
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780201717068
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780201717068
https://plusone.google.com/share?url=http://www.informit.com/title/9780201717068
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780201717068
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780201717068/Free-Sample-Chapter

Large-Scale C++

This page intentionally left blank

Large-Scale C++

Volume I

Process and Architecture

John Lakos

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and the publisher was aware of a trademark

claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or

implied warranty of any kind and assume no responsibility for errors or omissions. No liability is

assumed for incidental or consequential damages in connection with or arising out of the use of the

information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which

may include electronic versions; custom cover designs; and content particular to your business,

training goals, marketing focus, or branding interests), please contact our corporate sales department

at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2019948467

Copyright © 2020 Pearson Education, Inc.

Cover image: MBoe/Shutterstock

All rights reserved. This publication is protected by copyright, and permission must be obtained from

the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any

form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information

regarding permissions, request forms and the appropriate contacts within the Pearson Education Global

Rights & Permissions Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-201-71706-8

ISBN-10: 0-201-71706-9

ScoutAutomatedPrintLine

mailto:at$$$corpsales@pearsoned.comor(
mailto:contact$$$governmentsales@pearsoned.com
mailto:contact$$$intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

To my wife, Elyse, with whom the universe rewarded me,
and five wonderful children:

Sarah
Michele

Gabriella
Lindsey
Andrew

This page intentionally left blank

vii

Contents

Preface xvii

Acknowledgments xxv

Chapter 0: Motivation 1
0.1 The Goal: Faster, Better, Cheaper! .. 3

0.2 Application vs. Library Software .. 5

0.3 Collaborative vs. Reusable Software ... 14

0.4 Hierarchically Reusable Software .. 20

0.5 Malleable vs. Stable Software .. 29

0.6 The Key Role of Physical Design .. 44

0.7 Physically Uniform Software: The Component ... 46

0.8 Quantifying Hierarchical Reuse: An Analogy ... 57

0.9 Software Capital ... 86

0.10 Growing the Investment ... 98

0.11 The Need for Vigilance ..110

0.12 Summary ..114

Chapter 1: Compilers, Linkers, and Components 123
1.1 Knowledge Is Power: The Devil Is in the Details ..125

