
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134434421
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134434421
https://plusone.google.com/share?url=http://www.informit.com/title/9780134434421
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134434421
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134434421/Free-Sample-Chapter

Domain-Driven
Design Distilled

This page intentionally left blank

Domain-Driven
Design Distilled

Vaughn Vernon

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liabil-
ity is assumed for incidental or consequential damages in connection with or arising out of the
use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016936587

Copyright © 2016 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechani-
cal, photocopying, recording, or likewise. For information regarding permissions, request forms
and the appropriate contacts within the Pearson Education Global Rights & Permissions Depart-
ment, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-443442-1
ISBN-10: 0-13-443442-0
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, May 2016

http://www.pearsoned.com/permissions/

Nicole and Tristan
We did it again!

This page intentionally left blank

vii

Contents

Preface . xi

Acknowledgments . xv

About the Author . xvii

Chapter 1 DDD for Me . 1

Will DDD Hurt? . 2

Good, Bad, and Effective Design 3

Strategic Design . 7

Tactical Design . 8

The Learning Process and Refining Knowledge 9

Let’s Get Started! . 10

Chapter 2 Strategic Design with Bounded Contexts and the
Ubiquitous Language . 11

Domain Experts and Business Drivers 17

Case Study . 21

Fundamental Strategic Design Needed 25

Challenge and Unify . 29

Developing a Ubiquitous Language 34

Putting Scenarios to Work 38

What about the Long Haul? 40

Architecture . 41

Summary . 44

CONTENTSviii

Chapter 3 Strategic Design with Subdomains 45

What Is a Subdomain? . 46

Types of Subdomains . 46

Dealing with Complexity . 47

Summary . 50

Chapter 4 Strategic Design with Context Mapping 51

Kinds of Mappings . 54

Partnership . 54

Shared Kernel . 55

Customer-Supplier . 55

Conformist . 56

Anticorruption Layer . 56

Open Host Service . 57

Published Language . 58

Separate Ways . 58

Big Ball of Mud . 59

Making Good Use of Context Mapping 60

RPC with SOAP . 61

RESTful HTTP . 63

Messaging . 65

An Example in Context Mapping 70

Summary . 73

Chapter 5 Tactical Design with Aggregates 75

Why Used . 76

Aggregate Rules of Thumb . 81

Rule 1: Protect Business Invariants inside Aggregate
 Boundaries . 82

Rule 2: Design Small Aggregates 83

Rule 3: Reference Other Aggregates by Identity Only 84

Rule 4: Update Other Aggregates Using Eventual
 Consistency . 85

Modeling Aggregates . 88

Choose Your Abstractions Carefully 93

 Contents ix

Right-Sizing Aggregates . 95

Testable Units . 97

Summary . 98

Chapter 6 Tactical Design with Domain Events 99

Designing, Implementing, and Using Domain Events 100

Event Sourcing . 107

Summary . 109

Chapter 7 Acceleration and Management Tools 111

Event Storming . 112

Other Tools . 124

Managing DDD on an Agile Project 125

First Things First . 126

Use SWOT Analysis . 127

Modeling Spikes and Modeling Debt 128

Identifying Tasks and Estimating Effort 129

Timeboxed Modeling . 132

How to Implement . 133

Interacting with Domain Experts 134

Summary . 136

References . 137

Index . 139

This page intentionally left blank

xi

Preface

Why is model building such a fun and rewarding activity? Ever since I
was a kid I have loved to build models. At that time I mostly built mod-
els of cars and airplanes. I am not sure where LEGO was in those days.
Still, LEGO has been a big part of my son’s life since he was very young.
It is so fascinating to conceive and build models with those small bricks.
It’s easy to come up with basic models, and it seems you can extend your
ideas almost endlessly.

You can probably relate to some kind of youthful model building.
Models occur in so many situations in life. If you enjoy playing board

games, you are using models. It might be a model of real estate and prop-
erty owners, or models of islands and survivors, or models of territories
and building activities, and who knows what all. Similarly, video games are
models. Perhaps they model a fantasy world with fanciful characters play-
ing fantastic roles. A deck of cards and related games model power. We use
models all the time and probably so often that we don’t give most models a
well-deserved acknowledgment. Models are just part of our lives.

But why? Every person has a learning style. There are a number of
learning styles, but three of the most discussed are auditory, visual, and
tactile styles. The auditory learners learn by hearing and listening. The
visual learners learn by reading or seeing imagery. The tactile learners
learn by doing something that involves touching. It’s interesting that
each learning style is heavily favored by the individual to the extent that
he or she can sometimes have trouble with other types of learning. For
example, tactile learners likely remember what they have done but may
have problems remembering what was said during the process. With
model building, you would think that visual and tactile learners would

Prefacexii

have a huge advantage over the auditory learners, because model build-
ing seems to mostly involve visual and tactile stimulation. However, that
might not always hold true, especially if a team of model builders uses
audible communication in their building process. In other words, model
building holds out the possibility to accommodate the learning style of
the vast majority of individuals.

With our natural affinity to learning through model building, why
would we not naturally desire to model the software that ever increas-
ingly assists and influences our lives? In fact, to model software appears
to be, well, human. And model software we should. It seems to me that
humans should be elite software model builders.

