD can readily help teams avoid. I start with the 
higher-level business problems and move to the more technical ones:

• Software development is considered a cost center rather than a 
profit center. Generally this is because the business views comput-
ers and software as necessary nuisances rather than sources of stra-
tegic advantage. (Unfortunately there may not be a cure for this if 
the business culture is firmly fixed.)

• Developers are too wrapped up with technology and trying to solve 
problems using technology rather than careful thought and design. 
This leads developers to constantly chase after new “shiny objects,” 
which are the latest fads in technology.

• The database is given too much priority, and most discussions 
about the solutions center around the database and a data model 
rather than business processes and operations.

• Developers don’t give proper emphasis to naming objects and oper-
ations according to the business purpose that they fill. This leads 
to a large chasm between the mental model that the business owns 
and the software that developers deliver.

• The previous problem is generally a result of poor collaboration 
with the business. Often the business stakeholders spend too much 
time in isolated work producing specifications that nobody uses, or 
that are only partly consumed by developers.
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• Project estimates are in high demand, and very frequently produc-
ing them can add significant time and effort, resulting in the delay 
of software deliverables. Developers use the “task-board shuffle” 
rather than thoughtful design. They produce a Big Ball of Mud 
(discussed in the following chapters) rather than appropriately seg-
regating models according to business drivers.

• Developers house business logic in user interface components and 
persistence components. Also, developers often perform persistence 
operations in the middle of business logic.

• There are broken, slow, and locking database queries that block 
users from performing time-sensitive business operations.

• There are wrong abstractions, where developers attempt to address 
all current and imagined future needs by overly generalizing solu-
tions rather than addressing actual concrete business needs.

• There are strongly coupled services, where an operation is per-
formed in one service, and that service calls directly to another ser-
vice to cause a balancing operation. This coupling often leads to 
broken business processes and unreconciled data, not to mention 
systems that are very difficult to maintain.

This all seems to happen in the spirit of “no design yields lower-cost 
software.” And all too often it is simply a matter of businesses and the 
software developers not knowing that there is a much better alternative. 
“Software is eating the world” [WSJ], and it should matter to you that 
software can also eat your profits, or feed your profits a banquet.

It’s important to understand that the imagined economy of No 
Design is a fallacy that has cleverly fooled those who apply the pressure 
to produce software without thoughtful design. That’s because design 
still flows from the brains of the individual developers through their 
fingertips as they wrangle with the code, without any input from others, 
including the business. I think that this quote sums up the situation well:

Questions about whether design is necessary or affordable are quite beside 
the point: design is inevitable. The alternative to good design is bad design, 
not no design at all. 

—Book Design: A Practical Introduction by Douglas Martin
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Although Mr. Martin’s comments are not specifically about software 
design, they are still applicable to our craft, where there is no substitute 
for thoughtful design. In the situation just described, if you have five 
software developers working on the project, No Design will actually 
produce an amalgamation of five different designs in one. That is, you 
get a blend of five different made-up business language interpretations 
that are developed without the benefit of the real Domain Experts.

The bottom line: we model whether we acknowledge modeling or 
not. This can be likened to how roads are developed. Some ancient 
roads started out as cart paths that were eventually molded into well-
worn trails. They took unexplained turns and made forks that served 
only a few who had rudimentary needs. At some point these pathways 
were smoothed and then paved for the comfort of the increasing num-
ber of travelers who used them. These makeshift thoroughfares aren’t 
traveled today because they were well designed, but because they exist. 
Few of our contemporaries can understand why traveling one of these 
is so uncomfortable and inconvenient. Modern roads are planned and 
designed according to careful studies of population, environment, and 
predictable flow. Both kinds of roads are modeled. One model employed 
minimal, base intellect. The other model exploited maximum cognition. 
Software can be modeled from either perspective.

If you are afraid that producing software with thoughtful design is 
expensive, think of how much more expensive it’s going to be to live 
with or even fix a bad design. This is especially so when we are talking 
about software that needs to distinguish your organization from all oth-
ers and yield considerable competitive advantages.

A word closely related to good is effective, and it possibly more accu-
rately states what we should strive for in software design: effective 
design. Effective design meets the needs of the business organization to 
the extent that it can distinguish itself from its competition by means of 
software. Effective design forces the organization to understand what it 
must excel at and is used to guide the creation of the correct software 
model.

In Scrum, knowledge acquisition is done through experimentation 
and collaborative learning and is referred to as “buying information” 
[Essential Scrum]. Knowledge is never free, but in this book I do provide 
ways for you to accelerate how you come by it.
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Just in case you still doubt that effective design matters, don’t forget 
the insights of someone who seems to have understood its importance:

Most people make the mistake of thinking design is what it looks like. 
People think it’s this veneer—that the designers are handed this box and 
told, “Make it look good!” That’s not what we think design is. It’s not 
just what it looks like and feels like. Design is how it works. 

—Steve Jobs 

In software, effective design matters, most. Given the single alterna-
tive, I recommend effective design.

Strategic Design

We begin with the all-important strategic design. You really cannot 
apply tactical design in an effective way unless you begin with strate-
gic design. Strategic design is used like broad brushstrokes prior to get-
ting into the details of implementation. It highlights what is strategically 
important to your business, how to divide up the work by importance, 
and how to best integrate as needed.

First you will learn how to segregate your domain models using the 
strategic design pattern called Bounded Contexts. Hand in glove, you 
will see how to develop a Ubiquitous Language as your domain model 
within an explicitly Bounded Context.

You will learn about the importance of engaging with not only devel-
opers but also Domain Experts as you develop your model’s Ubiquitous 
Language. You will see how a team of both software developers and 
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Domain Experts collaborate. This is a vital combination of smart and 
motivated people who are needed for DDD to produce the best results. 
The language you develop together through collaboration will become 
ubiquitous, pervasive, throughout the team’s spoken communication 
and software model.

As you advance further into strategic design, you will learn about 
Subdomains and how these can help you deal with the unbounded com-
plexity of legacy systems, and how to improve your results on greenfield 
projects. You will also see how to integrate multiple Bounded Contexts 
using a technique called Context Mapping. Context Maps define both 
team relationships and technical mechanisms that exist between two 
integrating Bounded Contexts.

Tactical Design

After I have given you a sound foundation with strategic design, you will 
discover DDD’s most prominent tactical design tools. Tactical design is 
like using a thin brush to paint the fine details of your domain model. 
One of the more important tools is used to aggregate entities and value 
objects together into a right-sized cluster. It’s the Aggregate pattern.
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DDD is all about modeling your domain in the most explicit way pos-
sible. Using Domain Events will help you both to model explicitly and 
to share what has occurred within your model with the systems that 
need to know about it. The interested parties might be your own local 
Bounded Context and other remote Bounded Contexts.

The Learning Process and Refining Knowledge

DDD teaches a way of thinking to help you and your team refine knowl-
edge as you learn about your business’s core competencies. This learn-
ing process is a matter of discovery through group conversation and 
experimentation. By questioning the status quo and challenging your 
assumptions about your software model, you will learn much, and this 
all-important knowledge acquisition will spread across the whole team. 
This is a critical investment in your business and team. The goal should 
be not only to learn and refine, but to learn and refine as quickly as 
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possible. There are additional tools to help with those goals that can be 
found in Chapter 7, “Acceleration and Management Tools.”

Let’s Get Started!

Even in a condensed presentation, there’s plenty to learn about DDD. So 
let’s get started with Chapter 2, “Strategic Design with Bounded Con-
texts and the Ubiquitous Language.”
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