1.1.1 “Hello World!” ..125

1.1.2 Creating C++ Programs ..126

1.1.3 The Role of Header Files ...128

1.2 Compiling and Linking C++ ..129

1.2.1 The Build Process: Using Compilers and Linkers ...129

1.2.2 Classical Atomicity of Object (.o) Files ...134

viii Contents

1.2.3 Sections and Weak Symbols in .o Files ..138

1.2.4 Library Archives ...139

1.2.5 The “Singleton” Registry Example ..141

1.2.6 Library Dependencies ...146

1.2.7 Link Order and Build-Time Behavior ..151

1.2.8 Link Order and Runtime Behavior ...152

1.2.9 Shared (Dynamically Linked) Libraries ...153

1.3 Declarations, Definitions, and Linkage ..153

1.3.1 Declaration vs. Definition ..154

1.3.2 (Logical) Linkage vs. (Physical) Linking ...159

1.3.3 The Need for Understanding Linking Tools ...160

1.3.4 Alternate Definition of Physical “Linkage”: Bindage ...160

1.3.5 More on How Linkers Work ...162

1.3.6 A Tour of Entities Requiring Program-Wide Unique Addresses163

1.3.7 Constructs Where the Caller’s Compiler Needs the Definition’s Source Code166

1.3.8 Not All Declarations Require a Definition to Be Useful ...168

1.3.9 The Client’s Compiler Typically Needs to See Class Definitions169

1.3.10 Other Entities Where Users’ Compilers Must See the Definition170

1.3.11 Enumerations Have External Linkage, but So What?!...170

1.3.12 Inline Functions Are a Somewhat Special Case ...171

1.3.13 Function and Class Templates ..172

1.3.14 Function Templates and Explicit Specializations ...172

1.3.15 Class Templates and Their Partial Specializations ...179

1.3.16 extern Templates ..183

1.3.17 Understanding the ODR (and Bindage) in Terms of Tools ..185

1.3.18 Namespaces ..186

1.3.19 Explanation of the Default Linkage of const Entities ..188

1.3.20 Summary of Declarations, Definitions, Linkage, and Bindage ...188

1.4 Header Files ..190

1.5 Include Directives and Include Guards ..201

1.5.1 Include Directives ...201

1.5.2 Internal Include Guards ..203

1.5.3 (Deprecated) External Include Guards ...205

1.6 From .h /.cpp Pairs to Components ..209

1.6.1 Component Property 1 ..210

1.6.2 Component Property 2 ..212

1.6.3 Component Property 3 ..214

1.7 Notation and Terminology ..216

1.7.1 Overview ...217

1.7.2 The Is-A Logical Relationship ...219

1.7.3 The Uses-In-The-Interface Logical Relationship ...219

1.7.4 The Uses-In-The-Implementation Logical Relationship ..221

1.7.5 The Uses-In-Name-Only Logical Relationship and the Protocol Class226

1.7.6 In-Structure-Only (ISO) Collaborative Logical Relationships ..227

1.7.7 How Constrained Templates and Interface Inheritance Are Similar230

Contents ix

1.7.8 How Constrained Templates and Interface Inheritance Differ ...232

1.7.8.1 Constrained Templates, but Not Interface Inheritance ..232

1.7.8.2 Interface Inheritance, but Not Constrained Templates ..233

1.7.9 All Three “Inheriting” Relationships Add Unique Value ...234

1.7.10 Documenting Type Constraints for Templates ...234

1.7.11 Summary of Notation and Terminology ...237

1.8 The Depends-On Relation ..237

1.9 Implied Dependency ...243

1.10 Level Numbers ...251

1.11 Extracting Actual Dependencies ..256

1.11.1 Component Property 4 ..257

1.12 Summary ..259

Chapter 2: Packaging and Design Rules 269
2.1 The Big Picture...270

2.2 Physical Aggregation ..275

2.2.1 General Definition of Physical Aggregate ..275

2.2.2 Small End of Physical-Aggregation Spectrum ...275

2.2.3 Large End of Physical-Aggregation Spectrum ...277

2.2.4 Conceptual Atomicity of Aggregates ...277

2.2.5 Generalized Definition of Dependencies for Aggregates ...278

2.2.6 Architectural Significance ..278

2.2.7 Architectural Significance for General UORs ..279

2.2.8 Parts of a UOR That Are Architecturally Significant ...279

2.2.9 What Parts of a UOR Are Not Architecturally Significant? ...279

2.2.10 A Component Is “Naturally” Architecturally Significant ..280

2.2.11 Does a Component Really Have to Be a .h /.cpp Pair? ..280

2.2.12 When, If Ever, Is a .h /.cpp Pair Not Good Enough? ...280

2.2.13 Partitioning a .cpp File Is an Organizational-Only Change ..281

2.2.14 Entity Manifest and Allowed Dependencies ..281

2.2.15 Need for Expressing Envelope of Allowed Dependencies ...284

2.2.16 Need for Balance in Physical Hierarchy ..284

2.2.17 Not Just Hierarchy, but Also Balance ...285

2.2.18 Having More Than Three Levels of Physical Aggregation Is Too Many287

2.2.19 Three Levels Are Enough Even for Larger Systems ..289

2.2.20 UORs Always Have Two or Three Levels of Physical Aggregation289

2.2.21 Three Balanced Levels of Aggregation Are Sufficient. Trust Me!.....................................290

2.2.22 There Should Be Nothing Architecturally Significant Larger Than a UOR290

2.2.23 Architecturally Significant Names Must Be Unique ..292

2.2.24 No Cyclic Physical Dependencies! ..293

2.2.25 Section Summary ..293

2.3 Logical/Physical Coherence ..294

x Contents

2.4 Logical and Physical Name Cohesion ..297

2.4.1 History of Addressing Namespace Pollution ...298

2.4.2 Unique Naming Is Required; Cohesive Naming Is Good for Humans298

2.4.3 Absurd Extreme of Neither Cohesive nor Mnemonic Naming ..298

2.4.4 Things to Make Cohesive ...300

2.4.5 Past/Current Definition of Package ..300

2.4.6 The Point of Use Should Be Sufficient to Identify Location ...301

2.4.7 Proprietary Software Requires an Enterprise Namespace ...309

2.4.8 Logical Constructs Should Be Nominally Anchored to Their Component311

2.4.9 Only Classes, structs, and Free Operators at Package-Namespace Scope312

2.4.10 Package Prefixes Are Not Just Style ..322

2.4.11 Package Prefixes Are How We Name Package Groups ...326

2.4.12 using Directives and Declarations Are Generally a BAD IDEA328

2.4.13 Section Summary ..333

2.5 Component Source-Code Organization ..333

2.6 Component Design Rules ..342

2.7 Component-Private Classes and Subordinate Components ..370

2.7.1 Component-Private Classes ..370

2.7.2 There Are Several Competing Implementation Alternatives ..371

2.7.3 Conventional Use of Underscore ..371

2.7.4 Classic Example of Using Component-Private Classes ...378

2.7.5 Subordinate Components ..381

2.7.6 Section Summary ..384

2.8 The Package ..384

2.8.1 Using Packages to Factor Subsystems ...384

2.8.2 Cycles Among Packages Are BAD ..394

2.8.3 Placement, Scope, and Scale Are an Important First Consideration395

2.8.4 The Inestimable Communicative Value of (Unique) Package Prefixes399

2.8.5 Section Summary ..401

2.9 The Package Group ...402

2.9.1 The Third Level of Physical Aggregation ..402

2.9.2 Organizing Package Groups During Deployment ..413

2.9.3 How Do We Use Package Groups in Practice? ..414

2.9.4 Decentralized (Autonomous) Package Creation ..421

2.9.5 Section Summary ..421

2.10 Naming Packages and Package Groups ..422

2.10.1 Intuitively Descriptive Package Names Are Overrated ..422

2.10.2 Package-Group Names ...423

2.10.3 Package Names ...424

2.10.4 Section Summary ..427

2.11 Subpackages ..427

2.12 Legacy, Open-Source, and Third-Party Software ...431

2.13 Applications ...433

Contents xi

2.14 The Hierarchical Testability Requirement ..437

2.14.1 Leveraging Our Methodology for Fine-Grained Unit Testing ..438

2.14.2 Plan for This Section (Plus Plug for Volume II and Especially Volume III)438

2.14.3 Testing Hierarchically Needs to Be Possible ..439

2.14.4 Relative Import of Local Component Dependencies with Respect to Testing447

2.14.5 Allowed Test-Driver Dependencies Across Packages ...451

2.14.6 Minimize Test-Driver Dependencies on the External Environment454

2.14.7 Insist on a Uniform (Standalone) Test-Driver Invocation Interface456

2.14.8 Section Summary ...458

2.15 From Development to Deployment ...459

2.15.1 The Flexible Deployment of Software Should Not Be Compromised459

2.15.2 Having Unique .h and .o Names Are Key ...460

2.15.3 Software Organization Will Vary During Development..460

2.15.4 Enterprise-Wide Unique Names Facilitate Refactoring ..461

2.15.5 Software Organization May Vary During Just the Build Process462

2.15.6 Flexibility in Deployment Is Needed Even Under Normal Circumstances462

2.15.7 Flexibility Is Also Important to Make Custom Deployments Possible.............................462

2.15.8 Flexibility in Stylistic Rendering Within Header Files ...463

2.15.9 How Libraries Are Deployed Is Never Architecturally Significant464

2.15.10 Partitioning Deployed Software for Engineering Reasons ...464

2.15.11 Partitioning Deployed Software for Business Reasons ..467

2.15.12 Section Summary ...469

2.16 Metadata ..469

2.16.1 Metadata Is “By Decree” ..470

2.16.2 Types of Metadata ...471

2.16.2.1 Dependency Metadata ...471

2.16.2.2 Build Requirements Metadata ...475

2.16.2.3 Membership Metadata ...476

2.16.2.4 Enterprise-Specific Policy Metadata ...476

2.16.3 Metadata Rendering ..478

2.16.4 Metadata Summary ..479

2.17 Summary ...481

Chapter 3: Physical Design and Factoring 495
3.1 Thinking Physically ...497

3.1.1 Pure Classical (Logical) Software Design Is Naive ...497

3.1.2 Components Serve as Our Fine-Grained Modules ...498

3.1.3 The Software Design Space Has Direction ..498

3.1.3.1 Example of Relative Physical Position: Abstract Interfaces.............................498

3.1.4 Software Has Absolute Location ..500

3.1.4.1 Asking the Right Questions Helps Us Determine Optimal Location500

3.1.4.2 See What Exists to Avoid Reinventing the Wheel ..500

3.1.4.3 Good Citizenship: Identifying Proper Physical Location501

xii Contents

3.1.5 The Criteria for Colocation Should Be Substantial, Not Superficial501

3.1.6 Discovery of Nonprimitive Functionality Absent Regularity Is Problematic501

3.1.7 Package Scope Is an Important Design Consideration ...502

3.1.7.1 Package Charter Must Be Delineated in Package-Level Documentation502

3.1.7.2 Package Prefixes Are at Best Mnemonic Tags, Not Descriptive Names502

3.1.7.3 Package Prefixes Force Us to Consider Design More Globally Early503

3.1.7.4 Package Prefixes Force Us to Consider Package Dependencies

from the Start ..503

3.1.7.5 Even Opaque Package Prefixes Grow to Take On Important Meaning504

3.1.7.6 Effective (e.g., Associative) Use of Package Names Within Groups504

3.1.8 Limitations Due to Prohibition on Cyclic Physical Dependencies505

3.1.9 Constraints on Friendship Intentionally Preclude Some Logical Designs508

3.1.10 Introducing an Example That Justifiably Requires Wrapping ..508

3.1.10.1 Wrapping Just the Time Series and Its Iterator in a Single Component509

3.1.10.2 Private Access Within a Single Component Is an Implementation Detail511

3.1.10.3 An Iterator Helps to Realize the Open-Closed Principle511

3.1.10.4 Private Access Within a Wrapper Component Is Typically Essential512

3.1.10.5 Since This Is Just a Single-Component Wrapper, We Have Several Options ..512

3.1.10.6 Multicomponent Wrappers, Not Having Private Access, Are Problematic513

3.1.10.7 Example Why Multicomponent Wrappers Typically Need “Special” Access 515

3.1.10.8 Wrapping Interoperating Components Separately Generally Doesn’t Work ...516

3.1.10.9 What Should We Do When Faced with a Multicomponent Wrapper?516

3.1.11 Section Summary ..517

3.2 Avoiding Poor Physical Modularity ...517

3.2.1 There Are Many Poor Modularization Criteria; Syntax Is One of Them517

3.2.2 Factoring Out Generally Useful Software into Libraries Is Critical518

3.2.3 Failing to Maintain Application/Library Modularity Due to Pressure518

3.2.4 Continuous Demotion of Reusable Components Is Essential...519

3.2.4.1 Otherwise, in Time, Our Software Might Devolve into a

“Big Ball of Mud”! ...521

3.2.5 Physical Dependency Is Not an Implementation Detail to an App Developer521

3.2.6 Iterators Can Help Reduce What Would Otherwise Be Primitive Functionality529

3.2.7 Not Just Minimal, Primitive: The Utility struct ...529

3.2.8 Concluding Example: An Encapsulating Polygon Interface ...530

3.2.8.1 What Other UDTs Are Used in the Interface? ..530

3.2.8.2 What Invariants Should our::Polygon Impose? ..531

3.2.8.3 What Are the Important Use Cases? ...531

3.2.8.4 What Are the Specific Requirements? ..532

3.2.8.5 Which Required Behaviors Are Primitive and Which Aren’t?533

3.2.8.6 Weighing the Implementation Alternatives ...534

3.2.8.7 Achieving Two Out of Three Ain’t Bad ..535

3.2.8.8 Primitiveness vs. Flexibility of Implementation ...535

3.2.8.9 Flexibility of Implementation Extends Primitive Functionality536

3.2.8.10 Primitiveness Is Not a Draconian Requirement ..536

Contents xiii

3.2.8.11 What About Familiar Functionality Such as Perimeter and Area?537

3.2.8.12 Providing Iterator Support for Generic Algorithms ..539

3.2.8.13 Focus on Generally Useful Primitive Functionality ...540

3.2.8.14 Suppress Any Urge to Colocate Nonprimitive Functionality541

3.2.8.15 Supporting Unusual Functionality ..541

3.2.9 Semantics vs. Syntax as Modularization Criteria ...552

3.2.9.1 Poor Use of u as a Package Suffix ...552

3.2.9.2 Good Use of util as a Component Suffix ...553

3.2.10 Section Summary ..553

3.3 Grouping Things Physically That Belong Together Logically ..555

3.3.1 Four Explicit Criteria for Class Colocation ..555

3.3.1.1 First Reason: Friendship ...556

3.3.1.2 Second Reason: Cyclic Dependency ..557

3.3.1.3 Third Reason: Single Solution ..557

3.3.1.4 Fourth Reason: Flea on an Elephant ...559

3.3.2 Colocation Beyond Components ...560

3.3.3 When to Make Helper Classes Private to a Component ...561

3.3.4 Colocation of Template Specializations ..564

3.3.5 Use of Subordinate Components ...564

3.3.6 Colocate Tight Mutual Collaboration within a Single UOR ...565

3.3.7 Day-Count Example ..566

3.3.8 Final Example: Single-Threaded Reference-Counted Functors576

3.3.8.1 Brief Review of Event-Driven Programming ...576

3.3.8.2 Aggregating Components into Packages ..586

3.3.8.3 The Final Result ..589

3.3.9 Section Summary ..591

3.4 Avoiding Cyclic Link-Time Dependencies ..592

3.5 Levelization Techniques ...602

3.5.1 Classic Levelization ...602

3.5.2 Escalation ..604

3.5.3 Demotion ...614

3.5.4 Opaque Pointers ..618

3.5.4.1 Manager/Employee Example ..618

3.5.4.2 Event/EventQueue Example ...623

3.5.4.3 Graph/Node/Edge Example ..625

3.5.5 Dumb Data ..629

3.5.6 Redundancy ...634

3.5.7 Callbacks ...639

3.5.7.1 Data Callbacks ..640

3.5.7.2 Function Callbacks ..643

3.5.7.3 Functor Callbacks ...651

3.5.7.4 Protocol Callbacks ..655

3.5.7.5 Concept Callbacks ..664

xiv Contents

3.5.8 Manager Class ...671

3.5.9 Factoring ..674

3.5.10 Escalating Encapsulation ...677

3.5.10.1 A More General Solution to Our Graph Subsystem681

3.5.10.2 Encapsulating the Use of Implementation Components683

3.5.10.3 Single-Component Wrapper ...685

3.5.10.4 Overhead Due to Wrapping ..687

3.5.10.5 Realizing Multicomponent Wrappers ...687

3.5.10.6 Applying This New, “Heretical” Technique to Our Graph Example688

3.5.10.7 Why Use This “Magic” reinterpret_cast Technique?692

3.5.10.8 Wrapping a Package-Sized System ..693

3.5.10.9 Benefits of This Multicomponent-Wrapper Technique701

3.5.10.10 Misuse of This Escalating-Encapsulation Technique702

3.5.10.11 Simulating a Highly Restricted Form of Package-Wide Friendship702

3.5.11 Section Summary ..703

3.6 Avoiding Excessive Link-Time Dependencies ..704

3.6.1 An Initially Well-Factored Date Class That Degrades Over Time705

3.6.2 Adding Business-Day Functionality to a Date Class (BAD IDEA)715

3.6.3 Providing a Physically Monolithic Platform Adapter (BAD IDEA)..................................717

3.6.4 Section Summary ..722

3.7 Lateral vs. Layered Architectures ..722

3.7.1 Yet Another Analogy to the Construction Industry ..723

3.7.2 (Classical) Layered Architectures...723

3.7.3 Improving Purely Compositional Designs ...726

3.7.4 Minimizing Cumulative Component Dependency (CCD) ...727

3.7.4.1 Cumulative Component Dependency (CCD) Defined729

3.7.4.2 Cumulative Component Dependency: A Concrete Example730

3.7.5 Inheritance-Based Lateral Architectures ..732

3.7.6 Testing Lateral vs. Layered Architectures ..738

3.7.7 Section Summary ..738

3.8 Avoiding Inappropriate Link-Time Dependencies ...739

3.8.1 Inappropriate Physical Dependencies...740

3.8.2 “Betting” on a Single Technology (BAD IDEA) ...745

3.8.3 Section Summary ..753

3.9 Ensuring Physical Interoperability ...753

3.9.1 Impeding Hierarchical Reuse Is a BAD IDEA ..753

3.9.2 Domain-Specific Use of Conditional Compilation Is a BAD IDEA754

3.9.3 Application-Specific Dependencies in Library Components Is a BAD IDEA758

3.9.4 Constraining Side-by-Side Reuse Is a BAD IDEA ..760

3.9.5 Guarding Against Deliberate Misuse Is Not a Goal ...761

3.9.6 Usurping Global Resources from a Library Component Is a BAD IDEA762

3.9.7 Hiding Header Files to Achieve Logical Encapsulation Is a BAD IDEA762

3.9.8 Depending on Nonportable Software in Reusable Libraries Is a BAD IDEA...................766

Contents xv

3.9.9 Hiding Potentially Reusable Software Is a BAD IDEA...769

3.9.10 Section Summary ..772

3.10 Avoiding Unnecessary Compile-Time Dependencies ...773

3.10.1 Encapsulation Does Not Preclude Compile-Time Coupling ..773

3.10.2 Shared Enumerations and Compile-Time Coupling ..776

3.10.3 Compile-Time Coupling in C++ Is Far More Pervasive Than in C778

3.10.4 Avoiding Unnecessary Compile-Time Coupling ..778

3.10.5 Real-World Example of Benefits of Avoiding Compile-Time Coupling783

3.10.6 Section Summary ..790

3.11 Architectural Insulation Techniques ..790

3.11.1 Formal Definitions of Encapsulation vs. Insulation ..790

3.11.2 Illustrating Encapsulation vs. Insulation in Terms of Components791

3.11.3 Total vs. Partial Insulation ...793

3.11.4 Architecturally Significant Total-Insulation Techniques ..794

3.11.5 The Pure Abstract Interface (“Protocol”) Class ...796

3.11.5.1 Extracting a Protocol ..799

3.11.5.2 Equivalent “Bridge” Pattern ...801

3.11.5.3 Effectiveness of Protocols as Insulators ...802

3.11.5.4 Implementation-Specific Interfaces ..802

3.11.5.5 Static Link-Time Dependencies ...802

3.11.5.6 Runtime Overhead for Total Insulation ..803

3.11.6 The Fully Insulating Concrete Wrapper Component ...804

3.11.6.1 Poor Candidates for Insulating Wrappers...807

3.11.7 The Procedural Interface ..810

3.11.7.1 What Is a Procedural Interface? ...810

3.11.7.2 When Is a Procedural Interface Indicated? ...811

3.11.7.3 Essential Properties and Architecture of a Procedural Interface812

3.11.7.4 Physical Separation of PI Functions from Underlying C++ Components813

3.11.7.5 Mutual Independence of PI Functions ...814

3.11.7.6 Absence of Physical Dependencies Within the PI Layer814

3.11.7.7 Absence of Supplemental Functionality in the PI Layer814

3.11.7.8 1-1 Mapping from PI Components to Lower-Level Components

(Using the z_ Prefix) ...815

3.11.7.9 Example: Simple (Concrete) Value Type ...816

3.11.7.10 Regularity/Predictability of PI Names ..819

3.11.7.11 PI Functions Callable from C++ as Well as C ...823

3.11.7.12 Actual Underlying C++ Types Exposed Opaquely for C++ Clients824

3.11.7.13 Summary of Essential Properties of the PI Layer ..825

3.11.7.14 Procedural Interfaces and Return-by-Value..826

3.11.7.15 Procedural Interfaces and Inheritance ..828

3.11.7.16 Procedural Interfaces and Templates ..829

3.11.7.17 Mitigating Procedural-Interface Costs..830

3.11.7.18 Procedural Interfaces and Exceptions ..831

xvi Contents

3.11.8 Insulation and DLLs ..833

3.11.9 Service-Oriented Architectures ...833

3.11.10 Section Summary ..834

3.12 Designing with Components ...835

3.12.1 The “Requirements” as Originally Stated ...835

3.12.2 The Actual (Extrapolated) Requirements ..837

3.12.3 Representing a Date Value in Terms of a C++ Type ...838

3.12.4 Determining What Date Value Today Is ..849

3.12.5 Determining If a Date Value Is a Business Day ..853

3.12.5.1 Calendar Requirements ...854

3.12.5.2 Multiple Locale Lookups ..858

3.12.5.3 Calendar Cache ..861

3.12.5.4 Application-Level Use of Calendar Library ..867

3.12.6 Parsing and Formatting Functionality ...873

3.12.7 Transmitting and Persisting Values ...876

3.12.8 Day-Count Conventions ..877

3.12.9 Date Math ..877

3.12.9.1 Auxiliary Date-Math Types ..878

3.12.10 Date and Calendar Utilities ...881

3.12.11 Fleshing Out a Fully Factored Implementation ..886

3.12.11.1 Implementing a Hierarchically Reusable Date Class886

3.12.11.2 Representing Value in the Date Class ...887

3.12.11.3 Implementing a Hierarchically Reusable Calendar Class895

3.12.11.4 Implementing a Hierarchically Reusable PackedCalendar Class900

3.12.11.5 Distribution Across Existing Aggregates ..902

3.12.12 Section Summary ..908

3.13 Summary ...908

Conclusion ...923

Appendix: Quick Reference 925

Bibliography 933

Index 941

xvii

Preface

When I wrote my first book, Large-Scale C++ Software Design (lakos96), my publisher wanted

me to consider calling it Large-Scale C++ Software Development. I was fairly confident that

I was qualified to talk about design, but the topic of development incorporated far more scope

than I was prepared to address at that time.

Design, as I see it, is a static property of software, most often associated with an individual

application or library, and is only one of many disciplines needed to create successful software.

Development, on the other hand, is dynamic, involving people, processes, and workflows.

Because development is ongoing, it typically spans the efforts attributed to many applications

and projects. In its most general sense, development includes the design, implementation,

testing, deployment, and maintenance of a series of products over an extended period. In short,

software development is what we do.

In the more than two decades following Large-Scale C++ Software Design, I consistently

applied the same fundamental design techniques introduced there (and elucidated here), both

as a consultant and trainer and in my full-time work. I have learned what it means to assemble,

mentor, and manage large development teams, to interact effectively with clients and peers, and

to help shape corporate software engineering culture on an enterprise scale. Only in the wake

of this additional experience do I feel I am able to do justice to the much more expansive (and

ambitious) topic of large-scale software development.

xviii Preface

A key principle — one that helps form the foundation of this multivolume book — is the pro-

found importance of organization in software. Real-world software is intrinsically complex;

however, a great deal of software is needlessly complicated, due in large part to a lack of basic

organization — both in the way in which it is developed and in the final form that it takes. This

book is first and foremost about what constitutes well-organized software, and also about the

processes, methods, techniques, and tools needed to realize and maintain it.

Secondly, I have come to appreciate that not all software is or should be created with the same

degree of polish. The value of real-world application software is often measured by how fast

code gets to market. The goals of the software engineers apportioned to application develop-

ment projects will naturally have a different focus and time frame than those slated to the

long-term task of developing reliable and reusable software infrastructure. Fortunately, all of

the techniques discussed in this book pertain to both application and library software — the

difference being the extent to and rigor with which the various design, documentation, and

testing techniques are applied.

One thing that has not changed and that has been proven repeatedly is that all real-world soft-

ware benefits from physical design. That is, the way in which our logical content is factored and

partitioned within files and libraries will govern our ability to identify, develop, test, maintain,

and reuse the software we create. In fact, the architecture that results from thoughtful physical

design at every level of aggregation continues to demonstrate its effectiveness in industry every

day. Ensuring sound physical design, therefore, remains the first pillar of our methodology, and

a central organizing principle that runs throughout this three-volume book — a book that both

captures and expands upon my original work on this subject.

The second pillar of our methodology, nascent in Large-Scale C++ Software Design, involves

essential aspects of logical design beyond simple syntactic rendering (e.g., value semantics).

Since C++98, there has been explosive growth in the use of templates, generic programming,

and the Standard Template Library (STL). Although templates are unquestionably valuable,

their aggressive use can impede interoperability in software, especially when generic program-

ming is not the right answer. At the same time, our focus on enterprise-scale development and

our desire to maximize hierarchical reuse (e.g., of memory allocators) compels reexamination

of the proper use of more mature language constructs, such as (public) inheritance.

Maintainable software demands a well-designed interface (for the compiler), a concise yet

comprehensive contract (for people), and the most effective implementation techniques avail-

able (for efficiency). Addressing these along with other important logical design issues, as well

Preface xix

as providing advice on implementation, documentation, and rendering, rounds out the second

part of this comprehensive work.

Verification, including testing and static analysis, is a critically important aspect of software

development that was all but absent in Large-Scale C++ Software Design and limited to test-
ability only. Since the initial publication of that book, teachable testing strategies, such as

Test-Driven Development (TDD), have helped make testing more fashionable today than it

was in the 1990s or even in the early 2000s. Separately, with the start of the millennium, more

and more companies have been realizing that thorough unit testing is cost-effective (or at least

less expensive than not testing). Yet what it means to test continues to be a black art, and all

too often “unit testing” remains little more than a checkbox in one’s prescribed SOP (Standard

Operating Procedure).

As the third pillar of our complete treatment of component-based software development, we

address the discipline of creating effective unit tests, which naturally double as regression tests.

We begin by delineating the underlying concept of what it means to test, followed by how to

(1) select test input systematically, (2) design, implement, and render thorough test cases read-

ably, and (3) optimally organize component-level test drivers. In particular, we discuss delib-

erately ordering test cases so that primitive functionality, once tested, can be leveraged to test

other functionality within the same component.

Much thought was given to choosing a programming language to best express the ideas corre-

sponding to these three pillars. C++ is inherently a compiled language, admitting both prepro-

cessing and separate translation units, which is essential to fully addressing all of the important

concepts pertaining to the dimension of software engineering that we call physical design.

Since its introduction in the 1980s, C++ has evolved into a language that supports multiple

programming paradigms (e.g., functional, procedural, object-oriented, generic), which invites

discussion of a wide range of important logical design issues (e.g., involving templates, point-

ers, memory management, and maximally efficient spatial and/or runtime performance), not all

of which are enabled by other languages.

Since Large-Scale C++ Software Design was published, C++ has been standardized and

extended many times and several other new and popular languages have emerged.1 Still, for

both practical and pedagogical reasons, the subset of modern C++ that is C++98 remains the

language of choice for presenting the software engineering principles described here. Anyone

1 In fact, much of what is presented here applies analogously to other languages (e.g., Java, C#) that support separate

compilation units.

xx Preface

who knows a more modern dialect of C++ knows C++98 but not necessarily vice versa. All

of the theory and practice upon which the advice in this book was fashioned is independent of

the particular subset of the C++ language to which a given compiler conforms. Superficially

retrofitting code snippets (used from the inception of this book) with the latest available C++

syntax — just because we’re “supposed to” — would detract from the true purpose of this

book and impede access to those not familiar with modern C++.2 In those cases where we have

determined that a later version of C++ could afford a clear win (e.g., by expressing an idea

significantly better), we will point them out (typically as a footnote).

This methodology, which has been successfully practiced for decades, has been independently

corroborated by many important literary references. Unfortunately, some of these references

(e.g., stroustrup00) have since been superseded by later editions that, due to covering new

language features and to space limitations, no longer provide this (sorely needed) design guid-

ance. We unapologetically reference them anyway, often reproducing the relevant bits here for

the reader’s convenience.

Taken as a whole, this three-volume work is an engineering reference for software developers

and is segmented into three distinct, physically separate volumes, describing in detail, from a

developer’s perspective, all essential technical3 aspects of this proven approach to creating an

organized, integrated, scalable software development environment that is capable of supporting

an entire enterprise and whose effectiveness only improves with time.

Audience

This multivolume book is written explicitly for practicing C++ software professionals. The

sequence of material presented in each successive volume corresponds roughly to the order in

which developers will encounter the various topics during the normal design-implementation-

test cycle. This material, while appropriate for even the largest software development organiza-

tions, applies also to more modest development efforts.

2 Even if we had chosen to use the latest C++ constructs, we assert that the difference would not be nearly as

significant as some might assume.

3 This book does not, however, address some of the softer skills (e.g., requirements gathering) often associated

with full lifecycle development but does touch on aspects of project management specific to our development

methodology.

Preface xxi

Application developers will find the organizational techniques in this book useful, especially

on larger projects. It is our contention that the rigorous approach presented here will recoup its

costs within the lifetime of even a single substantial real-world application.

Library developers will find the strategies in this book invaluable for organizing their software

in ways that maximize reuse. In particular, packaging software as an acyclic hierarchy of fine-

grained physical components enables a level of quality, reliability, and maintainability that to

our knowledge cannot be achieved otherwise.

Engineering managers will find that throttling the degree to which this suite of techniques is

applied will give them the control they need to make optimal schedule/product/cost trade-offs.

In the long term, consistent use of these practices will lead to a repository of hierarchically

reusable software that, in turn, will enable new applications to be developed faster, better, and

cheaper than they could ever have been otherwise.

Roadmap

Volume I (the volume you’re currently reading) begins this book with our domain-independent

software process and architecture (i.e., how all software should be created, rendered, and

organized, no matter what it is supposed to do) and culminates in what we consider the state-

of-the-art in physical design strategies.

Volume II (forthcoming) continues this multivolume book to include large-scale logical design,

effective component-level interfaces and contracts, and highly optimized, high-performance

implementation.

Volume III (forthcoming) completes this book to include verification (especially unit testing)

that maximizes quality and leads to the cost-effective, fine-grained, hierarchical reuse of an

ever-growing repository of Software Capital.4

The entire multivolume book is intended to be read front-to-back (initially) and to serve as a

permanent reference (thereafter). A lot of the material presented will be new to many readers.

We have, therefore, deliberately placed much of the more difficult, detailed, or in some sense

“optional” material toward the end of a given chapter (or section) to allow the reader to skim

(or skip) it, thereby facilitating an easier first reading.

4 See section 0.9.

xxii Preface

We have also made every effort to cross-reference material across all three volumes and to

provide an effective index to facilitate referential access to specific information. The material

naturally divides into three parts: (I) Process and Architecture, (II) Design and Implementation,

and (III) Verification and Testing, which (not coincidentally) correspond to the three volumes.

Volume I: Process and Architecture

Chapter 0, “Motivation,” provides the initial engineering and economic incentives for imple-

menting our scalable development process, which facilitates hierarchical reuse and thereby

simultaneously achieves shorter time to market, higher quality, and lower overall cost. This

chapter also discusses the essential dichotomy between infrastructure and application develop-

ment and shows how an enterprise can leverage these differences to improve productivity.

Chapter 1, “Compilers, Linkers, and Components,” introduces the component as the funda-

mental atomic unit of logical and physical design. This chapter also provides the basic low-level

background material involving compilers and linkers needed to absorb the subtleties of the

main text, building toward the definition and essential properties of components and physical

dependency. Although nominally background material, the reader is advised to review it care-

fully because it will be assumed knowledge throughout this book and it presents important

vocabulary, some of which might not yet be in mainstream use.