It is my strong desire to help you be as human as you can possibly be
by modeling software using some of the best software modeling tools
available. These tools are packaged under the name “Domain-Driven
Design,” or DDD. This toolbox, actually a set of patterns, was first cod-
ified by Eric Evans in the book Domain-Driven Design: Tackling Com-
plexity in the Heart of Software [DDD]. It is my vision to bring DDD to
everyone possible. To make my point, if I must say that I want to bring
DDD to the masses, then so be it. That is where DDD deserves to be,
and DDD is the toolbox that model-oriented humans deserve to use to
create their most advanced software models. With this book, I am deter-
mined to make learning and using DDD as simple and easy as possible
and to bring that to the broadest conceivable audience.

For auditory learners, DDD holds out the prospect of learning through
the team communication of building a model based on the development
of a Ubiquitous Language. For visual and tactile learners, the process
of using DDD tools is very visual and hands-on as your team models
both strategically and tactically. This is especially true when drawing
Context Maps and modeling the business process using Event Storming.
Thus, I believe that DDD can support everyone who wants to learn and
achieve greatness through model building.

Who Is This Book For?

This book is for everyone interested in learning the most important DDD
aspects and tools and in learning quickly. The most common readers

 Preface xiii

are software architects and software developers who will put DDD into
practice on projects. Very often, software developers quickly discover
the beauty of DDD and are keenly attracted to its powerful tooling.
Even so, I have made the subject understandable for executives, domain
experts, managers, business analysts, information architects, and testers
alike. There’s really no limit to those in the information technology (IT)
industry and research and development (R&D) environments who can
benefit from reading this book.

If you are a consultant and you are working with a client to whom you
have recommended the use of DDD, provide this book as a way to bring
the major stakeholders up to speed quickly. If you have developers—
perhaps junior or midlevel or even senior—working on your project
who are unfamiliar with DDD but need to use it very soon, make sure
that they read this book. By reading this book, at minimum, all the
project stakeholders and developers will have the vocabulary and under-
stand the primary DDD tools being used. This will enable them to share
things meaningfully as they move the project forward.

Whatever your experience level and role, read this book and then
practice DDD on a project. Afterward, reread this book and see what
you can learn from your experiences and where you can improve in the
future.

What This Book Covers

The first chapter, “DDD for Me,” explains what DDD can do for you
and your organization and provides a more detailed overview of what
you will learn and why it’s important.

Chapter 2, “Strategic Design with Bounded Contexts and the Ubiq-
uitous Language,” introduces DDD strategic design and teaches the cor-
nerstones of DDD, Bounded Contexts and the Ubiquitous Language.
Chapter 3, “Strategic Design with Subdomains,” explains Subdomains
and how you can use them to deal with the complexity of integrating
with existing legacy systems as you model your new applications. Chap-
ter 4, “Strategic Design with Context Mapping,” teaches the variety of
ways that teams work together strategically and ways that their soft-
ware can integrate. This is called Context Mapping.

Prefacexiv

Chapter 5, “Tactical Design with Aggregates,” switches your atten-
tion to tactical modeling with Aggregates. An important and powerful
tactical modeling tool to be used with Aggregates is Domain Events,
which is the subject of Chapter 6, “Tactical Design with Domain
Events.”

Finally, in Chapter 7, “Acceleration and Management Tools,” the
book highlights some project acceleration and project management tools
that can help teams establish and maintain their cadence. These two
topics are seldom if ever discussed in other DDD sources and are sorely
needed by those who are determined to put DDD into practice.

Conventions

There are only a few conventions to keep in mind while reading. All of
the DDD tools that I discuss are printed in italics. For example, you will
read about Bounded Contexts and Domain Events. Another conven-
tion is that any source code is presented in a monospaced Courier font.
Acronyms and abbreviations for works listed in the References on pages
136-137 appear in square brackets throughout the chapters.

Even so, what this book emphasizes most, and what your brain should
like a lot, is visual learning through lots of diagrams and figures. You
will notice that there are no figure numbers in the book, because I didn’t
want to distract you with so many of those. In every case the figures
and diagrams precede the text that discusses them, which means that
the graphic visuals introduce thoughts as you work your way through
the book. That means that when you are reading text, you can count on
referring back to the previous figure or diagram for visual support.

xv

Acknowledgments

This is now my third book within the esteemed Addison-Wesley label.
It’s also my third time working with my editor, Chris Guzikowski, and
developmental editor, Chris Zahn, and I am happy to say that the third
time has been as much a charm as the first two. Thanks again for choos-
ing to publish my books.

As always, a book cannot be successfully written and published with-
out critical feedback. This time I turned to a number of DDD practi-
tioners who don’t necessarily teach or write about it but are nonetheless
working on projects while helping others use the powerful toolbox. I
felt that this kind of practitioner was crucial to make sure this aggres-
sively distilled material said exactly what is necessary and in just the
right way. It’s kind of like, if you want me to talk for 60 minutes, give
me 5 minutes to prepare; if you want me to talk for 5 minutes, give me a
few hours to prepare.

In alphabetical order by last name, those who helped me the most were
Jérémie Chassaing, Brian Dunlap, Yuji Kiriki, Tom Stockton, Tormod J.
Varhaugvik, Daniel Westheide, and Philip Windley. Thanks much!