Chapter 2, “Packaging and Design Rules,” presents how we organize and package our com-

ponent-based software in a uniform (domain-independent) manner. This chapter also provides

the fundamental design rules that govern how we develop modular software hierarchically in

terms of components, packages, and package groups.

Chapter 3, “Physical Design and Factoring,” introduces important physical design concepts

necessary for creating sound software systems. This chapter discusses proven strategies for

designing large systems in terms of smaller, more granular subsystems. We will see how to

partition and aggregate logical content so as to avoid cyclic, excessive, and otherwise undesir-

able (or unnecessary) physical dependencies. In particular, we will observe how to avoid the

heaviness of conventional layered architectures by employing more lateral ones, understand

how to reduce compile-time coupling at an architectural level, and learn — by example — how

to design effectively using components.

Preface xxiii

Volume II: Design and Implementation (Forthcoming)

Chapter 4, “Logical Interoperability and Testability,” discusses central, logical design con-

cepts, such as value semantics and vocabulary types, that are needed to achieve interoperability

and testability, which, in turn, are key to enabling successful reuse. It is in this chapter that we

first characterize the various common class categories that we will casually refer to by name,

thus establishing a context in which to more efficiently communicate well-understood families

of behavior. Later sections in this chapter address how judicious use of templates, proper use of

inheritance, and our fiercely modular approach to resource management — e.g., local (“arena”)

memory allocators — further achieve interoperability and testability.

Chapter 5, “Interfaces and Contracts,” addresses the details of shaping the interfaces of

the components, classes, and functions that form the building blocks of all of the software

we develop. In this chapter we discuss the importance of providing well-defined contracts

that clearly delineate, in addition to any object invariants, both what is essential and what is

undefined behavior (e.g., resulting from narrow contracts). Historically controversial topics

such as defensive programming and the explicit use of exceptions within contracts are

addressed along with other notions, such as the critical distinction between contract checking

and input validation. After attending to backward compatibility (e.g., physical substitutability),

we address various facets of good contracts, including stability, const-correctness,

reusability, validity, and appropriateness.

Chapter 6, “Implementation and Rendering,” covers the many details needed to manufac-

ture high-quality components. The first part of this chapter addresses some important consid-

erations from the perspective of a single component’s implementation; the latter part provides

substantial guidance on minute aspects of consistency that include function naming, parameter

ordering, argument passing, and the proper placement of operators. Toward the end of this

chapter we explain — at some length — our rigorous approach to embedded component-level,

class-level, and especially function-level documentation, culminating in a developer’s final

“checklist” to help ensure that all pertinent details have been addressed.

Volume III: Verification and Testing (Forthcoming)

Chapter 7, “Component-Level Testing,” introduces the fundamentals of testing: what it

means to test something, and how that goal is best achieved. In this (uncharacteristically) con-

cise chapter, we briefly present and contrast some classical approaches to testing (less-well-

factored) software, and we then go on to demonstrate the overwhelming benefit of insisting that

each component have a single dedicated (i.e., standalone) test driver.

xxiv Preface

Chapter 8, “Test-Data Selection Methods,” presents a detailed treatment of how to choose

the input data necessary to write tests that are thorough yet run in near minimal time. Both clas-

sical and novel approaches are described. Of particular interest is depth-ordered enumeration,
an original, systematic method for enumerating, in order of importance, increasingly complex

tests for value-semantic container types. Since its initial debut in 1997, the sphere of applicabil-

ity for this surprisingly powerful test-data selection method has grown dramatically.

Chapter 9, “Test-Case Implementation Techniques,” explores different ways in which previ-

ously identified sampling data can be delivered to the functionality under test, and the results

observed, in order to implement a valid test suite. Along the way, we will introduce useful

concepts and machinery (e.g., generator functions) that will aid in our testing efforts. Comple-

mentary test-case implementation techniques (e.g., orthogonal perturbation), augmenting the

basic ones (e.g., the table-driven technique), round out this chapter.

Chapter 10, “Test-Driver Organization,” illustrates the basic organization and layout of our

component-level test driver programs. This chapter shows how to order test cases optimally so

that the more primitive methods (e.g., primary manipulators and basic accessors) are tested

first and then subsequently relied upon to test other, less basic functionality defined within the

same component. The chapter concludes by addressing the various major categories of classes

discussed in Chapter 4; for each category, we provide a recommended test-case ordering along

with corresponding test-case implementation techniques (Chapter 9) and test-data selection

methods (Chapter 8) based on fundamental principles (Chapter 7).

xxv

Acknowledgments

Where do I start? Chapter 7, the one first written (c. 1999), of this multivolume book was the

result of many late nights spent after work at Bear Stearns collaborating with Shawn Edwards,

an awesome technologist (and dear friend). In December of 2001, I joined Bloomberg, and

Shawn joined me there shortly thereafter; we have worked together closely ever since. Shawn

assumed the role of CTO at Bloomberg LP in 2010.

After becoming hopelessly blocked trying to explain low-level technical details in Chapter 1

(c. 2002), I turned to another awesome technologist (and dear friend), Sumit Kumar, who

actively coached me through it and even rewrote parts of it himself. Sumit — who might be

the best programmer I’ve ever met — continues to work with me, providing both constructive

feedback and moral support.

When I became overwhelmed by the sheer magnitude of what I was attempting to do (c. 2005),

I found myself talking over the phone for nearly six hours to yet another awesome tech-

nologist (and dear friend), Vladimir Kliatchko, who walked me through my entire table of

contents — section by section — which has remained essentially unchanged ever since.

In 2012, Vlad assumed the role of Global Head of Engineering at Bloomberg and, in 2018, was

appointed to Bloomberg’s Management Committee.

xxvi Acknowledgments

John Wait, the Addison-Wesley acquisitions editor principally responsible for enabling my first

book, wisely recommended (c. 2006) that I have a structural editor, versed in both writing and

computer science, review my new manuscript for macroscopic organizational improvements.

After review, however, this editor fairly determined that no reliable, practicable advice with

respect to restructuring my copious writing would be forthcoming.

Eventually (c. 2010), yet another awesome technologist, Jeffrey Olkin, joined Bloomberg.

A few months later, I was reviewing a software specification from another group. The docu-

mentation was good but not stellar — at least not until about the tenth page, after which it was

perfect! I walked over to the titular author and asked what happened. He told me that Jeffrey

had taken over and finished the document. Long story short, I soon after asked Jeffrey to act

as my structural editor, and he agreed. In the years since, Jeffrey reviewed and helped me to

rework every last word of this first volume. I simply cannot overstate the organizational, writ-

ing, and engineering contributions Jeffrey has made to this book so far. And, yes, Jeffrey too

has become a dear friend.

There are at least five other technically expert reviewers that read this entire manuscript as it

was being readied for publication and provided amazing feedback: JC van Winkel, David San-

kel, Josh Berne, Steven Breitstein (who meticulously reviewed each of my figures after their

translation from ASCII art), and Clay Wilson (a.k.a. “The Closer,” for the exceptional quality

of his code reviews). Each of these five senior technologists (the first three being members of

the C++ Standards Committee; the last four being current and former employees of Bloomberg)

has, in his own respectively unique way, made this book substantially more valuable as a result

of his extensive, thoughtful, thorough, and detailed feedback.

There are many other folks who have contributed to this book from its inception, and some

even before that. Professor Chris Van Wyc (Drew University), a principal reviewer of my

first book, provided valuable organizational feedback on a nascent draft of this volume. Tom

Marshall (who also worked with me at Bear Stearns) and Peter Wainwright have worked with

me at Bloomberg since 2002 and 2003, respectively. Tom went on to become the head of the

architecture office at Bloomberg, and Peter, the head of Bloomberg’s SI Build team. Each of

them has amassed a tremendous amount of practical knowledge relating to metadata (and the

tools that use it) and were kind enough to have co-authored an entire section on that topic (see

section 2.16).

Acknowledgments xxvii

Early in my tenure at Bloomberg (c. 2004), my burgeoning BDE5 team was suffering from its

own success and I needed reinforcements. At the time, we had just hired several more-senior

folks (myself included) and there was no senior headcount allotted. I went with Shawn to the

then head of engineering, Ken Gartner, and literally begged him to open five “junior” posi-

tions. Somehow he agreed, and within no time, all of the positions were filled by five truly

outstanding candidates — David Rubin, Rohan Bhindwale, Shezan Baig, Ujjwal Bhoota, and

Guillaume Morin — four by the same recruiter, Amy Resnik, who I’ve known since 1991 (her

boss, Steven Markmen, placed me at Mentor Graphics in 1986). Every one of these journeyman

engineers went on to contribute massively to Bloomberg’s software infrastructure, two of them

rising to the level of team lead, and one to manager; in fact, it was Guillaume who, having only

1.5 years of work experience, implemented (as his very first assignment) the “designing with

components” example that runs throughout section 3.12.

In June 2009, I recall sitting in the conference hotel for the C++ Standard Committee meet-

ing in Frankfurt, Germany, having a “drink” (soda) with Alisdair Meredith — soon to be the

library working group (LWG) chair (2010-2015) — when I got a call from a recruiter (Amy

Resnik, again), who said she had found the perfect candidate to replace (another dear friend)

Pablo Halpern on Bloomberg’s BDE team (2003-2008) as our resident authority on the C++

Standard. You guessed it: Alisdair Meredith joined Bloomberg and (soon after) my BDE team

in 2009, and ever since has been my definitive authority (and trusted friend) on what is in C++.

Just prior to publication, Alisdair thoroughly reviewed the first three sections of Chapter 1 to

make absolutely sure that I got it right.

Many others at Bloomberg have contributed to the knowledge captured in this book: Steve

Downey was the initial architect of the ball logger, one of the first major subsystems developed

at Bloomberg using our component-based methodology; Jeff Mendelson, in addition to provid-

ing many excellent technical reviews for this book, early on produced much of our modern

date-math infrastructure; Mike Giroux (formerly of Bear Stearns) has historically been my able

toolsmith and has crafted numerous custom Perl scripts that I have used throughout the years

to keep my ASCII art in sync with ASCII text; Hyman Rosen, in addition to providing several

5 BDE is an acronym for BDE Development Environment. This acronym is modeled after ODE (Our Development

Environment) coined by Edward (“Ned”) Horn at Bear Stearns in early 1997. The ‘B’ in BDE originally stood for

“Bloomberg” (a common prefix for new subsystems and suborganizations of the day, e.g., bpipe, bval, blaw) and

later also for “Basic,” depending on the context (e.g., whether it was work or book related). Like ODE, BDE initially

referred simultaneously to the lowest-level library package group (see section 2.9) in our Software-Capital repository

(see section 0.5) along with the development team that maintained it. The term BDE has long since taken on a life

of its own and is now used as a moniker to identify many different kinds of entities: BDE Group, BDE methodology,

BDE libraries, BDE tools, BDE open-source repository, and so on; hence, the recursive acronym: BDE Development

Environment.

unattributed passages in this book, has produced (over a five-year span) a prodigious (clang-

based) static-analysis tool, bde_verify,6 that is used throughout Bloomberg Engineering

to ensure that conforming component-based software adheres to the design rules, coding

standards, guidelines, and principles advocated throughout this book.

I would be remiss if I didn’t give a shout-out to all of the current members of Bloomberg’s

BDE team, which I founded back in 2001, and, as of April 2019, is now man-

aged by Mike Verschell along with Jeff Mendelsohn: Josh Berne, Steven Breitstein,

Nathan Burgers, Bill Chapman, Attila Feher, Mike Giroux, Rostislav Khlebnikov, Alisdair

Meredith, Hyman Rosen, and Oleg Subbotin. Most, if not all, of these folks have reviewed

parts of the book, contributed code examples, helped me to render complex graphs or write

custom tools, or otherwise in some less tangible way enhanced the value of this work.

Needless to say, without the unwavering support of Bloomberg’s management team from

Vlad and Shawn on down, this book would not have happened. My thanks to Andrei Basov

(my current boss) and Wayne Barlow (my previous boss) — both also formerly of Bear

Stearns — and especially to Adam Wolf, Head of Software Infrastructure at Bloomberg, for

not just allowing but encouraging and enabling me (after some twenty-odd years) to finally

realize this first volume.

And, of course, none of this would have been possible had Bjarne Stroustrup somehow

decided to do anything other than make the unparalleled success of C++ his lifework.

I have known Bjarne since he gave a talk at Mentor Graphics back in the early 1990s. (But

he didn’t know me then.) I had just methodically read The Annotated C++ Reference Manual
(ellis90) and thoroughly annotated it (in four different highlighter colors) myself. After his

talk, I asked Bjarne to sign my well-worn copy of the ARM. Decades later, I reminded him that

it was I who had asked him to sign that disheveled, multicolored book of his; he recalled

that, at least. Since becoming a regular attendee of the C++ Standards Committee meet-

ings in 2006, Bjarne and I have worked closely together — e.g., to bring a better version

of BDE’s (library-based) bsls_assert contract-assertions facility, used at Bloomberg since

2004, into the language itself (see Volume II, section 6.8). Bjarne has spoken at Bloomberg

multiple times at my behest. He reviewed and provided feedback on an early version of the

preface of this book (minus these acknowledgments) and has also supplied historical data for

footnotes. The sage software engineering wisdom from his special edition (third edition) of

The C++ Programming Language (stroustrup00) is quoted liberally throughout this volume.

Without his inspiration and encouragement, my professional life would be a far cry from

what it is today.

6 https://github.com/bloomberg/bde_verify

xxviii Acknowledgments

https://github.com/bloomberg/bde_verify

Acknowledgments xxix

Finally, I would like to thank all of the many generations of folks at Pearson who have waited

patiently for me throughout the years to get this book done. The initial draft of the manuscript

was originally due in September 2001, and my final deadline for this first volume was at the

end of September 2019. (It appears I’m a skosh late.) That said, I would like to recognize

Debbie Lafferty, my first editor who then (in the early 2000s) passed the torch to Peter Gordon

and Kim Spenceley (née Boedigheimer) with whom I worked closely for over a decade. When

Peter retired in 2016, I began working with my current editor, Greg Doench.

Although Peter was a tough act to follow, Greg rose to the challenge and has been there for

me throughout (and helped me more than he probably knows). Greg then introduced me to

Julie Nahil, who worked directly with me on readying this book for production. In 2017,

I reconnected with my lifelong friend and now wife, Elyse, who tirelessly tracked down copi-

ous references and proofread key passages (like this one). By late 2018, it became clear that the

amount of work required to produce this book would exceed what anyone had anticipated, and

so Pearson retained Lori Hughes to work with me, in what turned out to be a nearly full-time

capacity for the better part of 2019. I cannot say enough about the professionalism, fortitude, and

raw effort put forth by Lori in striving to make this book a reality in calendar year 2019. I want

to thank Lori, Julie, and Greg, and also Peter, Kim, and Debbie, for all their sustained support

and encouragement over so many, many years. And this is but the first of three volumes, OMG!

The list of people that have contributed directly and/or substantially to this work is dauntingly

large, and I have no doubt that, despite my efforts to the contrary, many will go unrecognized

here. Know that I realize this book is the result of my life’s experiences, and for each of you

that have in some way contributed, please accept my heartfelt thanks and appreciation for being

a part of it.

Section 2.1 The Big Picture 271

directly in any one application. Our goal, therefore, is to provide some top-level organizational

structure — such as the one illustrated in Figure 2-1 — that allows us to partition our software

into discrete physical units so as to facilitate finding, understanding, and potentially reusing

available software solutions.1

Legacy
Proprietary
Application

Software

Componentized
Proprietary
Application

Software

Componentized
(and Legacy)
Proprietary

Library
Software1

Third-Party
and

Open-Source
Library

Software

Figure 2-1: Enterprise-level view of software organization

As Chapters 0 and 1 describe, most of what we do with respect to creating new library and

application software involves components as the atomic units of design. But components

alone, as depicted in Figure 2-2a, are too small to be effective in managing and maintaining

software on a large scale. We will therefore want to aggregate logically related components

having similar physical dependencies into a larger physical entity that we refer to as a package,

which can be treated more effectively as a unit. These larger logically and physically cohesive

1 Open-source code that has been augmented (or forked) to achieve some particular purpose would also fall into this

category (e.g., third-party software adapted to use our (polymorphic) memory-allocator model — see Volume II,

section 4.10).

2.1 The Big Picture

The way in which software is organized governs the degree to which we can leverage that

software to solve current and new business problems quickly and effectively. By design,

much of the code that we write for use by applications will reside in sharable libraries and not

272 Chapter 2 Packaging and Design Rules

entities can then, in turn, be further aggregated into a yet larger body of software, which we

call a package group, comprising packages having similar physical dependencies2 that, taken

as a whole, are suitable for independent release, as illustrated in Figure 2-2b.

(a) System consisting of individual components

main main main main

2 Note that, while the packages within a group are themselves necessarily internally logically cohesive, such need not

be the case for a package group as a whole (see sections 2.8 and 2.9, respectively).

Section 2.1 The Big Picture 273

(b) System consisting of pre-aggregated components

main main main main

Figure 2-2: Individual components do not scale up.

In addition, some of the software that we might need to use could be organized quite differently.

For example, we may want to take advantage of certain third-party and open-source libraries,

which might not be component-based. We might have our own legacy libraries to use that are

also not component-based. These software libraries, of necessity, must come together at a level

of aggregation larger than components, as depicted in Figure 2-3.

274 Chapter 2 Packaging and Design Rules

main

Legacy

Legacy Third PartyOpen Source

Legacy

? ?

? ?

? ?

? ?

? ?

? ?

? ?

? ?

? ?

? ?

Figure 2-3: Integration with non-component-based (library) software

We generally think of a top-level unit of integration within a large system informally as

a “library” whose interface typically consists of a collection of header files in a single direc-

tory (e.g., /usr/include) and a single library archive (e.g., libc.a, libc.so) depending

on the target platform. We might uniquely refer to this particular architectural entity as a

whole as “The C Library” although its internal structure (i.e., how logical content is partitioned

among its .o files) is entirely organizational (i.e., not part of its specification or contract; see

 Volume II, section 5.2) and might vary from one vendor platform to another.

Integration with legacy, open-source, and third-party libraries is important and will be

addressed. Our purpose in the next few sections, however, is first to identify desirable charac-

teristics of library software and then to provide a prescriptive methodology for packaging our

own. After that, we will return to the issues of integrating with non-component-based software

(see section 2.12) and then focus on the custom (nonshareable) top-level application code

surrounding main() (see section 2.13).

Section 2.2 Physical Aggregation 275

2.2 Physical Aggregation

In the preceding chapters, we talked about the atomic unit of physical design, which we call a

component, and also the physical hierarchy created by their (acyclic) physical dependencies.

Scalability demands hierarchy, and the hierarchy imposed by physical dependency, while of

critical importance, is only one architectural aspect of large-scale physical design. Separately, we

must also consider how related components can be packaged into larger cohesive physical units.

We refer to this other hierarchical dimension of component-based design as physical aggregation.

2.2.1 General Definition of Physical Aggregate

DEFINITION: An aggregate is a cohesive physical unit of design comprising logical
content.

The purpose of aggregation is to bring together logical content (in the form of C++ source code)

as a cohesive physical entity that can be treated architecturally as an atomic unit. At one end of the

physical-aggregation spectrum lies the component. Each individual component aggregates logi-

cal content. Figure 2-4 illustrates schematically a collection of 15 components having 5 separate

levels of physical dependency that together might represent a hierarchically reusable subsystem.

Level 5:

Level 4:

Level 3:

Level 2:

Level 1:

Figure 2-4: Logical content aggregated within 15 individual components

2.2.2 Small End of Physical-Aggregation Spectrum

DEFINITION: A component is the innermost level of physical aggregation.

276 Chapter 2 Packaging and Design Rules

By design, each component embodies a limited amount of code — typically only a few hundred

to a thousand lines of source3 (excluding comments and the component’s associated test driver).

A single component is therefore too fine-grained (section 0.4) to fully represent most nontrivial

architectural subsystems and patterns.4 For example, given a protocol (section 1.7.5) for, say,

an (abstract) memory allocator (see Volume II, section 4.10), we might want to provide sev-

eral distinct components defining various concrete implementations, each tailored to address

a different specific behavioral and performance need.5 Taken as a whole, these components

naturally represent a larger cohesive architectural entity, as illustrated in Figure 2-5. To capture

these and other cohesive relationships among logically related components — assuming they

do not have substantially disparate physical dependencies — we might choose to colocate them

within a larger physical unit (see sections 2.8, 2.9, and 3.3). In so doing, we can facilitate both

the discovery and management of our library software.

Physically cohesive entityLogically cohesive content

Figure 2-5: Suite of logically similar yet independent components

3 Note that complexity of implementation, coupled with our ability to understand and test a given component —

more than line count itself — governs its practical maximum “size” (see Volume III, sections 7.3 and 7.5).

4 See gamma94.

5 E.g., bdlma::MultipoolAllocator, bdlma::SequentialAllocator, and

bdlma::BufferedSequentialAllocator (see bde14, subdirectory /groups/bdl/bdlma/).

Section 2.2 Physical Aggregation 277

2.2.3 Large End of Physical-Aggregation Spectrum

DEFINITION: A unit of release (UOR) is the outermost level of physical aggregation.

At the other end of the physical-aggregation spectrum is the unit of release (UOR), which rep-

resents a physically (and usually also logically) cohesive collection of software (source code)

that is designed to be deployed and consumed in an all-or-nothing fashion. Each UOR typi-

cally comprises multiple separate smaller physical aggregates, bringing together vastly more

source code than would occur in any individual component. Even so, we should expect our

library software will in time grow to be far too large to belong to any one UOR. Hence, from

an enterprise-wide planning perspective, we must be prepared to accommodate the many UORs

that are likely to appear at the top level of our inventory of library source code.

2.2.4 Conceptual Atomicity of Aggregates

Guideline

Every physical aggregate should be treated atomically for design purposes.

Even though a UOR may aggregate otherwise physically independent entities, it should

nonetheless always be treated, for design purposes, as atomic.6 Like a component (and every

physical aggregate), the granularity with which the contents of a UOR are incorporated into a

dependent program will depend on organizational, platform-specific, and deployment details,

none of which can be relied upon at design time. Hence, we must assume that any use of a

UOR could well result in incorporating all of it — and everything it depends on — into our

final executable program. For this reason alone, how we choose to aggregate our software into

distinct UORs is vital.

6 The assertion that a library may not be organizationally atomic is true for conventional static (.a) libraries

 (section 1.2.4), but not generally so for shared (.so) libraries. Even with static libraries, regulatory requirements (e.g.,

for trading applications) may force substantial retesting of an application when relinked against a static library whose

timestamp has changed, even when the only difference is an additional unused component. In such cases, we

may — for the purpose of optimization only — choose to partition our libraries into multiple regions (e.g., multiple

.so or .a libraries) as a post-processing step during deployment (see section 2.15.10). Again, such organizational

optimizations in no way affect the architecture, use, or allowed dependencies (see section 2.2.14) of the UOR.

278 Chapter 2 Packaging and Design Rules

2.2.5 Generalized Definition of Dependencies for Aggregates

DEFINITION: An aggregate y Depends-On another aggregate x if any file in x is
required in order to compile, link, or thoroughly test y.

This definition of physical dependency for aggregates intentionally casts a wide net, so that it

can be applied to aggregates that do not necessarily follow our methodology. For aggregates

composed entirely of components as defined by the four properties in Chapter 1,7 the defini-

tion of direct dependency of y on x reduces to whether any file in y includes a header from x.

Observation

The Depends-On relation among aggregates is transitive.

Given the atomic nature with which physical aggregates must be treated for design purposes,

if an aggregate z Depends-On y (directly or otherwise) and y in turn Depends-On x, then we

must assume, at least from an architectural perspective, that z Depends-On x.

2.2.6 Architectural Significance

DEFINITION: A logical or physical entity is architecturally significant if its name
(or symbol) is intentionally visible from outside of the UOR in which it is defined.

Architecturally significant entities are those parts of a UOR that are intended to be seen (and

potentially used) directly by external clients. These entities together effectively form the public
interface of the UOR, any changes to which could adversely affect the stability of its clients. The

definition of architectural significance emphasizes deliberate intent, rather than just the actual

physical manifestation, because it is that intent that is necessarily reflected by the architecture.

7 Component Properties 1–3 (sections 1.6.1–1.6.3) and Component Property 4 (section 1.11.1).

Observation

Section 2.2 Physical Aggregation 279

A suboptimal implementation might, for example, inadvertently expose a symbol (at the

.o level) that was never intended for use outside the UOR. If such unintentional visibility were

to occur within a UOR consisting entirely of components, it would likely be due to an acci-

dental violation of Component Property 2 (section 1.6.2) and not a deliberate (and misguided)

attempt to provide a secret “backdoor” access point. Repairing such defects would not consti-

tute a change in architecture — especially in this case, since any use of such a symbol would

itself be a violation of Component Property 4 (section 1.11.1).

2.2.7 Architectural Significance for General UORs

In our component-based methodology, all the software that we write outside the file that imple-

ments main() is implemented in terms of components. Unfortunately, not all UORs that we

might want or need (or be compelled) to use are necessarily component-based (the way we would

have designed them). We will start by considering the parts of a general UOR that are architec-

turally significant irrespective of whether or not they are made up exclusively of components.

Later we will discuss the specifics of those that fortunately are.

2.2.8 Parts of a UOR That Are Architecturally Significant

In a nutshell, each externally accessible .h file,8 each nonprivate logical construct declared

within those .h files, and the UOR itself are all architecturally significant. To make use of logical

entities from outside the UOR in which they are defined, their (package-qualified) names (see

section 2.4.6) will be needed. In addition, the .h files declaring those entities must (or at least

should) be included (section 1.11.1) — by name — directly (see section 2.6) for clients to make

substantive use of them. Finally, to refer to the particular library comprising the .o files corre-

sponding to a UOR (e.g., for linking purposes), it will be necessary to identify it, again, by name.

2.2.9 What Parts of a UOR Are Not Architecturally Significant?

While .h files are naturally architecturally significant, .cpp files and their corresponding

.o files are not. If we were to change the names of header files or redistribute the logical constructs

declared within them, it would adversely affect the stability of its clients; however, such is not

the case for .cpp or .o files. Assuming the UOR is identified in totality by its name, the internal

8 Some methodologies allow for the use of “private” header files (e.g., see Figure 1-30, section 1.4) that are not

deployed along with the UOR; our component-based approach (sections 1.6 and 1.11) does not (for good reasons;

see section 3.9.7), but does provide for subordinate components (see section 2.7.5).

280 Chapter 2 Packaging and Design Rules

organization of the library archive that embodies the .o files (corresponding to its .cpp files)

comprised by that UOR will have absolutely no effect on client source code. What’s more, chang-

ing such insulated details (see section 3.11.1) will not require client code even to recompile.

2.2.10 A Component Is “Naturally” Architecturally Significant

For UORs consisting of .h /.cpp pairs forming components as defined in Chapter 1, both the

.h and .cpp files will each have the component name as a prefix (see section 2.4.6), making

components architecturally significant as well. To maximize hierarchical reuse (section 0.4),

all components within a UOR and all nonprivate constructs defined within those components

are normally architecturally significant. There are, however, valid engineering reasons for occa-

sionally suppressing the architectural significance of a component. Section 2.7 describes how

we can — by conventional naming — effectively limit the visibility of (1) nonprivate logical

entities outside of the component in which they are defined, and (2) a component as a whole.

2.2.11 Does a Component Really Have to Be a .h /.cpp Pair?

What ultimately characterizes a component architecturally is governed entirely by its .h file. In

Chapter 1, we arrived at the definition of a component as being a .h /.cpp pair satisfying four

essential properties. In virtually all cases, this phrasing serves as the definition of a component

in C++.9 For completeness, however, we point out that, though this definition is sufficient and

practically useful, it is not strictly necessary. The true essential requirement for components in

C++ is that there be exactly one .h file and one10 (at least) or more (see below) .cpp files that

together satisfy these four essential properties.

2.2.12 When, If Ever, Is a .h /.cpp Pair Not Good Enough?

In exceedingly rare cases,11 there might be sufficient justification to represent a single compo-

nent using multiple .cpp files. Unlike header files, .cpp files in a component, and especially

the resulting .o files in a statically linked library (.a), are not considered architecturally

significant. For example, a component myutil defining three logically related, but physi-

cally independent functions might reasonably be implemented as having a single header file

9 More generally, for any given language that supports multiple units of translation (e.g., C, C++, Java, Perl, Ada,

Pascal, FORTRAN, COBOL), the physical form of a component is standard and independent of its content.

10 We require that the component header be included in at least one component .cpp file so that we can observe, just by

compiling the component, that its .h file is self-sufficient with respect to compilation (section 1.6.1).

11 E.g., to further reduce the size of already tiny programs (such as embedded C) or to break hopelessly large

(particularly computer-generated) components into separate translation units of a size manageable for the compiler.

Section 2.2 Physical Aggregation 281

myutil.h and multiple implementation files — e.g., myutil.1.cpp, myutil.2.cpp,

and myutil.3.cpp — each uniquely named, but all sharing the component name as a com-

mon prefix. Consequently, a program calling only one of the three functions might, under

certain deployment strategies (see section 2.15), wind up incorporating only the one .o file

corresponding to the needed function. Such nuanced considerations are not relevant to typical

development and are most usually relegated to the subdomain of embedded systems.

2.2.13 Partitioning a .cpp File Is an Organizational-Only Change

It is important to realize that the aggressive physical partitioning discussed above is permissible

only because it is organizational and not architectural. That is, our view and use of the compo-

nent, its logical design, and its physical dependencies are left unaffected by such architecturally

insignificant optimizations. Introducing (or removing) such optimizations has no effect on the

client-facing interface (including any need for recompilation) or logical behavior, only on pro-

gram size. By contrast, introducing multiple .h files for a single component would represent an

architectural change manifestly affecting usage; hence, a component — in all cases — must have

exactly one header file, whose root name identifies the component uniquely (see section 2.2.23).

2.2.14 Entity Manifest and Allowed Dependencies

DEFINITION: A manifest is a specification of the collection of physical entities —
typically expressed in external metadata (see section 2.16) — intended to be part of
the physical aggregate to which it pertains.

DEFINITION: An allowed dependency is a physical dependency — typically
expressed in external metadata (see section 2.16) — that is permitted to exist in the
physical hierarchy to which it pertains.

Observation

The defi nition of every physical aggregate must comprise the specifi cation of (1) the
entities it aggregates, and (2) the external entities that it is allowed to depend on directly.

To be practically useful, every aggregate (from a component to a UOR) must, at a minimum,

somehow allow us to specify contractually the entities it aggregates, as well as the other physical

Observation

282 Chapter 2 Packaging and Design Rules

entities upon which those contained entities are allowed (i.e., explicitly permitted) to depend

directly. Much of our design methodology is anchored in understanding the physical dependen-

cies among the discrete logically and physically cohesive (see section 2.3) entities within our

software. Given a dependency graph, without knowing the specific (outwardly visible) entities

at its nodes or its (permissible) edges, there is simply no good way to reason about it.

For any given component, as illustrated in Figure 2-6a, the manifest of aggregated entities is

implied by the accessible logical entities declared within its header file. The allowed direct

dependencies are implied by the combined #include directives embedded within the .h and

.cpp files of that component (section 1.11). For the second and successive levels of physical

aggregation, the manifest of member aggregates and list of allowed dependencies is an essential

part of the architectural specification and must somehow be stated explicitly (Figure 2-6b).

(a) First-level physical aggregate (i.e., a component)

// ...
#include </*...*/>
#include </*...*/>
// ...
class /*...*/ {
 // ...
};
class /*...*/ {
 // ...
};

// ...
#include </*...*/>
#include </*...*/>
// ...Implicit

manifest of
aggregated

entities

Implicit
allowed

dependencies

(b) Second-level physical aggregate

Actual physical dependencies

Aggregated entities

Explicit
metadata

Manifest of Aggregated Entities

Set of Allowed Dependencies

Figure 2-6: Specifying members and allowed dependencies for aggregates

Section 2.2 Physical Aggregation 283

Unfortunately, the C++ language itself does not support any notion of architecture beyond a

single translation unit.12 Hence, much of the aggregative structure we discuss in this chapter

will have to be implemented alongside the language using metadata (see section 2.16). This

metadata will be kept locally as an integral part of each aggregate to help guide the tools we

use to develop, build, and deploy our software.13 An abstract subsystem consisting of four

second-level aggregates forming three separate (aggregate) dependency levels is illustrated

schematically in Figure 2-7.

Aggregate Level 3:

Allowed direct
external dependencies
are stated explicitly.

Aggregate Level 2:

Aggregate Level 1:

Internally, dependencies
among components

are inferred.

Figure 2-7: Schematic subsystem built from second-level physical aggregates

12 As of this writing, work was progressing in the C++ Standards Committee to identify requirements for a new

packaging construct called a module (see lakos17a and lakos18), and a preliminary version of this long-anticipated

modules feature was voted into the draft of the C++20 Standard at the committee meeting in Kona, HI, on

February, 23, 2019.

13 A detailed overview of this architectural metadata along with its practical application and how build and other

tools might consume it is provided for reference in section 2.16.

284 Chapter 2 Packaging and Design Rules

2.2.15 Need for Expressing Envelope of Allowed Dependencies

Expressing the envelope of allowed dependencies for aggregations of components explicitly

might, at first, seem redundant and therefore unnecessary. As noted in section 1.11, there are

numerous dependency-analysis tools available that can be used to extract actual dependen-

cies from the aggregated components and produce the envelope of those dependencies across

physical aggregates automatically, but to do so misses the point: The purpose of stating allowed
dependencies is to be anticipatory, not reactive. Characterizing a set of proposed aggregations

and then supplying an envelope of allowed dependencies among those aggregations enables

us to express our physical design (intent) before any code is written. As new functionality

is added, unexpected physical dependencies can be detected and flagged as implementation

errors. Without specifying allowed dependencies a priori, there is no physical design to imple-

ment, let alone verify. Hence, explicitly specifying — and verifying — allowed dependencies

is necessary at every level of physical aggregation.

2.2.16 Need for Balance in Physical Hierarchy

Observation

To maximize human cognition, peer entities within a physical aggregate should
be of comparable physical complexity (e.g., have the same level of physical
aggregation).

Between a component and a UOR, we might imagine that there could (in theory) be any

number of intermediate levels of physical aggregation, each of which might or might not have

architectural significance. Some physical aggregation hierarchies are better than others. In

particular, an unbalanced hierarchy, such as the one illustrated schematically in Figure 2-8, is

suboptimal.

Observation

Section 2.2 Physical Aggregation 285

myunbalancedlib

Figure 2-8: UOR having unbalanced levels of physical aggregation (BAD IDEA)

2.2.17 Not Just Hierarchy, but Also Balance

Effective regular decomposition of large systems requires not only hierarchy, but also balance.

We choose to model our software development accordingly. Although not strictly necessary, we

want each aggregate to comprise entities having similar physical complexity. In particular,

we deliberately avoid placing components alongside larger aggregates within a UOR. We find

that entities having comparable complexity at each aggregation depth improves comprehension

and facilitates reuse.