This page intentionally left blank

xvii

About the Author

Vaughn Vernon is a veteran software craftsman and thought leader
in simplifying software design and implementation. He is the author
of the best-selling books Implementing Domain-Driven Design and
Reactive Messaging Patterns with the Actor Model, also published by
Addison-Wesley. He has taught his IDDD Workshop around the globe
to hundreds of software developers. Vaughn is a frequent speaker at
industry conferences. He is most interested in distributed computing,
messaging, and in particular with the Actor model. Vaughn specializes
in consulting around Domain-Driven Design and DDD using the Actor
model with Scala and Akka. You can keep up with Vaughn’s latest work
by reading his blog at www.VaughnVernon.co and by following him on
his Twitter account @VaughnVernon.

http://www.VaughnVernon.co

This page intentionally left blank

1

Chapter 1

DDD for Me

You want to improve your craft and to increase your success on proj-
ects. You are eager to help your business compete at new heights using
the software you create. You want to implement software that not only
correctly models your business’s needs but also performs at scale using
the most advanced software architectures. Learning Domain-Driven
Design (DDD), and learning it quickly, can help you achieve all of this
and more.

DDD is a set of tools that assist you in designing and implementing
software that delivers high value, both strategically and tactically. Your
organization can’t be the best at everything, so it had better choose
carefully at what it must excel. The DDD strategic development tools
help you and your team make the competitively best software design
choices and integration decisions for your business. Your organization
will benefit most from software models that explicitly reflect its core
competencies. The DDD tactical development tools can help you and
your team design useful software that accurately models the business’s
unique operations. Your organization should benefit from the broad
options to deploy its solutions in a variety of infrastructures, whether
in house or in the cloud. With DDD, you and your team can be the ones
to bring about the most effective software designs and implementations
needed to succeed in today’s competitive business landscape.

In this book I have distilled DDD for you, with condensed treat-
ment of both the strategic and tactical modeling tools. I understand the
unique demands of software development and the challenges you face
as you work to improve your craft in a fast-paced industry. You can’t
always take months to read up on a subject like DDD, and yet you still
want to put DDD to work as soon as possible.

I am the author of the best-selling book Implementing Domain-
Driven Design [IDDD], and I have also created and teach the three-day
IDDD Workshop. And now I have also written this book to bring you

Chapter 1 DDD for Me2

DDD in an aggressively condensed form. It’s all part of my commitment
to bringing DDD to every software development team, where it deserves
to be. My goal, of course, includes bringing DDD to you.

Will DDD Hurt?

You may have heard that DDD is a complicated approach to software
development. Complicated? It certainly is not complicated of necessity.
Indeed, it is a set of advanced techniques to be used on complex software
projects. Due to its power and how much you have to learn, without
expert instruction it can be daunting to put DDD into practice on your
own. You have probably also found that some of the other DDD books
are many hundreds of pages long and far from easy to consume and

 Good, Bad, and Effective Design 3

apply. It required a lot of words for me to explain DDD in great detail in
order to provide an exhaustive implementation reference on more than
a dozen DDD topics and tools. That effort resulted in Implementing
Domain-Driven Design [IDDD]. This new condensed book is provided
to familiarize you with the most important parts of DDD as quickly and
simply as possible. Why? Because some are overwhelmed by the larger
texts and need a distilled guide to help them take the initial steps to
adoption. I have found that those who use DDD revisit the literature
about it several times. In fact, you might even conclude that you will
never learn enough, and so you will use this book as a quick reference,
and refer to others for more detail, a number of times as your craft is
refined. Others have had trouble selling DDD to their colleagues and the
all-important management team. This book will help you do that, not
only by explaining DDD in a condensed format, but also by showing
that tools are available to accelerate and manage its use.

Of course, it is not possible to teach you everything about DDD in
this book, because I have purposely distilled the DDD techniques for
you. For much more in-depth coverage, see my book Implementing
Domain-Driven Design [IDDD], and look into taking my three-day
IDDD Workshop. The three-day intensive course, which I have deliv-
ered around the globe to a broad audience of hundreds of developers,
helps get you up to speed with DDD rapidly. I also provide DDD train-
ing online at http://ForComprehension.com.

The good news is, DDD doesn’t have to hurt. Since you probably
already deal with complexity on your projects, you can learn to use
DDD to reduce the pain of winning over complexity.

Good, Bad, and Effective Design

Often people talk about good design and bad design. What kind of
design do you do? Many software development teams don’t give design
even a passing thought. Instead, they perform what I call “the task-
board shuffle.” This is where the team has a list of development tasks,
such as with a Scrum product backlog, and they move a sticky note from
the “To Do” column of their board to the “In Progress” column. Com-
ing up with the backlog item and performing “the task-board shuffle”

http://ForComprehension.com

Chapter 1 DDD for Me4

constitutes the entirety of thoughtful insights, and the rest is left to cod-
ing heroics as programmers blast out the source. It rarely turns out as
well as it could, and the cost to the business is usually the highest price
paid for such nonexistent designs.

This often happens due to the pressure to deliver software releases
on a relentless schedule, where management uses Scrum to primarily
control timelines rather than allow for one of Scrum’s most important
tenets: knowledge acquisition.