286 Chapter 2 Packaging and Design Rules

At each increasing level of physical aggregation, we strive to bring together a significant, but

not overwhelming amount of information and engineering at a uniform level of abstraction such

that it can be understood and used effectively. As a rule, we would like the relevant schematic

detail to correspond to what might reasonably fit on a single 8 1/2 × 11 inch piece of paper14 as

suggested by the complexity of each of the individual diagrams in Figure 2-9. By achieving this

balance — much like the chapters and sections within this book — we provide fairly uniformly

chunked content, which makes it more convenient to analyze and discuss.

(a) Aggregation level I: component containing
related logical content

(b) Aggregation level II: package of related components

14 Being an American, I have chosen the most common loose-leaf paper size in the United States, as opposed to ones

conforming to ISO 216 used by other countries where A4 is the most common (and similar) size (see http://www.

papersizes.org/).

http://www.papersizes.org/
http://www.papersizes.org/

Section 2.2 Physical Aggregation 287

(c) Aggregation level III: group of related packages

Figure 2-9: Balancing complexity at each level of physical aggregation

2.2.18 Having More Than Three Levels of Physical Aggregation Is Too Many

Observation

More than three levels of appropriately balanced physical aggregation are virtually
always unnecessary and can be problematic.

While components (being deliberately fine grained) are too small to be practical to release or

deploy individually, having more than three appropriately balanced levels of physical aggrega-

tion (as illustrated schematically in Figure 2-10) is not especially useful and can be impractical

due to the sheer magnitude of the code involved. There are limits as to what we can reasonably

fit into a single physical library and what typical development and build tools can accommo-

date. There are also design and deployment issues that would tend to discourage physically

aggregating such massive architectural entities.

Observation

288 Chapter 2 Packaging and Design Rules

5th level of aggregation

4th level 4th level
3rd

2nd

2nd 2nd

3rd
2nd

2nd 2nd

mybiglib

3rd
2nd

2nd 2nd

3rd
2nd

2nd

4th level

3rd
2nd

2nd 2nd

3rd
2nd

2nd 2nd

3rd
2nd

2nd 2nd

3
2

4

5

Figure 2-10: More than three levels of physical aggregation (BAD IDEA)

Section 2.2 Physical Aggregation 289

2.2.19 Three Levels Are Enough Even for Larger Systems

In our experience, we find that three appropriately balanced, architecturally significant levels of

physical aggregation have been sufficient to represent very large libraries. When there are three

architecturally significant levels, we will consistently refer to each entity at the second level

of architecturally significant aggregates within the UOR as a package15 (see section 2.8) and

the UOR itself as a package group (see section 2.9).

For example, using even the modest size estimates for a component, package, and package

group illustrated in Figure 2-11, each UOR would, on average, support a couple of hundred

thousand lines of noncommentary source code — excluding, of course, the corresponding

component-level test drivers (see Volume III, section 7.5). Thus, an enterprise-wide body of

library software consisting of 10 million lines of source code could fit comfortably within fifty

such UORs, with yet larger code bases requiring only proportionately more.

500 = 200,000
source lines
component × 20

components
package × 20

packages
package group

source lines
UOR

Figure 2-11: Modest size estimates of components, packages, and package groups.

2.2.20 UORs Always Have Two or Three Levels of Physical Aggregation

Hence, in our methodology, the number of appropriately balanced, architecturally significant

levels of physical aggregation within our library software will always be at least two (i.e., the

individual components and the UOR that comprises them), but never more than three.

There might, in rare cases, be valid reasons — e.g., to accommodate a large, monolithic, externally

designed interface16 — to introduce, purely for organizational purposes, an additional, interven-

ing level of physical aggregation. Any such organization-based partitioning of the implementa-

tion of an architecturally significant aggregate — just like with that of a component — should,

of course, never be architecturally significant (see section 2.11).

15 Note that a UOR can also be an isolated package, but there should be a compelling engineering reason for

preferring to do so over a package group, especially for (hierarchically reusable) library software.

16 The C++ Standard Library residing entirely in the std namespace, is itself an example of such a monolithic

specification.

290 Chapter 2 Packaging and Design Rules

2.2.21 Three Balanced Levels of Aggregation Are Sufficient. Trust Me!

The “artificial” constraints on physical aggregation suggested here do not in any way stop

individual developers from being creative; rather, this regularly structured physical aggrega-

tion model helps to focus creativity where it will be most effective — the functionality, not the

packaging — thereby making our software developers as a whole more successful. It will turn

out that having a regular, balanced, and fairly shallow architectural structure also lends itself

to an economical notation for identifying every architecturally significant logical and physical

entity within our proprietary library software (see section 2.4).

2.2.22 There Should Be Nothing Architecturally Significant Larger Than a UOR

We deliberately avoid creating anything architecturally significant that is larger than a

single (physical) UOR.17 Treating such expansive logical units atomically, as illustrated in

Figure 2-12a, would increase our envelope of allowed dependencies without providing any con-

crete encapsulation of logical functionality within a cohesive physical entity (see section 2.3).

Instead, we choose to model such coarse architectural policy more articulately as individual

allowed physical dependencies among UORs (Figure 2-12b). The more that we can encapsu-

late each logical subsystem within a single (architecturally significant) physical aggregate, the

more we will be able to infer useful physical dependencies (section 1.9) from logical relation-

ships across those entities.

17 Having a single, enterprise-wide namespace in which to guard the names within all of the components we

collectively write is (1) independent of any aspect of specific designs, and (2) a good idea (see section 2.4.6).

Section 2.2 Physical Aggregation 291

(b) Modeling logical aggregation
 by individual allowed physical

 dependencies among UORs

U8

U6

U2

U1

U5

U7

U4U3MEGA2

MEGA1
(a) Logical aggregation of several physical UORs

U5

U8

U6 U7

U1

U2

U3 U4

Figure 2-12: Supplanting logical aggregation with allowed physical dependency

292 Chapter 2 Packaging and Design Rules

2.2.23 Architecturally Significant Names Must Be Unique

Design Rule

The name of every architecturally signifi cant entity must be unique throughout
the enterprise.

The C++ language requires that the name of every logical entity visible outside of the transla-

tion unit in which it is defined must be unique within a program (section 1.3.1). We need more.

We require that the names of all externally accessible logical entities within our library identify

each entity uniquely because, with reuse, a combination of those logical entities might one day

wind up within the same program (see section 3.9.4). For the same reason, the names of all

UORs (package groups and packages) and components — each also being visible to external

clients — must be globally unique as well.

Even without our cohesive naming strategy (see section 2.4), there remain compelling advan-

tages (e.g., see sections 2.4.6 and 2.15.2) to ensuring that component filenames are them-

selves guaranteed to be globally unique throughout the enterprise — irrespective of directory

structure.18

The benefi t of unique fi lenames is uniqueness. When one sees a fi lename (such

as xyza_context.h) anywhere in the system — be it in a log message, an

assertion, an email, or a tab in a text editor – one knows, uniquely, the component

to which it refers. Unique fi lenames also make the rendering of include directives

in source code orthogonal to the physical placement of headers on a fi lesystem.

A lack of unique fi lenames does not break any one thing, but makes a large

collection of tasks more diffi cult because the fi lename itself is no longer a unique

identifi er. In a large-scale organization with hundreds of thousands of components

(among which there will inevitably be many having the base name “context”),

maintaining the fi lename as a unique identifi er has been, and will continue to be, a

very valuable property indeed!

 — Mike Verschell

18 On April 1, 2019, Mike Verschell became the manager of Bloomberg’s BDE team, replacing its founder

(John Lakos) after nearly eighteen rewarding years of applying the methodology described in this book

to developing real-world large-scale C++ software. Mike provided the quoted synthesis of his position on unique

filenames via personal email.

Section 2.2 Physical Aggregation 293

2.2.24 No Cyclic Physical Dependencies!

Design Imperative

Allowed (explicitly stated) dependencies among physical aggregates must be
acyclic.

Cyclic physical dependencies19 among any physical entities — irrespective of the level of

physical aggregation — do not scale and are always undesirable. Such cyclically interdepen-

dent architectures are not only harder to build, they are also much, much harder to comprehend,

test, and maintain than their acyclic counterparts. In fact, to help improve human cognition, we

almost always structure our source code to avoid forward references to logical entities even

within the same component. Whenever the physical specification of a design would allow cyclic

dependencies among architecturally significant physical aggregates, we assert that the design is

unacceptably flawed. Even if, for some unusual (organizational) reason, we were to choose to

partition an outwardly visible aggregate into subaggregates that were not architecturally signifi-

cant (e.g., see section 2.11), we would nonetheless insist that the allowed dependencies among

those subaggregates be acyclic as well (see also Figure 2-89, section 2.15.10).

2.2.25 Section Summary

In summary, a physical aggregate is a physically cohesive unit of logical content and a neces-

sary abstraction in any development process. The organizational details of a physical aggregate

will likely vary from one platform, compiler/linker technology, and deployment strategy to the

next; hence, each physical aggregate is treated, at least architecturally, as atomic. Our logical

designs must also, therefore, always be governed by the envelope of architecturally allowed

(rather than actual) physical dependencies specified for the aggregate. Balancing complexity

at each successive level of aggregation facilitates human cognition and potential reuse. The

use of three balanced levels of architecturally significant physical aggregation has been dem-

onstrated to be sufficient (and in fact optimal) to describe even the largest of systems. We do,

however, want to avoid architecturally significant logical entities (other than an enterprise-wide

namespace) that span UORs.

19 A collection of interdependent (connected) entities is cyclically dependent if the transitive closure of the binary

relation matrix representing direct dependencies between any two entities is not antisymmetric.

294 Chapter 2 Packaging and Design Rules

2.3 Logical/Physical Coherence

When developing large-scale software, it is essential that our logical and physical designs

coincide in several fairly specific ways at every level of packaging. Perhaps the most funda-

mental property of well-packaged software is that all logical constructs advertised within the

collective interface of a physical module or aggregate — e.g., component, package, UOR

(section 2.2) — are implemented directly within that module. Software that does not have this

property generally cannot be described in terms of a graph where the nodes represent cohesive

logical content and the directed edges represent (acyclic) dependencies on other physical
modules. We refer to such undesirable software as logically and physically incoherent.

For example, Component Property 3 (section 1.6.3) states that if a logical construct having

external bindage is declared in a component’s header, then that component is the only one per-

mitted to define that construct. Recall from section 1.9 that, knowing the logical relationships

among classes contained within separate components having Component Property 3, we can

reliably infer physical dependencies among those components. Arbitrary .h /.cpp pairs that

do not fully encapsulate the definitions of their logical constructs unnecessarily make reasoning

about the design (and organizational) dependencies substantially more complicated (e.g., the

misplaced definition of the output operator for the Date class in Figure 1-46, section 1.6.3). We

therefore require that whatever logical constructs a component advertises as its own are defined

entirely within that component, and never elsewhere.

Guideline

Architecturally cohesive logical entities should be tightly encapsulated within
physical ones.

The same benefits of logical/physical coherence that we derive from individual components

apply also to library software at higher levels of aggregation. Imagine, for example, that we

have two fairly large logical subsystems that we call buyside and sellside. Each subsys-

tem is composed of several classes. For this discussion, let us assume that each of the classes

is defined in its own separate component, and that the dependency graph of the unbundled

Section 2.3 Logical/Physical Coherence 295

components is acyclic. Figure 2-13 shows what often happens when subsystems conceived

from only a logical perspective materialize. Although the logical and physical aspects of these

systems coincide, the cyclic physical nature of the aggregate design does not scale, and is there-

fore unacceptable (section 2.2.24).

buyside::

lib1 lib2

buyside::ClassC

buyside::ClassB

buyside::ClassA

sellside::

sellside::ClassD

sellside::ClassC

sellside::ClassB

sellside::ClassA

buyside::ClassD

Figure 2-13: Cyclic physical dependencies (BAD IDEA)

Avoiding cyclic physical dependencies across aggregate boundaries is not only for the benefit

of build tools, it also facilitates human cognition and reasoning. If all that were needed was to

have two libraries where the envelope of component dependencies across aggregates was

 acyclic, then it would suffice to mechanically repartition these components as shown in

 Figure 2-14. But for software packaging to facilitate human cognition, in addition to being

physically acyclic, the logical and physical aspects of a design must remain coherent.

296 Chapter 2 Packaging and Design Rules

buyside::

buyside::ClassC

lib4

lib3

sellside::

sellside::ClassC

buyside::ClassD sellside::ClassD

buyside::ClassB sellside::ClassB

buyside::ClassA sellside::ClassA

Figure 2-14: Logical/physical incoherence (BAD IDEA)

Although the cyclic physical dependencies between the two libraries have been eliminated, the

logical and physical designs have diverged. Now, neither logical subsystem is encapsulated by

either physical library. As a result, our ability to infer aggregate physical dependencies from

abstract logical usage — i.e., at the subsystem level — is lost. That is, if a client abstractly uses

either the buyside or sellside logical subsystems, we must either know the details of that

usage or otherwise assume an implied physical dependency on both libraries. Just as with cyclic

physical dependencies, our ability to reason about logically and physically incoherent designs

does not scale; hence, such designs are to be avoided.

Uniting the logical and physical properties of software is what makes the efficient development

of large-scale systems possible. Achieving an effective modularization of logical subsystems

is not always easy and might require significant adjustment to the logical design of our sub-

systems (see Chapter 3). As Figure 2-15 suggests, the reworked design might even yield a

somewhat different logical model. Achieving designs having both logical/physical coherence

and acyclic physical dependencies early in the development cycle requires forethought but is far

easier than trying to tweak a design after coding is underway. Once released to clients, however,

the already arduous task of re-architecting a subsystem will invariably become qualitatively

more intractable, often insurmountably so.

Section 2.4 Logical and Physical Name Cohesion 297

seller::ClassW seller::ClassX

seller::ClassY seller::ClassZ

buyer::

seller::

lib6

lib5

buyer::ClassW buyer::ClassX

buyer::ClassY buyer::ClassZ

Figure 2-15: Acyclic logical/physical coherence (GOOD IDEA)

Achieving logical and physical coherence along with acyclic physical dependencies across

our entire code base is absolutely essential. In addition to ensuring these important properties,

however, we will need a strategy that guarantees not just that the name of each architecturally

significant logical and physical entity is unique throughout the enterprise, but that it can also be

identified (and its definition located) just from its point of use, without having to resort to tools

(e.g., an IDE). The following section addresses how we realize these additional goals in practice.

2.4 Logical and Physical Name Cohesion

The ability to identify the physical location of the definition of essentially every logical

construct — directly from its point of use — is an important aspect of design that distinguishes

our methodology from others used in the software industry. The practical advantages of this

aspect of design, however, are many and are explored in this section.

298 Chapter 2 Packaging and Design Rules

2.4.1 History of Addressing Namespace Pollution

Global namespace pollution — specifically, local constructs usurping short common names —

is an age-old problem. All of us have learned that naming a class Link or a function max at

file scope — even in a .cpp file — is just asking for trouble. Left unmanaged, the probability

of name conflicts increases combinatorially with program size. Developers have traditionally

responded to this problem with ad hoc conventions for naming logical constructs based on what

are hopefully unique prefixes (e.g., ls_Link, myMax, size_t). When the use of a logical con-

struct is confined to a single .cpp file, we can always make individual functions static and

nest local classes within the unnamed namespace. The problem of name collisions, however,

extends to header files as well.

2.4.2 Unique Naming Is Required; Cohesive Naming Is Good for Humans

Recall from section 2.2.6 that a logical or physical entity is architecturally significant if its name

(or symbol) is intentionally visible from outside of the UOR that defines it. To refer to each archi-

tecturally significant entity unambiguously, we require the name of each such entity to be glob-

ally unique. How we achieve this uniqueness is, to some extent, an implementation detail — at

least from the compiler’s perspective. When it comes to human beings, however, cohesive nam-

ing, as we will elucidate in this section, has proven to provide powerful cognitive reinforcement.

Suppose we want to implement an architecturally significant type, say one that represents a

price — e.g., for a financial instrument. How should we ensure that the name of this type

is globally unique? In theory, there are many ways to achieve unique naming. We could, for

example, maintain a central registry of logical names. The first developer to choose Price

gets it! The next developer implementing a similar concept (there are many ways to character-

ize a price) would be forced to choose something else (e.g., MyPrice, Price23). The same

approach could just as easily be used to reserve unique filenames.

2.4.3 Absurd Extreme of Neither Cohesive nor Mnemonic Naming

Taking this approach to the extreme, we could even have the registry generate unique type

names based on a global counter — e.g., T125061, T125062, T125063, and so on. We could

do similarly for component names (e.g., c05684, c05685, c05686) and even for units of

release (e.g., u1401, u1135, u1564), as illustrated in Figure 2-16. It all works just fine as far

as the compiler and linker are concerned. Moreover, physically moving a component from one

aggregate to another would have no nominal implications. Human cognition, however, is not

served by this approach.

Section 2.4 Logical and Physical Name Cohesion 299

// c27341.h // component defining our "date" class

#include <c11317.h> // Declares T161459 implementing day-of-week.

// ...

class T121056; // Local Declaration of In-Stream Facility
class T121059; // Local Declaration of Out-Stream Facility

class T121547 { // definition of our "date" class

 static bool isYearMonthDayValid(int year, int month, int day);

 // ...

 T121547();
 T121547(int year, int month, int day);
 T121547(const T121547& original);
 ~T121547();

 // ...

 T121547& operator=(const T121547& rhs);

 // ...

 void setYearMonthDay(int year, int month,int day);
 int setYearMonthDayIfValid(int year, int month, int day);

 // ...

 int year() const;
 int month() const;
 int day() const;
 T161459::Enum dayOfWeek() const;

};

// ...

T121056& operator>>(T121056& inStream, T121547& date);
T121059& operator<<(T121059& outStream, const T121547& date);

Figure 2-16: Absurdly opaque, noncohesive generated unique names (BAD IDEA)

Maintaining a central database to reserve individual class or component names is not practical

and clearly not the best answer. Instead, we will exploit hierarchy to allocate multiple levels of

namespaces at once. This hierarchy, however, is neither ad hoc nor arbitrary; with the exception

of an overarching enterprise-wide namespace (see below), each namespace that we employ in

our methodology will correspond to a coherent, architecturally significant, logically and physi-

cally cohesive aggregate.

300 Chapter 2 Packaging and Design Rules

2.4.4 Things to Make Cohesive

For every architecturally significant logical entity there are at least three related architectural

names:

 1. The name (or symbol) of the logical entity itself

 2. The name of the component (or header) that declares the logical entity

 3. The name of the UOR that implements the logical entity

Ensuring that these names are deliberately cohesive will have significant implications

with respect to development and maintenance. Hence, how and at what physical levels we

achieve nominal cohesion is a distinctive and very important design consideration within our

methodology.

2.4.5 Past/Current Definition of Package

DEFINITION: A package is the smallest architecturally significant physical aggre-
gate larger than a component.

COROLLARY: The name of each package must be unique throughout the
enterprise.

A package (see section 2.8) is an architecturally significant — i.e., globally visible — unit of

logical and physical design that serves to aggregate components, subject to explicitly stated,

allowed dependency criteria (section 2.2.14). A package is also a means for making related

components physically and, as we are about to see, nominally cohesive. In these ways, pack-

ages enable designers to capture and reflect, in source code, important architectural information

not easily expressed in terms of components alone.

Historically,20 a package was defined as a collection of components organized as a (logically

and) physically cohesive unit (see section 2.8.1). Although every package we write ourselves

20 lakos96, section 7.1, pp. 474–483

Section 2.4 Logical and Physical Name Cohesion 301

will necessarily be implemented exclusively in terms of components, other kinds of well-

reasoned architecturally significant physical entities comprising multiple header files, yet not

aggregating components, are certainly possible.21

With the definition as worded above, the word package can serve as a unifying term to describe

any architecturally significant body of code that is larger than a component, but without neces-

sarily being component-based. We will, however, consistently characterize packages that are

not composed entirely of components adhering to our design rules — especially those pertain-

ing to our cohesive naming conventions delineated throughout the remainder of this section

(section 2.4) — as irregular (see section 2.12).

Suppose now that we have a logical subsystem called the Bond Trading System (referred to

in code as bts for short). Suppose further that this logical subsystem consists of a number of

classes (including a price class) that have been implemented in terms of components, which, in

turn, have been aggregated into a package to be deployed atomically as an independent library

(e.g., libbts.a). How should we distinguish the bts bond price class from other price classes,

and what should be the name of the component in which that price class is defined?

2.4.6 The Point of Use Should Be Sufficient to Identify Location

Guideline

The use of each logical entity declared at package-namespace scope should alone
be suffi cient to indicate the component, package, and UOR in which that entity is
defi ned.

Whenever we see a logical construct used in code, we want to know immediately to which

component, package, and UOR it belongs. Without an explicit policy to do otherwise, the name

21 Robert Martin is the only other popular author we know of to describe in terms of C++ (previous to lakos96 or

otherwise) an even remotely similar concept. In his adaptation of Booch’s Class Categories, which originally

were themselves just logical entities (booch94, section 5.1, “Essentials: Class Categories,” pp. 581–584), Martin’s

category unites a cluster of classes related by both logical and physical properties. Based on personal (telephone)

correspondence (c. 2005), his augmented categories were intended to be significantly larger than a component, but

somewhat smaller than a typical package (see Figure 2-11, section 2.2.19), virtually always sporting exactly one class

per header (see section 3.1.1); see martin95, “High-Level Closure Using Categories,” pp. 226–231.

302 Chapter 2 Packaging and Design Rules

of a class, the header file declaring that class, and the UOR implementing that class might all

have unrelated names, as illustrated Figure 2-17. Clients reading BondPrice will not be able to

predict, from usage alone, which header file defines it, nor which library implements it; hence,

global search tools would be required during all subsequent maintenance of client code.

bts

cost.h cost.cpp

BondPrice
#include <cost.h>

Figure 2-17: Noncohesive logical and physical naming (BAD IDEA)

By the same token, other components packaged together to implement this logical subsys-

tem might well have names that are unrelated to each other, obscuring the cohesive physical

modularity of this subsystem. Although not strictly necessary, experience shows that human

cognition is facilitated by explicit “visual” associations within the source code. This nomi-

nal cohesion, in turn, reinforces the more critical requirement of logical/physical coherence

(section 2.3). Hence, logical and physical name cohesion across related architecturally signifi-

cant entities is an explicit design goal of our packaging methodology.

Design Rule

Component fi les (.h /.cpp) must have the same root name as that of the compo-
nent itself (i.e., they diff er only in suffi x).

Section 2.4 Logical and Physical Name Cohesion 303

By their nature, components implemented as .h /.cpp pairs naturally already exhibit some

degree of physical name cohesion. Note that as recently as the writing of my first book (1996),

however, such was not the case. Due to unreasonable restrictions on the length of names that

could be accommodated to distinguish .o files contained in library archive (.a) files of the day,

.o files often had to be shortened; hence, an external cross-reference needed to be maintained

in order to reestablish the cohesive nature of components.22

COROLLARY: Every library component filename must be unique throughout the
enterprise.

Recall from section 2.2.23 that every globally visible physical entity must itself be uniquely

named. Since library component headers are at least potentially (see section 3.9.7) clearly vis-

ible from outside their respective units of release, and their corresponding .cpp file(s) derive

from the same root name and yet are distinct among themselves, they too must be globally

unique. Note that, unlike library components, the names of components residing in applica-

tion packages (see section 2.13) do not have to be distinct from those in other application

packages so long as their logical and physical names do not conflict with those in our library

as, in our methodology, no two such application packages would ever be present in the same

program.

Design Rule

Every component must reside within a package.

Components, which are intended to address a highly focused purpose and are tailored to bolster

hierarchical reuse (section 0.4), are invariably too fine grained to be practical to be released

individually (section 2.2.20). Hence, in our methodology, each component is necessarily nested

within a higher-level, architecturally significant aggregate, which (by definition) is a package.

Although the benefits of physical uniformity — enhanced understandability and facilitation of

automation tools — as outlined in section 0.7 alone are compelling, mindless adherence to this

22 lakos96, Appendix C, pp. 779–813 and, in particular, Appendix C.1, pp. 180–193

304 Chapter 2 Packaging and Design Rules

rule, however, will fall far short of the potential benefit it seeks to motivate. The intent here is

not just to provide a uniform and balanced physical representation of software, but also to craft

a hierarchical repository where the contained elements, from a logical as well as a physical

perspective, are cohesive and synergistic (see section 2.8.3). Moreover, we want to ensure that

each library component we write has a natural and obvious place in the physical hierarchy of

our firm-wide repository (see sections 3.1.4 and 3.12).

Design Rule

The (all-lowercase) name of each component must begin with the (all-lowercase)
name of the package to which it belongs, followed by an underscore (_).

A first step toward ensuring overt visible cohesion between architecturally significant names

is making sure that the component name reflects the name of the package in which it resides,

as shown in Figure 2-18. Just by looking at the name of the bts_cost component, we know

that there exist two component files named bts_cost.h and bts_cost.cpp, which reside in

the bts package.23,24

23 In our methodology, packages (see section 2.8) are either aggregated into a group (see section 2.9) or else

released as standalone packages, with these two categories each having its own distinct (nonoverlapping) naming

conventions (see section 2.10). Packages that belong to a group have names that are four to six characters in length

with the first three corresponding to the name of the package group, which serves as the unit of release (UOR).

Typical standalone packages have names that are seven or more characters in order to ensure that they remain

disjoint from those of all grouped packages. In rare cases, particularly for very widely used (or standard) libraries,

we may choose to create a package-group sized package having just a single three-character prefix, such as bts

(or std). Although having a single ultra-short namespace name across a very large number of components can

sometimes enhance productivity across a broad client base, such libraries typically demand significantly more skill

and effort to develop and maintain than their less coarsely named package-group-based counterparts. The use of

(architecturally insignificant) subpackages to support such nominally monolithic libraries is discussed in

section 2.11.

24 This nomenclature stems from way back before standardization, and we had to use logical package prefixes

to implement logical namespaces — e.g., bget_Point instead of bget::Point. Even with the advent of the

namespace construct in the C++98 Standard, we continue to exploit this approach to naming of physical

entities and, occasionally, even logical ones — e.g., in procedural interfaces (see section 3.11.7).

Section 2.4 Logical and Physical Name Cohesion 305

bts

bts_cost.h bts_cost.cpp

#include <bts_cost.h>
BondPrice

Figure 2-18: Component names always reflect their enclosing package.

Our preference that the names of physical entities (e.g., files, packages, and libraries) not

contain any uppercase letters (section 1.7.1) begins with the observation that some popular

file systems — Microsoft’s NTFS, in particular — do not distinguish between uppercase and

lowercase.25 Theoretically, it is sufficient that the lowercased rendering of all filenames be

unique. Practically, however, having any unnecessary extra degree of freedom in our physical

packaging, thereby complicating development/deployment tools, let alone human comprehen-

sion, makes the use of mixed-case filenames for C++ source code suboptimal.26

Separately, and perhaps most importantly, we find that having class names, which we consis-

tently render in mixed case (section 1.7.1) — being distinct from physical names, which we

render in all lowercase — is notationally convenient and also visually reinforces the distinction

25 With the intent of improving readability (and/or nominal cohesion), it is frequently suggested that we change to

allow uppercase letters in component filenames and require them to match exactly the principal class or common

prefix of contained classes (see section 2.6), instead of the lowercased name as is currently required. We recognize

that the readability of multiword filenames can suffer (ironically providing a welcome incentive to keep component

base names appropriately concise).

26 Insisting that our component filenames be rendered in all_lowercase also effectively precludes “overloading” on

case for logical names, e.g., having both DateTimeMap and DatetimeMap in separate components — which, from a

readability standpoint, is something we would probably want to avoid anyway. Imagine trying to communicate such

a distinction over a customer-service telephone hotline!

306 Chapter 2 Packaging and Design Rules

between these two distinct dimensions of design, e.g., in component/class diagrams such as the

one shown above (Figure 2-18). The utility afforded by this visual distinction within source

code and external documents, such as this book, should not be underestimated.

Although the namespace construct can and will be used effectively with respect to logical
names, it cannot address the corresponding physical ones — i.e., component filenames. That

is, even with namespaces, having a header file employing a simple name such as date.h is

still problematic. We could, as many do, force clients to embed a partial (relative) path to the

appropriate header file (e.g., #include <bts/date.h>) within their source code; however,

ensuring enterprise-wide uniqueness in the filename itself (e.g., #include <bts_date.h>)

provides superior flexibility with respect to deployment.27 In other words, by making all com-

ponent filenames themselves unique by design (irrespective of relative directory paths), we

enable much more robustness and flexibility with respect to repackaging during deployment

(see section 2.15.2).

Taking a software vendor’s perspective, an early explicit requirement of our packaging meth-

odology was the ability to select one component, or an arbitrary set of specific components,

from a vast repository, extract (copies of) them along with just the components on which those

components depended (directly or indirectly), and make these components available to custom-

ers as a library having a single (“flat”) include directory and a single archive. Had we allowed

our development directory structure to adulterate our source files, we would be forced to rep-

licate a perhaps very large and sparsely populated directory structure on our clients’ systems.

Similarly, nonunique.cpp filenames would make re-archiving .o files from multiple packages

into a single library archive anything but straightforward.

This unnecessarily sparse directory structure would be exacerbated by a third level of physical

aggregation. For example, the same header that resided within the package-level #include

directory during development can co-exist (i.e., within a single group-level #include direc-

tory) alongside headers from other packages grouped together within the same UOR, which can

be more convenient (and also more efficient28) for use by external clients. Having this superior

flexibility in deployment — especially for library software — trumps any arguments based on

aesthetics or “common practice.”

27 We assert (see section 2.10.2) that this approach is viable for even the largest of source-code repositories. For

example, see potvin16.

28 lakos96, section 7.6.1 (pp. 514–520), and, in particular, Figures 7-21 and 7-22 (p. 519 and p. 520, respectively)

Section 2.4 Logical and Physical Name Cohesion 307

There are other collateral benefits for ensuring globally unique filenames. Having the file-

name embody its unique package prefix also simplifies predicting include-guard names. As

illustrated in Figure 1-40, in section 1.5.2, the guard name is simply the prefix INCLUDED_

followed by the root filename in uppercase (e.g., for file bts_bondprice.h the guard symbol

is simply INCLUDED_BTS_BONDPRICE). Compilers often make use of the implementation

filename as the basis for generating unique symbols within a program — e.g., for virtual tables

or constructs in an unnamed namespace. Hard-coding the unique package prefix in the file-

name also means that its globally unique identity is preserved outside the directory structure

in which it was created — e.g., in ~/tmp, as an email attachment, or on the printer tray. Con-

sistently repeating the filename as a comment on the very first line of each component file, as

we do (see section 2.5), further reinforces its identity. Knowing the context of a file simply by

looking at its name is a valuable property that one soon comes to expect and then depend on.

Design Rule

Each logical entity declared within a component must be nested within a
namespace having the name of the package in which that entity resides.

Before the introduction of the namespace keyword into the C++ language (and currently

for languages such as C that do not provide a logical namespace construct), the best solution

available was to require that (where possible) the name of every logical entity declared at file

scope begin with a (registered) prefix unique to the architecturally significant physically cohe-

sive aggregate immediately enclosing them, namely, a package.29 Attaching a logical package

prefix to the name of every architecturally significant logical entity within a component, albeit

aesthetically displeasing to many, was effective not only at avoiding name collisions, but also

at achieving nominal cohesion, thereby reinforcing logical/physical coherence. A reimple-

mentation of the physical module of Figure 2-17 (above) using logical package prefixes (now

deprecated) is shown for reference only in Figure 2-19.

29 lakos96, section 7.6.1, pp. 514–520, and in particular Figure 7-21, p. 519

308 Chapter 2 Packaging and Design Rules

bts

bts_cost.h bts_cost.cpp

#include <bts_cost.h>
bts_BondPrice

Logical
package prefix
(deprecated)

Figure 2-19: (Classical) logical package prefixes (deprecated)

Now that the namespace construct has long since been supported by all relevant C++ compil-

ers, there has been an inculcation toward having concise, unadulterated logical names. Hence,

we now (since c. 2005) nest each logical entity within a namespace having the same name as

the package containing the component that defines the construct, as shown in Figure 2-20.

Our use of logical package namespaces is isomorphic to our original use of logical package

prefixes, and therefore consistent with our continued use of physical package prefixes for com-

ponent filenames to preserve logical and physical name cohesion.

Section 2.4 Logical and Physical Name Cohesion 309

bts

MyLongCompanyName::

bts::30

bts_cost.h bts_cost.cpp

#include <bts_cost.h>
bts::BondPrice

Enterprise-wide namespace

Package namespace

Figure 2-20: (Modern) logical package and enterprise namespaces30

2.4.7 Proprietary Software Requires an Enterprise Namespace

Notice how Figure 2-20, section 2.4.6, anticipates that we now also recommend an overarching

enterprise-wide namespace as a way of enabling us to disambiguate (albeit extremely rare in

practice) collisions with other software that might follow our (or a similar) naming methodology.

Design Rule

Each package namespace must be nested within a unique enterprise-wide namespace.

By shielding all of our proprietary code (other than application main functions, see section 2.13)

behind a single enterprise-wide name, e.g., our full company name (as illustrated in

30 Note that when namespaces are not appropriate (e.g., functions having extern "C" linkage), we revert back to the

use of logical package prefixes (see section 3.11.7).

310 Chapter 2 Packaging and Design Rules

Figure 2-20, section 2.4.6), we all but eliminate any chance of accidental external collision.

And, since all of our components reside within the same enterprise namespace, there is no need

or temptation to employ using declarations or directives.31 In the very unlikely event that a

collision with external software occurs — even in the presence of using directives — all that

is required to disambiguate the collision is to prepend (1) the firm-wide symbol, (2) the third-

party product’s symbol, or (3) :: if the third-party code failed to take this precaution.

Having, instead, each individual package represented by a namespace at the highest level would

lead, at least conceptually, to myriad short global symbols, combinatorially increasing the

probability of collision with vendors adopting a similar strategy (see the birthday problem in

Volume III, section 8.3).32 In any event, having a single (somehow unique) enterprise-wide

“umbrella” namespace for our own code serves to mitigate risk and is therefore desirable.

The next step in achieving logical and physical name cohesion is to formalize how logical enti-

ties defined within a component are named so that their use alone identifies the component in

which they are defined. To simplify the description, we provide the following definition of a

component’s base name.

DEFINITION: The base name of a component is the root name of the component’s
header file, excluding its package prefix and subsequent underscore.

For example, the base name of the component illustrated in Figure 2-20, section 2.4.6, is cost.

This name, however, fails to achieve nominal cohesion with the class BondPrice, which it

defines.

31 Note that for large code bases that make significant use of templates, having a long enterprise namespace name can

prove prohibitive with respect to the size of the debug symbols that the compiler generates, which may force us to

go for a much shorter name — e.g., our stock ticker.