When I consult or teach at individual businesses, I generally find the
same situations. Software projects are in peril, and entire teams are
hired to keep systems up and running, patching code and data daily.
The following are some of the insidious problems that I find, and inter-
estingly ones that DDD can readily help teams avoid. I start with the
higher-level business problems and move to the more technical ones:

• Software development is considered a cost center rather than a
profit center. Generally this is because the business views comput-
ers and software as necessary nuisances rather than sources of stra-
tegic advantage. (Unfortunately there may not be a cure for this if
the business culture is firmly fixed.)

• Developers are too wrapped up with technology and trying to solve
problems using technology rather than careful thought and design.
This leads developers to constantly chase after new “shiny objects,”
which are the latest fads in technology.

• The database is given too much priority, and most discussions
about the solutions center around the database and a data model
rather than business processes and operations.

• Developers don’t give proper emphasis to naming objects and oper-
ations according to the business purpose that they fill. This leads
to a large chasm between the mental model that the business owns
and the software that developers deliver.

• The previous problem is generally a result of poor collaboration
with the business. Often the business stakeholders spend too much
time in isolated work producing specifications that nobody uses, or
that are only partly consumed by developers.

 Good, Bad, and Effective Design 5

• Project estimates are in high demand, and very frequently produc-
ing them can add significant time and effort, resulting in the delay
of software deliverables. Developers use the “task-board shuffle”
rather than thoughtful design. They produce a Big Ball of Mud
(discussed in the following chapters) rather than appropriately seg-
regating models according to business drivers.

• Developers house business logic in user interface components and
persistence components. Also, developers often perform persistence
operations in the middle of business logic.

• There are broken, slow, and locking database queries that block
users from performing time-sensitive business operations.

• There are wrong abstractions, where developers attempt to address
all current and imagined future needs by overly generalizing solu-
tions rather than addressing actual concrete business needs.

• There are strongly coupled services, where an operation is per-
formed in one service, and that service calls directly to another ser-
vice to cause a balancing operation. This coupling often leads to
broken business processes and unreconciled data, not to mention
systems that are very difficult to maintain.

This all seems to happen in the spirit of “no design yields lower-cost
software.” And all too often it is simply a matter of businesses and the
software developers not knowing that there is a much better alternative.
“Software is eating the world” [WSJ], and it should matter to you that
software can also eat your profits, or feed your profits a banquet.

It’s important to understand that the imagined economy of No
Design is a fallacy that has cleverly fooled those who apply the pressure
to produce software without thoughtful design. That’s because design
still flows from the brains of the individual developers through their
fingertips as they wrangle with the code, without any input from others,
including the business. I think that this quote sums up the situation well:

Questions about whether design is necessary or affordable are quite beside
the point: design is inevitable. The alternative to good design is bad design,
not no design at all.

—Book Design: A Practical Introduction by Douglas Martin

Chapter 1 DDD for Me6

Although Mr. Martin’s comments are not specifically about software
design, they are still applicable to our craft, where there is no substitute
for thoughtful design. In the situation just described, if you have five
software developers working on the project, No Design will actually
produce an amalgamation of five different designs in one. That is, you
get a blend of five different made-up business language interpretations
that are developed without the benefit of the real Domain Experts.

The bottom line: we model whether we acknowledge modeling or
not. This can be likened to how roads are developed. Some ancient
roads started out as cart paths that were eventually molded into well-
worn trails. They took unexplained turns and made forks that served
only a few who had rudimentary needs. At some point these pathways
were smoothed and then paved for the comfort of the increasing num-
ber of travelers who used them. These makeshift thoroughfares aren’t
traveled today because they were well designed, but because they exist.
Few of our contemporaries can understand why traveling one of these
is so uncomfortable and inconvenient. Modern roads are planned and
designed according to careful studies of population, environment, and
predictable flow. Both kinds of roads are modeled. One model employed
minimal, base intellect. The other model exploited maximum cognition.
Software can be modeled from either perspective.

If you are afraid that producing software with thoughtful design is
expensive, think of how much more expensive it’s going to be to live
with or even fix a bad design. This is especially so when we are talking
about software that needs to distinguish your organization from all oth-
ers and yield considerable competitive advantages.

A word closely related to good is effective, and it possibly more accu-
rately states what we should strive for in software design: effective
design. Effective design meets the needs of the business organization to
the extent that it can distinguish itself from its competition by means of
software. Effective design forces the organization to understand what it
must excel at and is used to guide the creation of the correct software
model.

In Scrum, knowledge acquisition is done through experimentation
and collaborative learning and is referred to as “buying information”
[Essential Scrum]. Knowledge is never free, but in this book I do provide
ways for you to accelerate how you come by it.

 Strategic Design 7

Just in case you still doubt that effective design matters, don’t forget
the insights of someone who seems to have understood its importance:

Most people make the mistake of thinking design is what it looks like.
People think it’s this veneer—that the designers are handed this box and
told, “Make it look good!” That’s not what we think design is. It’s not
just what it looks like and feels like. Design is how it works.

—Steve Jobs

In software, effective design matters, most. Given the single alterna-
tive, I recommend effective design.

Strategic Design

We begin with the all-important strategic design. You really cannot
apply tactical design in an effective way unless you begin with strate-
gic design. Strategic design is used like broad brushstrokes prior to get-
ting into the details of implementation. It highlights what is strategically
important to your business, how to divide up the work by importance,
and how to best integrate as needed.

First you will learn how to segregate your domain models using the
strategic design pattern called Bounded Contexts. Hand in glove, you
will see how to develop a Ubiquitous Language as your domain model
within an explicitly Bounded Context.

You will learn about the importance of engaging with not only devel-
opers but also Domain Experts as you develop your model’s Ubiquitous
Language. You will see how a team of both software developers and

Chapter 1 DDD for Me8

Domain Experts collaborate. This is a vital combination of smart and
motivated people who are needed for DDD to produce the best results.
The language you develop together through collaboration will become
ubiquitous, pervasive, throughout the team’s spoken communication
and software model.

As you advance further into strategic design, you will learn about
Subdomains and how these can help you deal with the unbounded com-
plexity of legacy systems, and how to improve your results on greenfield
projects. You will also see how to integrate multiple Bounded Contexts
using a technique called Context Mapping. Context Maps define both
team relationships and technical mechanisms that exist between two
integrating Bounded Contexts.

Tactical Design

After I have given you a sound foundation with strategic design, you will
discover DDD’s most prominent tactical design tools. Tactical design is
like using a thin brush to paint the fine details of your domain model.
One of the more important tools is used to aggregate entities and value
objects together into a right-sized cluster. It’s the Aggregate pattern.

 The Learning Process and Refining Knowledge 9

DDD is all about modeling your domain in the most explicit way pos-
sible. Using Domain Events will help you both to model explicitly and
to share what has occurred within your model with the systems that
need to know about it. The interested parties might be your own local
Bounded Context and other remote Bounded Contexts.

The Learning Process and Refining Knowledge

DDD teaches a way of thinking to help you and your team refine knowl-
edge as you learn about your business’s core competencies. This learn-
ing process is a matter of discovery through group conversation and
experimentation. By questioning the status quo and challenging your
assumptions about your software model, you will learn much, and this
all-important knowledge acquisition will spread across the whole team.
This is a critical investment in your business and team. The goal should
be not only to learn and refine, but to learn and refine as quickly as

Chapter 1 DDD for Me10

possible. There are additional tools to help with those goals that can be
found in Chapter 7, “Acceleration and Management Tools.”

Let’s Get Started!

Even in a condensed presentation, there’s plenty to learn about DDD. So
let’s get started with Chapter 2, “Strategic Design with Bounded Con-
texts and the Ubiquitous Language.”

139

A
Abstractions

modeling Aggregates, 93–95
software design problems, 5

Acceleration and management tools
Event Storming, 112–124
managing DDD projects. See

Managing DDD on Agile Project
other tools, 124
overview of, 111–112
summary, 136

Acceptance tests
implementing DDD on Agile Project,

134
using with Event Storming, 124
validating domain model, 39–40

Accuracy, managing in project, 130–131
Actor model

caching Aggregates' state, 109
handling transactions, 78
using with DDD, 43

Adapters, 41–42
Aggregate Root, defined, 77
Aggregates

associating with Commands, 120–122
choosing abstractions carefully,

93–95
creating Big Ball of Mud via, 59
designing as testable units, 97–98
Domain Experts refining, 134–136

Event Sourcing Domain Events for,
107–109

identifying tasks/estimating effort,
129–131

integrating using messaging, 65–70
modeling, 88–93
overview, 75
right-sizing, 95–97
scenario using, 104–105
summary, 98
in tactical design, 8–9
transactions and, 78–81
why they are used, 76–78

Aggregates, design rules
commit one instance in one

transaction, 79–81
protect business invariants within

boundaries, 82
reference by identity only, 84–85
small size, 83–84
update with eventual consistency,

85–88
Agile Project Management Context

and Context Mapping, 52
modeling abstractions for Aggregates,

93–5
moving concepts to other Bounded

Contexts, 51
Anemic Domain Model, avoiding in

Aggregates, 88–89, 92

Index

Index140

Anticorruption Layer
Context Mapping, 56–57
integrating with Big Ball of Mud

via, 60
in Open Host Service, 57
RPC with SOAP using, 62

Application Services
Bounded Contexts architecture, 42
modeling Aggregates, 89

Architecture, Bounded Contexts, 41–43
Arrowheads, in Event Storming, 123
Asynchronous messaging, 65–70
At-Least-Once Delivery, messaging

pattern, 68–69
Atomic database transactions, 78–79

B
Bad design, in software development,

3–7
Behavior-Driven Development (BDD),

Ubiquitous Language, 39
Big Ball of Mud

case study, 21–24
Context Mapping and, 59–60
turning new software into, 17
using business experts to avoid,