32 Decentralized registration of packages via package groups (see section 2.9.4) is effective at managing naming

conflicts within a single organization. We can, however, easily envisage a world in which source code from

multiple enterprises having distinct naming regimes (consistent with our methodology) needs to co-exist within a

single code base. Under those circumstances, there might be affirmative value in preventing accidental header-file

collisions by proactively adding a very short (e.g., exactly two-character) mutually unique physical prefix (e.g.,

“bb_”) to each organization’s component names corresponding to (but not necessarily the same as) their respective

unique enterprise-wide (logical) namespace names (see sections 2.4.6, 2.4.7, and 2.10.2).

Section 2.4 Logical and Physical Name Cohesion 311

2.4.8 Logical Constructs Should Be Nominally Anchored to Their Component

DEFINITION: An aspect function is a named (member or free) function of a given
signature having ubiquitously uniform semantics (e.g., begin or swap) and, if
free, behaves much like an operator — e.g., with respect to argument-dependent
lookup (ADL).

Design Rule

The name of every logical construct declared at package-namespace scope —
other than free operator and aspect functions (such as operator== and swap)
— must have, as a prefi x, the base name of the component that implements it;
macro names (ALL_UPPERCASE), which are not scoped (lexically) by the package
namespace, must incorporate, as a prefi x, the entire uppercased name of the com-
ponent (including the package prefi x).

COROLLARY: The fully qualified name (or signature, if a function or operator) of
each logical entity declared within an architecturally significant component header
file must be unique throughout the enterprise.

Naming a component after its principal class or struct (but in all lowercase), as shown in

Figure 2-21, usually resolves most potential ambiguity. For example, we would expect that class

bts::PackedCalendar would be defined in a component called bts_packedcalendar

(or conceivably, bts_packed, if the component defined other intimately related “packed”

types). Note that in our methodology, however, we tend to have a single (principal) class per

component unless there is one of four specific countervailing reasons to do otherwise (see

section 3.3.1). Whenever there is more than one class defined at package-namespace scope

within a single component, each such class name will incorporate that component’s base name

(albeit in “UpperCamelCase”) as a prefix.33

33 Note that this rule may not apply when the external (“client-facing”) component headers are already specified

otherwise — e.g., standardized interfaces or established legacy libraries.

312 Chapter 2 Packaging and Design Rules

bts

bts_bondprice.h bts_bondprice.cpp

#include <bts_bondprice.h>
BondPrice

bts::

Figure 2-21: Nominally cohesive class and component (GOOD IDEA)

Where appropriate, we routinely define outwardly accessible (“public”) auxiliary classes, such

as iterators, in the same component either by appending to the name of the primary class (e.g.,

bdlt::PackedCalendarHolidayIterator), or else by nesting the auxiliary class within

the principal class itself (e.g., PackedCalendar::HolidayIterator).34 Note, however, that

some detective work might be unavoidable when operators, inheritance, or user-defined conver-

sion are involved. The rules surrounding the placement of free operators within components

are discussed below.

2.4.9 Only Classes, structs, and Free Operators at Package-Namespace Scope

Design Rule

Only classes, structs, and free operator functions (and operator-like aspect
functions, e.g., swap) are permitted to be declared at package-namespace scope in
a component’s .h fi le.

34 In practice, the nested iterator type, PackedCalendar::HolidayIterator, would likely be a typedef to the

non-nested auxiliary iterator class, bts::PackedCalendarHolidayIterator, which grants the container private

(friend) access (e.g., see section 3.12.5.1). The mandatory colocation of two classes where one grants private

access to another is discussed in section 2.6.

Section 2.4 Logical and Physical Name Cohesion 313

To minimize clutter, we have consistently avoided declaring individual functions as well as

enumerations, variables, constants, etc., at namespace scope in component header files, prefer-

ring instead always to nest these logical constructs within the scope of an appropriate class

or struct.35 In so doing, we anchor these less substantial constructs within a larger, architec-

turally significant logical entity that, unlike a namespace (section 1.3.18), is necessarily fully

contained within a single component (section 0.7). We understand that this rule, like the previ-

ous one, might not be applicable when there are valid countervailing business reasons such as

an externally specified (“client-facing”) interface.36

Having modifiable global variables at namespace scope is simply a bad idea. Nesting such

variables within a class as static data members and providing only functional access is also

generally a bad idea, but at least addresses the issue of nominal cohesion. On the other hand,

nesting compile-time-initialized constants along with typedef declarations37 within the scope

of a class or struct is perfectly fine. Requiring that enumerations be nested within a class,

struct, or function ensures that all of the enumerators are scoped locally and cannot collide

with those in other components within the same package namespace.38

35 lakos96, section 2.3.5, p. 77–79, in particular p. 77

36 Sometimes it might be useful to know that the name of a class is itself unique throughout the enterprise. For

example, if for some reason we were to implement streaming (a.k.a. externalization or serialization) of polymorphic

objects outside of our process space (see Volume II, section 4.1), it would be important that we identify uniquely

the concrete class that we are streaming. One common and effective approach is to prepend the stream data with the

character string name of the concrete class whose value we are transmitting. As with the include guard symbols for

files (section 1.5.2), this process is reduced to rote mechanics, provided we are assured that the name of every

potentially streamable concrete class in our organization is guaranteed to be unique. Logical package prefixes (now

predicated) addressed this issue directly, but we can still achieve the same effect by streaming the (ultra-concise)

package name (section 2.10.1) followed by that of the class, along with a (single-character) delimiter (of course).

37 typedef declarations, although often useful (e.g., to specify an aspect, as in SomeContainer::iterator),

obscure the underlying types in code and, consequently, can easily detract from readability. In particular, one would

not typically use a typedef to alias a fundamental type to one more specific to its application — e.g.,

typedef int NumElements;

would be a BAD IDEA. Separately, there would ideally be a single C++ type to represent each truly distinct platonic

type used widely across interface boundaries (see Volume II, section 4.4).

38 C++11 provides what is known as an enum class, which addresses the issue of scoping the enumerators, as well

as providing for stronger type safety. Note that all enumerations in C++11 allow their underlying integral type to

be specified and, unlike C++03, thereby form what is known as a complete type, enabling them to be declared and

used locally (i.e., without also specifying the enumerators). The ability to elide enumerators can constitute what is

sometimes referred to in tort law as an “attractive nuisance” in that, unless the elided enumeration is supplied by a

library in a header separate from the one containing its complete definition, a client wishing to insulate itself from

the enumerators would be forced to declare the enumeration locally in violation of Component Property 3

(section 1.6.3).

314 Chapter 2 Packaging and Design Rules

The justification for avoiding free functions, except operator and operator-like “aspect” func-

tions, which might benefit from argument-dependent lookup (ADL), derives from our desire

to encapsulate an appropriate amount of logically and physically coherent functionality within

a nominally cohesive component. While classes are substantial architectural entities that are

easily identifiable from their names, individual functions are generally too small and specific

for each to be made nominally cohesive with the single component that defines them, as in

Figure 2-22a.39

Creating components that hold multiple functions in which there is no nominal cohesion

(Figure 2-22b) makes human reasoning about such physical nodes much more difficult and is

therefore also a bad idea. Forcing the name of each function to have, as a prefix, the initial-

lowercased rendering of the base name of the component (Figure 2-22c) achieves nominal

cohesion, but is awkward at best, and fails to emphasize logical coherence (section 2.3).

We could employ a third level of namespace (Figure 2-22d), but for reasons discussed below

(Figure 2-23) and also near the end of section 2.5, we feel that would be suboptimal.

(a) Nominally cohesive function at package-namespace scope (BAD IDEA)

// xyza_roundtowardzero.h

namespace xyza {

double roundTowardZero(double value);

} // close package namespace

// xyza_mathutil.h

namespace xyza {

double roundTowardZero(double value);

double factorial(double value);

} // close package namespace

(b) Nominally noncohesive functions at package-namespace scope (BAD IDEA)

39 Given that we virtually always open and close a package namespace exactly once within a component (see

section 2.5), we choose not to indent its contents, thereby increasing usable real estate given a practical maximum

line length (e.g., 79) suitable for efficient reading, printing, side-by-side comparison, etc. (see Volume II,

section 6.15).

Section 2.4 Logical and Physical Name Cohesion 315

// xyza_mathutil.h

namespace xyza {

double mathUtilRoundTowardZero(double value);

double mathUtilFactorial(double value);

} // close package namespace

(c) Nominally cohesive functions at package-namespace scope (AWKWARD)

// xyza_mathutil.h

namespace xyza {

namespace MathUtil {

 double roundTowardZero(double value);

 double factorial(double value);

} // close local namespace

} // close package namespace

(d) Nominally cohesive namespace containing functions (NOT OPTIMAL)

// xyza_mathutil.h

namespace xyza {

struct MathUtil {

 static double roundTowardZero(double value);

 static double factorial(double value);

};

} // close package namespace

(e) Nominally cohesive utility struct containing functions (WHAT WE DO)

Figure 2-22: Ensuring nominal cohesion for free functions and components

We therefore generally avoid declaring free (nonoperator) functions at package-namespace

scope, and instead achieve both nominal logical and physical cohesion by grouping related

functionality within an extra level of namespace matching the component name using static

methods within a struct (Figure 2-22e), which we will consistently refer to as a utility

316 Chapter 2 Packaging and Design Rules

(see section 3.2.7) and so indicate with a Util suffix (e.g., xyza::MathUtil).40 Additional,

 collateral advantages for preferring a struct (e.g., Figure 2-22e) over a third level of

namespace (e.g., Figure 2-22d) for implementing a utility are summarized in Figure 2-23.414243

There are many advantages of using a struct (e.g., Figure 2-22e) over a third level of namespace (e.g.,
Figure 2-22d) for aggregating related (what would otherwise be free) functions into a single utility component.

(1) The distinct syntax and atomic nature of a struct having static methods makes its purpose as a
 component-scoped entity clearer than would yet another, nested namespace, leaving namespaces for routine
 use at the package and enterprise levels exclusively.

(2) The self-declaring nature of functions and data defined at namespace scope (section 1.3.1) are necessarily
 eliminated when they are instead nested (as static members) within a struct.

(3) Unlike a namespace, a struct does not permit using directives (or declarations) to import function names
 into the current (e.g., package) namespace, thereby preventing any consequent loss in readability.42

(4) Unlike a namespace, a struct can support private nested data — e.g., as an optimization for accessing
 insulated (external bindage) table-based implementation details, residing in the .cpp file, by one or more inline
 functions, residing in the .h file (see Volume II, section 6.7).

(5) Unlike a namespace, a struct can be passed as a template parameter — e.g., as a cartridge of related
 functions satisfying a concept (e.g., see Figure 3-29, section 3.3.7).

(6) Unlike a namespace, a C-style function in a struct does not participate in Argument-Dependent Lookup
 (ADL), thereby avoiding potentially large overload sets, which could needlessly affect compile-time
 performance and possibly introduce unanticipated (perhaps even latent) ambiguity, or — much worse —
 invoke the wrong function.43 By placing our “free” functions in a struct, we make our design decision not to
 employ ADL explicit.

(7) Except for a few very stylized cases, such as std::placeholders (e.g., _1, _2, _3) and std::literals,
 use of namespace declarations are generally ill-advised. Should we subsequently discover a rare valid
 engineering reason for enabling local using declarations, we can easily migrate a struct to a namespace
 by creating a new component-private struct (see section 2.9.1), e.g., MathUtil_Imp, and forwarding calls
 to it from the new nested (e.g., MathUtil) namespace. Note that, except when used as in (5), it is always
 possible to migrate from a struct to a namespace without forcing any clients to rework their source code,
 but, given the possibility of using directives/declarations, not vice versa (see Volume II, section 5.5).

Figure 2-23: Prefer struct to namespace for aggregating “free” functions.

40 Note that it is not possible to have partial specializations for static method templates in a struct the way you can

for free-function templates.

41 Because only free (i.e., non-member) functions participate in ADL, extending the C++ language to accommodate

new features, e.g., redeclaration (voutilainen19), for such functions (as opposed to static members of a struct) is

considered by some to be substantially more technically difficult to implement in relevant C++ compilers. For more on

why such extensions might be practicably useful in future incarnations of the C++ language, see Volume II, section 6.8.

42 Although using declarations can be used to import declarations of overloaded functions of a given name from a

private (or protected) base class into a public one, we generally discourage such use, as it would require a public

client to view otherwise private (or protected) detail; instead, we prefer to create (and document) an inline

forwarding function. Note that a similar issue arises with forwarding constructors as of C++11.

43 Titus Winters of Google has recently (c. 2018) expressed increasing concerns as to the scalability and stability of

such overload sets (winters18a, “ADL”); see also winters18b, particularly starting at the 11:30 time marker.

Section 2.4 Logical and Physical Name Cohesion 317

Design Rule

A component header is permitted to contain the declaration of a free (i.e., non-
member) operator or aspect function (at package-namespace scope) only when one
or more of its parameters incorporates a type defi ned in the same component.

In our methodology, operators, whether member or free, are by their nature fundamental to the

type(s) on which they operate. Every unary and homogeneous binary operator — i.e., one writ-

ten in terms of a single user-defined type, e.g.,

bool operator==(const BondPrice& lhs, const BondPrice& rhs);

is declared and defined within the same component (e.g., bts_bondprice) as the type (e.g.,

bts::BondPrice) on which it operates. Note that, except for forms of assignment

(e.g., =, +=, *=), we will always choose to make a binary operator free (as opposed to a mem-

ber) to ensure symmetry with respect to user-defined conversions (see Volume II, section 6.13).

For conventionally heterogeneous operators such as

std::ostream& operator<<(std::ostream& stream,

 const BondPrice& price);

the motivation to make them free is born of extensibility without modification, as in the open-closed

principle (section 0.5). In any event, the place to look for the definition of an operator (entirely

consistent with ADL) is within a component that defines a type on which that operator operates.

If we were to allow free operators to be defined in arbitrary components, how could we even

know if they exist? If we saw one being used, how would we track down its definition?

Even more insidious is the possibility that a client unwittingly duplicates such a definition

locally. The resulting latent incompatibilities, manifested by future multiply-defined-symbol

linker errors, would threaten to destabilize our development process.

As an important, relevant example, consider the standard template container class, std::vector,

for which no standard output operator is defined. Referring to Figure 2-24, suppose that

the author of component my_stuff finds outputting a vector to be generally useful, and so

“thoughtfully” provides

template <class TYPE>

std::ostream& operator<<(std::ostream& lhs,

 const std::vector<TYPE>& rhs);

318 Chapter 2 Packaging and Design Rules

(along with an appropriate definition) in its header for general use by clients. It is not hard to

imagine that component your_stuff might do so as well. Now consider what happens when

their_stuff.cpp includes both my_stuff.h and your_stuff.h. The inevitable result is

multiply defined symbols!44

their::Stuff

their_stuff

std::vector

your::Stuff

your_stuff.h

template<class TYPE>
std::ostream&
operator<<(
 std::ostream& lhs, const
 std::vector<TYPE>& rhs);

my::Stuff

my_stuff.h

template<class TYPE>
std::ostream&
operator<<(
 std::ostream& lhs, const
 std::vector<TYPE>& rhs);

Multiply defined
symbols!

Figure 2-24: Problems with defining operators in unexpected components

Instead, the functionality should have been implemented as a static member function of a

utility struct (see section 3.2.7) in a separate component, as illustrated in Figure 2-25.

44 Because the offending operator is a template, which has dual bindage (section 1.3.4), it is entirely possible that the

duplicate definitions will go unnoticed by either the compiler or the linker for quite some time — that is, until the

compiler can see the two template definitions side-by-side in a single translation unit. Had the construct instead had

external bindage, such as an ordinary function or an explicit instantiation, merely linking the two components into

the same program would have been sufficient to expose the incompatibility.

Section 2.4 Logical and Physical Name Cohesion 319

// xyza_printutil.h

// ...

namespace xyza {

// ...

struct PrintUtil {

 // ...

 template<class TYPE>
 static std::ostream& print(std::ostream& stream,
 const std::vector<TYPE>& object);

 // ...
};

// ...

} // close package namespace

// ...

Figure 2-25: Avoiding free operators on nonlocal types

As illustrated in Figure 2-26, providing an output operator on a type my::Type — or con-

ceivably even on a std::vector<my::Type> — in component my_type is perfectly fine.

The general design concept being illustrated here is to follow the teachings of the philosopher

Immanuel Kant and avoid doing those things that, if also done by others, would adversely affect

society (see section 3.9.1). By adhering to this simple rule for operators, we ensure that (1) we

know where to look for each operator, and (2) operator definitions will not be duplicated (and

therefore cannot conflict at higher levels in the physical hierarchy).

320 Chapter 2 Packaging and Design Rules

// my_type.h
// ...

namespace my {

class Type {
 // ...
};

std::ostream& operator<<(std::ostream& stream, const Type& object);

std::ostream& operator<<(std::ostream& stream,
 const std::vector<Type>& object);

} // close package namespace

// ...

Correct

Not wrong

Figure 2-26: Overloading free operators on types within the same component

If a single free operator refers to two types implemented in separate components, where one

depends on the other, the operator would of course be defined in the higher-level component.

If, however, the components are otherwise independent (as illustrated Figure 2-27a), we have

two alternatives:

 1. [Suboptimal] Arbitrarily choose one of the components to be at a higher-level and place

the free operator there, as in Figure 2-27b (thus introducing additional physical depen-

dency for one of the components).

 2. [Preferred] Create a utility class in a separate component, as in Figure 2-27c, and define

one or more nonoperator functions nested within a struct that serves the same pur-

pose (see section 3.2.7). Note that it is never appropriate to escalate (see section 3.5.2)

co-dependent free operators to a separate component.

Use of operators for anything but the most fundamental, obvious, and intuitive operations (see

Volume II, section 6.11) are almost always a bad idea and should generally be avoided; any

valid, practical need for operators across otherwise independent user-defined types is virtually

nonexistent.45

45 We note that the C++ streaming operators and Boost.Spirit are (rare) arguably plausible counter-examples; still, we

maintain that heterogeneous equality comparison operators across disparate user-defined value types (see Volume II,

section 4.1), such as Square and Rectangle (Figure 2-27), remain invariably misguided for entirely different

reasons (see Volume II, section 4.3).