18–20
using Subdomains for legacy systems,

48–49
Big-picture Event Storming, 114
Black marker pens, for Event Storming,

115, 122–123
Book Design: A Practical Introduction

(Martin), 5–6
Boundaries, Aggregate

design steps for right-sizing, 95–97
protecting business invariants within,

82
transactional consistency and, 78–81

Bounded Contexts
aligning with single Subdomain,

49–50
architectural components of, 41–43
case study, 21–24

drawing boundaries in Event
Storming, 122–124

Context Mapping between. See
Context Mapping

as fundamental strategic design tool,
25–29

modeling business policies into
separate, 20

showing flow on modeling surface in
Event Storming, 122–123

in strategic design, 7–8
Subdomains in. See Subdomains
in tactical design, 9
teams and source code repositories

for, 14
understanding, 11–14

Brandolini, Alberto, 112–113
Business

Aggregate boundaries protecting
invariants of, 82, 95–96

Domain Expert focus on, 17–20,
27–29

Event Storming focus on, 113
Event Storming process via Domain

Events, 116–118
eventual consistency driven by, 97
focus on complexity of, 29
leaking logic when modeling

Aggregates, 89
software design vs. purposes of, 4–5
Subdomains within domains of, 46
unit testing vs. validating

specifications for, 97–98

C
Caching, Aggregate performance, 109
Causal consistency, Domain Events for,

99–100
Challenge, 29
Claims, 19–20, 70–73
Classes, 90–94
Collaboration Context

challenging/unifying mental models,
33

and Context Mapping, 52
Command Message, 67
Command Query Responsibility

Segregation (CQRS), 43, 109

 Index 141

Commands, Event Storming
associate Entity/Aggregate to,

120–122
causing Domain Events, 118–120
Domain Events vs., 107
identifying tasks/estimating effort,

129–131
using Domain Experts to refine,

134–136
Complex behavior, modeling

Aggregates, 93
Complexity, Domain-Driven Design

reducing, 2–3
Conformist

Context Mapping, 56
Domain Event consumers and, 67
in Open Host Service, 57
RESTful HTTP mistakes and, 64

Context Mapping
defined, 52
example in, 70–73
making good use of, 60–61
overview of, 51–53
in problem space, 12
strategic design with, 8
summary, 73
using messaging, 65–70
using RESTful HTTP, 63–65
using RPC with SOAP, 61–63

Context Mapping, types of
Anticorruption Layer, 56–57
Big Ball of Mud, 59–60
Conformist, 56
Customer-Supplier, 55–56
Open Host Service, 57
Partnership, 54
Published Language, 58
Separate Ways, 58
Shared Kernel, 55

Core concepts
Bounded Contexts for, 25–26
case study, 21–24

Core Domain
challenging/unifying mental models

to create, 29–34
and Context Mapping, 52
dealing with complexity, 47–50

defined, 12
developing Ubiquitous Language,

34–41
Event Sourcing saving record of

occurrences in, 109
Event Storming to understand,

113–114
solution space implementing, 12
as type of Subdomain within project,

46–47
Ubiquitous Language maintenance

vs., 41
understanding, 13

Cost
Event Storming advantages, 113
false economy of no design, 5
software design vs. affordable, 4–5

Could computing, using with DDD, 43
Coupled services, software design vs.

strongly, 5
CQRS (Command Query Responsibility

Segregation), 43, 109
Customer-Supplier Context Mapping,

55–56

D
Database

atomic transactions, 78–79
software design and, 4–5

DDD (Domain-Driven Design)
complexity of, 2–3
good, bad and effective design, 3–7
learning process and refining

knowledge, 9–10
managing. See Managing DDD on

Agile Project
overview of, 1–2
strategic design, 7–8
tactical design, 8–9

DELETE operation, RESTful HTTP,
63–65

Design-level modeling, Event Storming,
114

Diagrams, 36
Domain Events

Context Mapping example, 70–73
creating interface, 101

Index142

Domain Events (continued)
enriching with additional data, 104
Event Sourcing and, 107–109
going asynchronous with REST, 65
in messaging, 65–70
naming types of, 101–102
properties, 103–104
scenario using, 104–107
summary, 109–110
in tactical design, 9, 99–100

Domain Events, Event Storming
associate Entity/Aggregate to

Command, 120–122
create Commands causing, 118–120
creating for business process,

116–118
identifying tasks/estimating effort,

129–131
identifying views/roles for users,

123–124
showing flow on modeling surface,

122–123
using Domain Experts to refine,

134–136
Domain Experts

business drivers and, 17–20
developing Ubiquitous Language as

scenarios, 35–41
focus on business complexity, 28
identifying core concepts, 26–29
implementing DDD on Agile Project,

133–134
interacting with, 134–136
modeling abstractions for Aggregates,

93–95
for one or more Subdomains, 46
in rapid design. See Event Storming
right-sizing Aggregates, 95–96
Scrum, 27
in strategic design, 7–8

E
Effective design, 6–7
Effort, estimating for Agile Project,

129–131
Enrichment, Domain Event, 71–72

Entities
Aggregates composed of, 77
associating with Commands,

120–122
defined, 76
implementing Aggregate design,

90–91
right-sizing Aggregates, 95
Value Objects describing/quantifying,

77
Estimates

managing tasks in Agile Project,
129–131

timeboxed modeling of tasks via,
132–134

Event-driven architecture, with DDD,
42, 112–113

Event Sourcing
in atomic database transactions, 78–79
overlap between Event Storming and,

121–122
persisting Domain Events for

Aggregates, 107–109
Event Storming

advantages of, 113–114
associate Entity/Aggregate to

Command, 120–122
Commands causing Domain Events,

118–120
concrete scenarios, 35
Domain Events for business process,

116–118
Domain Experts for, 134
event-driven modeling vs., 112–113
identify tasks/estimate effort,

129–131
identify views/roles for users,

123–124
implement DDD on Agile Project,

133–134
modeling spikes on DDD projects

via, 129
other tools used with, 124
show flow on modeling surface,

122–123
supplies needed for, 115–116

 Index 143

Events, in Event Storming, 113, 115
Eventual consistency

right-sizing Aggregates, 97
updating Aggregates, 85–88
working with, 88
working with scenarios, 38

F
Functional programming, modeling

Aggregates, 89

G
Generic Subdomain, 47
GET operation

Context Mapping example, 72
integration using RESTful HTTP,

63–65
Globally unique identity, Aggregate

design, 90–91
Good design, software development, 3–7

I
IDDD Workshop, 3
Idempotent Receiver, messaging, 68
Impact Mapping, 124
Implementing Domain-Driven Design

(IDDD), Vaughn, 1, 3
Input Adapters, Bounded Contexts

architecture, 42
Inspections policy, 19–20
Iterations

accuracy of long-term estimates for,
131

identifying tasks/estimating effort,
130

implementing DDD on Agile Project,
134

incurring modeling debt during,
128–129

as sprints, 126

K
Knowledge, 9–10
Knowledge acquisition, 4–5, 6

L
Language

evolution of terminology in human, 15
Ubiquitous. See Ubiquitous Language

Latency
in message exchange, 65
RESTful HTTP failures due to, 64

Learning process, refining knowledge
in, 9–10

Legacy systems, using Subdomains with,
47–50

M
Maintenance phase, Ubiquitous

Language, 40–41
Managing DDD on Agile Project

accuracy and, 130–131
Event Storming, 112–124
hiring good people, 126
how to implement, 133–134
identifying tasks/estimating effort,

129–131
interacting with Domain Experts,

134–136
modeling spikes/debt, 128–129
other tools, 124
overview of, 125–126
summary, 136
timeboxed modeling, 132–134
using SWOT analysis, 127–128

Martin, Douglas, 5–6
Memory footprint, designing small

Aggregates, 83
Messaging, 65–70
Metrics-based approach, identify tasks/

estimate effort, 129–131
Microservices, using with DDD, 43
Modeling

debt and spikes on DDD projects,
128–129

development of roads and, 6
overview of, 1

Modules, segregating Subdomains into, 50

Index144

N
Naming

of Aggregates, 91–92
of Domain Event types, 101–102
Domain Experts refining Aggregate,

134–136
Root Entity of Aggregate, 78

Network providers, RESTful HTTP
failures due to, 64

No Design, false economy of, 5
No Estimates approach, 125
Nouns, in Ubiquitous Language, 34–36

O
Object-oriented programming,

Aggregates, 88–89, 91–92
Open Host Service

consuming Published Language, 58
Context Mapping, 57
RESTful HTTP using, 63
RPC with SOAP using, 62

Opportunities, identifying Agile Project,
127–128

Output Adapters, Bounded Contexts
architecture, 42

P
Paper, conducting Event Storming on,

115–116
Parallel processing, Event Storming of

business process, 117
Partnership Context Mapping, 54
Performance, caching and snapshots for,

109
Persistence operations, software design

vs., 5
Persistence store, Aggregates by identity

for, 85
Pictures, in domain model development,

36
Policies

business group, 18–20
Context Mapping example of, 70–73
segregating into Bounded Contexts, 20

Ports, using with DDD, 41–42
POST operation, RESTful HTTP, 63–65

Problem space
Bounded Contexts in, 12
Event Storming advantages for, 114
overview of, 12
using Subdomains for discussing, 47

Process, Event Storming of business, 117
Product owner, Scrum, 27, 119
Properties, Domain Event, 103–104
Published Language

in Context Mapping, 58
integrating bounded contexts via, 67
RESTful HTTP using, 63
RPC with SOAP using, 62

PUT operation, RESTful HTTP, 63–65

Q
Query-back trade-offs, Domain Events,

71–72

R
Rapid design. See Event Storming
Reactive Model, using with DDD, 43
Reference by identity only, Aggregates,

84–85
References, used in this book, 137–138
Remote Procedure Calls (RPC) with

SOAP, 61–63
Representational State Transfer (REST),

43, 65
Request-Response communications,

messaging, 69–70
REST in Practice (RIP), 63–65
REST (Representational State Transfer),

43, 65
RESTful HTTP, 63–65, 72
Roads, modeling of, 6
Robustness, RPC lacking, 62
Roles, identifying for users in Event

Storming, 123–124
Root Entity, Aggregate

defined, 78
implementing Aggregate design,

90–91
right-sizing, 95

RPC (Remote Procedure Calls) with
SOAP, 61–63

 Index 145

S
Scenarios

developing Ubiquitous Language as,
35–38

implementing DDD on Agile Project,
133–134

include Domain Experts in, 134–136
putting to work, 38–40

Scrum
criticisms of, 125–126
DDD Domain Expert vs. product

owner in, 27
good, bad and effective design in, 3–7
managing project. See Managing

DDD on Agile Project
Semantic contextual boundaries,

Bounded Contexts, 12
Separate Ways Context Mapping, 58
Service-Oriented Architecture (SOA), 43
Services, Open Host Service, 57
Shared Kernel Context Mapping, 55
Simple Object Access Protocol (SOAP),

using RPC with, 61–63
Single Responsibility Principle (SRP),

Aggregates, 84
Size. See Boundaries, Aggregate
Snapshots, of Aggregate performance,

109
SOA (Service-Oriented Architecture), 43
SOAP (Simple Object Access Protocol),

using RPC with, 61–63
Software developers

developing Ubiquitous Language as
scenarios, 35–41

Domain Experts vs., 26–29
finding good, 126
rapid design for. See Event Storming

Solution space
Bounded Contexts used in, 12
overview of, 12
segregating Subdomain in, 50

Source code repositories, for Bounded
Contexts, 14

Specification (Adzic), 124
Specification by Example, refining

Ubiquitous Language, 39

Sprints
accuracy of long-term estimates for,

131
identifying tasks/estimating effort,

130
incurring modeling debt during,

128–129
SRP (Single Responsibility Principle),

Aggregates, 84
Stakeholders, software design vs., 4–5
Sticky notes, Event Storming

associate Entity/Aggregate to
Command, 121–122

create Commands causing Domain
Events, 118–120

defined, 113
Domain Events for business process,

116–117
identifying roles for users, 124
overview of, 115–116
showing flow on modeling surface,

123
Storage, referencing Aggregates by

identity for, 85
Strategic design

architectural components, 41–43
Bounded Contexts in, 11–17
case study, 21–24
challenging assumptions/unifying

mental models, 29–34
with Context Mapping. See Context

Mapping
Domain Experts and business drivers

in, 17–20
focus on business complexity, 28
fundamental need for, 25–29
with Subdomains. See Subdomains
summary, 43
Ubiquitous Language in, 11–17,

34–41
understanding, 7–8

Strengths, identifying Agile Project,
127–128

Subdomains
for complexity, 47–50
overview of, 45–46

Index146

Subdomains (continued)
showing flow in Event Storming,

122–123
strategic design with, 7–8
summary, 50
types of, 46–47
understanding, 46

Supplies, for Event Storming, 115–116
Supporting Domain, 47, 50
SWOT (Strengths, Weaknesses,

Opportunities, and Threats)
analysis, Agile Projects, 127–128

T
Tactical design

with Aggregates. See Aggregates
with Domain Events. See Domain

Events
understanding, 8–9

Taskboard shuffle
project estimates/use of, 5
software design vs., 3–4
tendency to design using, 126

Tasks
identifying/estimating in Agile

Project, 129–131
timeboxed modeling of, 132–133

Teams
assigning to each Bounded Context,

14
Conformist relationship between, 56
Context Mapping integrating, 53
Customer-Supplier relationship

between, 55–56
Event Storming advantages for,

113–114
Partnership relationship between, 54
Shared Kernel relationship between,

55
Ubiquitous Language spoken within,

13–14
Technology

Context Mapping integrating, 53
keeping domain model free of, 42
modeling Aggregates, 90
software design vs., 4–5

Testing
as benefit of Bounded Contexts, 25
designing Aggregrates for, 97–98
implementing DDD on Agile Project,

134
using Domain Experts in, 136
validating domain model, 39–40

Threats, identifying Agile Project,
127–128

Timeline control, Scrum for, 4–5
Transactional consistency boundary,

Aggregates, 78–81
Transactions, Aggregates, 78–81, 83–84

U
Ubiquitous Language

advantages of Event Storming, 113
in Anticorruption Layer Context

Mapping relationship, 56–57
challenging/unifying mental models

to create, 29–34
in Conformist Context Mapping

relationship, 56
for Core Domain, 46–47
developing, 34–41
developing by collaborative feedback

loop, 29
as fundamental strategic design tool,

25–29
maintenance phase of, 40–41
modeling abstractions for Aggregates,

93–95
modeling Aggregates, 93
naming Domain Event types, 101–102
in strategic design, 7
understanding, 11, 13–14
using Domain Experts to refine,

134–136
Ubiquitous Languages

integrating different, 53
Separate Ways Context Mapping

and, 58
translating with Published

Languages, 58
UML (Unified Modeling Language), 90,

112–113

 Index 147

Unbounded legacy systems, complexity
of, 48

Underwriting, Context Mapping
example, 70–73

Underwriting policy, 19–20
Unit testing, 40, 97–98
Updates, Aggregate, 85–88, 96–97
User interface, abstractions for

Aggregates, 94
User role, Event Storming, 119
User Story Mapping, Event Storming, 124
User Story Mapping (Patton), 124

V
Value Objects, and Aggregates, 77, 91
Views, for users in Event Storming,

123–124

W
Wall, conducting Event Storming on,

115
Weaknesses, identifying Agile Project,

127–128
Whack-a-mole issues, Big Ball of Mud,

59
Who? in Ubiquitous Language

development, 36–38
Work in progress (WIP)

accuracy of long-term estimates for,
131

identifying tasks/estimating effort,
130

incurring modeling debt during,
128–129

sprints as, 126

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 1 DDD for Me
	Will DDD Hurt?
	Good, Bad, and Effective Design
	Strategic Design
	Tactical Design
	The Learning Process and Refining Knowledge
	Let’s Get Started!

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