Section 2.4 Logical and Physical Name Cohesion 321

(a) Addressing placement of heterogeneous operators

bool operator==(const xyza::Square& lhs, const xyza::Rectangle& rhs);
bool operator==(const xyza::Rectangle& lhs, const xyza::Square& rhs);

xyza_square xyza_rectangle

xyza::Square

xyza::Square

xyza::Rectangle

xyza::Rectangle

bool operator==(const xyza::Square& lhs, const xyza::Square& rhs);
bool operator==(const xyza::Square& lhs, const xyza::Rectangle& rhs);
bool operator==(const xyza::Rectangle& lhs, const xyza::Square& rhs);

xyza_square

bool operator==(const xyza::Rectangle& lhs, const xyza::Rectangle& rhs);

xyza_rectangle
(b) By introducing additional dependencies [SUBOPTIMAL]

namespace xyza {
// ...
struct SquareRectangleUtil {
 static bool areEqual(const Square& square,
 const Rectangle& rectangle);
 static bool areEqual(const Rectangle& rectangle, // optional
 const Square& square);
};
// ...
} // close package namespace

xyza_squarerectangleutil

(c) By escalating and replacing with static methods of a struct [PREFERRED]
xyza_square xyza_rectangle

xyza::Square xyza::Rectangle

xyza::SquareRectangleUtil

Figure 2-27: Implementing “free operators” referring to multiple peer types

322 Chapter 2 Packaging and Design Rules

2.4.10 Package Prefixes Are Not Just Style

Make no mistake, how packages are named is not just a matter of style; package names have

profound architectural significance. As an example, consider Figure 2-28, which shows a

hierarchy of components whose dependencies form a binary tree. Clearly these components

are levelizable (section 1.10) and, hence, have no cycles. However, it is not in general possible

to assign components of a multipackage subsystem to arbitrary packages without introducing

package-level cycles. In this example, the packages containing these components (as implied

by the package prefixes embedded in the component names) would be cyclic and therefore not
levelizable.

Component Level 3:

Component Level 2:

Component Level 1:

subc_comp5

subim_comp1 subim_comp2

subc_comp4subc_comp3subc_comp2subc_comp1

Figure 2-28: Implied cyclic package dependencies (BAD IDEA)

The problem, identified by Figure 2-29, can easily arise in practice. Consider the design of

a single package that is intended to contain everything that is directly usable by clients of a

multipackage subsystem. If this presentation package (subc) defines both protocol (i.e., pure

abstract interface) classes (which are inherently very low level) and wrapper components

(which are inherently very high level), it will not be possible to interleave components from a

separate implementation package (subim).46

46 For complex subsystems, the implementation components represented here as a single package subim may

appropriately span many packages at several different levels; however, the basic idea remains the same.

Section 2.4 Logical and Physical Name Cohesion 323

subc

subc

subc_comp1 subc_comp2 subc_comp3 subc_comp4

subim

subim_comp1 subim_comp2

subc_comp5

Figure 2-29: Acyclic component hierarchy; cyclic package hierarchy (BAD IDEA)

COROLLARY: Allowed (explicitly stated) dependencies among packages must be
acyclic.

Allowing cyclic dependencies among packages, like any other aggregate, would make our soft-

ware qualitatively more complicated. Ultimately, all cyclically involved packages would have

to be treated as a unit. A general solution to this common problem, illustrated in Figure 2-30,

is simply to provide two separate client-facing packages. One package (subw) will reside at the

top of the subsystem and contain components that define only wrappers47 (e.g., subw_comp1);

the second will reside at the bottom of the package hierarchy and incorporate components

47 A wrapper is a facade that allows clients to manipulate objects (typically of some other type) without providing

direct programmatic access to those objects (see sections 3.1.10 and 3.11.6).

324 Chapter 2 Packaging and Design Rules

(e.g., subv_comp1) that define protocol and other vocabulary types (see Volume II, section 4.4)

exposed programmatically through the wrapper interface.48

subw

subv

subim

subv_comp1 subv_comp2 subv_comp3 subv_comp4

subw_comp1

subim_comp1 subim_comp2

Figure 2-30: Repackaging of components to avoid cyclic package dependencies

Components that are used in the interface of the wrapper components (subw), and also in name

only by low-level protocols, typically reside either in the same package as the protocols (e.g.,

subv in Figure 2-30) or in a separate, lower-level package, as illustrated in Figure 2-31b, as

opposed to at the same level (Figure 2-31a), in order to enable concrete test implementations

of the protocols to properly reside along with them (e.g., in subp), yet allow such test imple-

mentations to depend on the actual concrete vocabulary types (e.g., in subt) rather than having

to mock them.

48 See the escalating encapsulation levelization technique (section 3.5.10).

Section 2.4 Logical and Physical Name Cohesion 325

(a) Parallel protocol and concrete vocabulary-type packages (BAD IDEA)

2

subt_comp2subt_comp1

1

subp_comp2subp_comp1

subw

subp subt

subim

Uses-In-Name-Only

1

subim_comp2subim_comp1

subw_comp1

3

subw_comp1

326 Chapter 2 Packaging and Design Rules

subw_comp1subw_comp1

4

3

subim_comp2subim_comp1

(b) Subordinate local vocabulary-type package (GOOD IDEA)

subw

subp

subt

Uses-In-Name-Only

Uses substantively

subim

2

1

subp_comp1 subp_comp2

subt_comp2subt_comp1

subp_testcomp1

Figure 2-31: Alternative packaging strategies

2.4.11 Package Prefixes Are How We Name Package Groups

Although packages, being architecturally significant aggregates, have unique names (and

namespaces), it is often advantageous to bundle packages having similar purposes and/or simi-

lar envelopes of physical dependency into a larger, logically and physically coherent, nominally

cohesive aggregate. We could make a big deal about this issue (and perhaps we should, given

its importance). Instead we will avoid the drama and just make our point: The first three let-

ters of a package name identify the physically cohesive package group in which a grouped

package resides.

Section 2.4 Logical and Physical Name Cohesion 327

The reason for this simple approach is, well, simple (see section 2.10.1): We simply must

have an ultra-efficient way to specify the package group and package of each component

and class in order to obviate noisome and debilitating using directives and declarations (see

section 2.4.12). The choice of three letters (as opposed to, say, two or four) is simply an engi-

neering trade-off. This simple, concise, and effective approach to naming package groups is

illustrated in Figure 2-32. We will revisit our package-naming rules (in much greater depth) in

section 2.10.

subt_comp2subt_comp1

subw

subp

subt

sub

subim_comp2subim_comp1

subw_comp1

subp_comp2subp_comp1

subp_testcomp1

subim

Figure 2-32: Logically and physically cohesive package group

328 Chapter 2 Packaging and Design Rules

2.4.12 using Directives and Declarations Are Generally a BAD IDEA

Let us now take a closer look at our use of the C++ namespace construct to partition logi-

cal entities along package boundaries. One of the solid benefits of package namespaces is

that access to other entities local to that package does not require explicit qualification. This

advantage is particularly pronounced at the application level, where much of the code that

interoperates is defined locally (see section 2.13). Absent using directives and declarations,

an unqualified reference is as informative as a qualified one: An unqualified reference implies

that the entity is local to this package.49

In the code example of Figure 2-33, we cannot simply look at the definition of the

insertAfterLink helper function and know which Link class we are talking about without

potentially having to scan back through the entire file for preceding occurrences of using.

49 There is still, however, one pragmatic reason to prefer the inflexibility of the hard-coded logical package pre-

fix that continues to give us pause even though we have fully embraced package namespaces in our day-to-day

work. Unfortunately, any use of using directives and declarations render case-by-case explicit use of the package

namespace “tag” for remotely defined types optional, at the expense of nominal cohesion. Occasionally, library

developers will need to “search the universe” for all uses of some class or utility. When we consider the possible use

of using directives and declarations, any hope of relying on a simple search and replace (e.g., in the event a compo-

nent “moves” from one package to another) is lost. Instead, we are forced to parse every line of source code. Even

when we have such an elaborate tool (e.g., Clang), it, like the compiler itself, runs many orders of magnitude slower

than a simple search engine looking for a fixed identifier string. We saw this same kind of speed issue with respect to

determining the envelope of direct physical dependencies by scanning for just the #include directives nested within

a component (section 1.11). Hence, use of the namespace construct, at least in this particular respect, is not as scal-

able as the classical, albeit archaic (and now deprecated), logical package prefix.

Section 2.4 Logical and Physical Name Cohesion 329

// my_link.cpp
#include <my_link.h>

// ...

#include <your_list.h> // defines class 'Link'

// ...

namespace Foo {
 class Link { /*...*/ }; // another definition of 'Link'
}

// ...
// ...
// ...
// ...
// ...

inline
static void insertAfterLink(Link *node, Link *newNode)
{
 BSLS_ASSERT(node);
 BSLS_ASSERT(newNode);

 newNode->next = node->next;
 newNode->prev = node;
 node->next = newNode;

 if (newNode->next) {
 newNode->next->prev = newNode;
 }
}

// ...

(See Volume II, section 6.8.)

Cannot determine which Link is
being used without looking at

prior using directives

Figure 2-33: Nonlocal namespace names are optional! (BAD IDEA)

What’s worse, it might be that using directives or declarations are not even local to the imple-

mentation file, but are instead imported quietly in one or more of many included header files

as illustrated in Figure 2-34. And, unlike the C++ Standard Library (or std in code), which is

comparatively small, unchanging, and well known, we cannot be expected to know every class

within every component of every package throughout our enterprise. Still worse, nesting a vari-

ety of using directives and declarations within header files risks making relevant the relative

order in which these headers are incorporated into a translation unit!50

50 sutter05, item 59, pp. 108–110

330 Chapter 2 Packaging and Design Rules

// my_app.cpp
#include <my_app.h>
#include <cdel_log.h>
#include <ddet_swap.h>
#include <ddet_table.h>
#include <ddeu_isma30360.h>
#include <dteal_technology.h>
#include <emeg_protocol.h>
#include <emem_list.h>
#include <etef_fizzbin.h>
#include <etet_trade.h>
#include <eteu_semiannual.h>
#include <fmeec_transport.h>
#include <fteem_balloon.h>
#include <ftet_account.h>
#include <ftet_position.h>
#include <ftex_prepayment.h>
// ...
// ...
// ...
#include <pcst_client.h>
#include <otem_config.h>
#include <tdep_render.h>
#include <ynot_evenmore.h>

// ...
// ...
// ...
// ...
// ...
// ...
// ...

static void communicate(Relay *relay)
{
 static Callback myCallback;

 if (relay->isOperational()) {
 relay->setForwardCallback(&myCallback):
 }
 else {
 Log::singleton().write("Life is like a box of chocolates...");
 }

 // ...
}

// ...

Cannot determine which Relay is being used even after looking at every
statement in this file — using directives/declarations or otherwise!

Figure 2-34: using directives/declarations can be included! (BAD IDEA)

Section 2.4 Logical and Physical Name Cohesion 331

Design Rule

Neither using directives nor using declarations are permitted to appear outside
function scope within a component.

No matter what, we must forbid any using directives or declarations in header files outside

of function scope.51,52,53,54 Perhaps some advocates of using in headers might not yet have

realized that the incorporation of names from one namespace, A, into another, B, does not

end with the closing brace of B into which names from A were imported, but remain in B

until the end of the translation unit. Consequently, using directives or declarations are some-

times used (we should say horribly misused) in header files when declaring class member

data and function prototypes to shorten the names of types declared in distant namespaces

51 And, in library code, using is generally best avoided altogether. If used there at all, a using declaration (not

directive) — whether employed to enable ADL (e.g., for a free aspect function, such as swap), or merely as a

compact alias (e.g., as an entry into a dispatch table) — should appear only within a very limited lexical context, i.e.,

function (or block) scope.

52 In C++98, using declarations replaced access declarations (which were deprecated intermediately and, in C++11,

finally removed) for the purpose of promoting all overloads of a given (named) member function from a base class

into the current scope while potentially increasing its level of access, e.g., from private to public. As we will discuss

shortly, we avoid any use of class-scope using declarations, especially those that might force public clients to refer

to less-than-public regions of a class’s implementation.

53 C++11 introduced other contexts in which the using keyword is valid (e.g., as an alias declaration used to replace

typedef) having nothing to do with either using declarations or using directives.

54 Alisdair Meredith notes (via personal email, 2018) that, when a base class is a template, the set of overloads to

forward is an open set. Accidental breakage can occur when a design requires that each of the overloads be exposed

manually. When the intent is to perfectly forward an overload set from a base class, a using declaration is a clear

statement of that design intent.

Nonetheless, our recommended approach is to avoid such uses of (typically structural) inheritance (see Volume II,

section 4.6), preferring the more compositional Has-A (section 1.7.4) approach to layering (see section 3.7.2)

instead.

That said, exceptional cases do exist. Alisdair Meredith further points out (again, via personal email, 2018) that we

ourselves have, on occasion, been known to introduce a base class having fewer template parameters, and then use

structural inheritance and using declarations to expose that functionality as the public interface. If we were now to

replace using declarations with, say, inline forwarding functions, we would negate the intended effect of reducing

template-induced code bloat (see Volume II, section 4.5).

332 Chapter 2 Packaging and Design Rules

(BAD IDEA).55 Instead, we must use the package-qualified name of each logical entity not

local to the enclosing package. For this reason, we will want to ensure that widely used

(“package”) namespace names, like std, are very short indeed.

The use of using declarations for function forwarding during private (never mind protected)

inheritance is also to be avoided because (1) our ability to document and understand such

functionality in the derived header itself is compromised, and (2) inheritance necessarily

implies compile-time coupling (section 1.9; see also section 3.10). We generally prefer to avoid

private inheritance, in favor of layering (a.k.a. composition), and explicit (inline) function

forwarding.

Finally, using namespaces to define a logical “location” independent of its physical location,

say, to avoid changing #include directives (should some class be logically “repackaged”)

is — in our view — misguided. If we change the logical location of a class then — in our

methodology — that class must be moved to its proper physical location as well. Unless logical

and physical locations coincide, many of the advantages of sound physical design — e.g.,

reduced compile time, link time, and executable size (not to mention organization and under-

standability) — are compromised.

Adhering to these cohesive naming rules does, however, impose some extra burden on library

developers. That is, if a logical construct were to “move” from one architectural location to

another, its address (i.e., its component name), and therefore some aspect of its fully qualified

logical name, must necessarily change as well. This “deficiency” is actually a feature in that it

allows for a reasonable deprecation strategy: During refactoring, it is possible for two versions

55 Local typedefs have historically been effective at addressing long names in data definitions and function

prototypes due to specific template instantiations:

class Book {
 // ...
 typedef std::map<std::string, std::string> StrStrMap;
 typedef std::map<std::string, std::vector<int> > StrIntarrayMap;
 // ...
 StrStrMap d_glossary;
 StrIntarrayMap d_index;
 // ...
};

We recognize that C++11 offers using as a syntactic alternative, and that thoughtful (discriminating) use of auto

can also help eliminate redundant (or otherwise superfluous) explicit type information in source code. See lakos21.

Section 2.5 Component Source-Code Organization 333

of the same logical entity to co-exist for a period of time as clients rework their code to refer to

the new component before the original one is finally removed.56

2.4.13 Section Summary

In summary, our rigorous approach to cohesive naming — packages, components, classes, and

free (operator) functions — not only avoids collisions, it also provides valuable visual cues

within the source code that serve to identify the physical location of all architecturally signifi-

cant entities. Experience shows that human cognition is facilitated by such visual associations.

In turn, this nominal cohesion reinforces the even more critical requirement of logical/physical

coherence (section 2.3). Hence, logical and physical name cohesion across related architectur-

ally significant entities is an integral part of our component-based packaging methodology.

941

Index

Symbols
< > (angle brackets), 202–203, 344, 369–370,

433, 490

.. (ellipses), 238

== (equality) operator, 221–222, 882

!= (inequality) operator, 221–222, 511

() (parentheses), 652

+ (plus sign), 431–432

“ (quotation marks), 202–203, 344, 369–370,

433, 460, 490

_ (underscore)

in component names, 53, 304,

381–383, 487, 938–939

conventional use of, 371–377

extra underscore convention, 372–377,

561, 591, 771, 939

in package names, 425

A
AA (allocator-aware) objects, 807–808

absEqual method, 34

abstract data types (ADTs), 192

abstract factory design pattern, 556–557

abstract interfaces, 498–499, 526

abstract syntax tree (AST), 557

Account class, 717–722

Account report generator, 37–40

ACE platform, 719

active library development, 811

acyclic dependencies. See also cyclic

dependencies

component collections, 93–95

components, 362–370

defined, 936

levelization and, 251–256, 602

libraries, 149–151, 417–421

package groups, 411–413

package prefixes, 322–326, 937

acyclic logical/physical coherence, 296–297

Ada, 125

adapters, 601, 736, 754–758, 803

adaptive allocation, 783

addDaysIfValid function, 844

additive values, 839, 881

addNode function, 667, 673

addresses, program-wide unique, 163–166

ADL (argument-dependent lookup), 200, 314

ADTs (abstract data types), 192

advanceMonth function, 878–879

aggregation. See physical aggregation

agile software development, 29–30, 433

aliases, namespace, 200

all-lowercase notation

component names, 304–305, 938

package group names, 423–424, 939

package names, 424–426, 939

procedural interface names, 819–820

allocate method, 699, 778

Allocator protocol, 860, 902

allocators

Allocator protocol, 860, 902

allocator-aware (AA) objects, 807–808

default, 860

factories, 505

memory allocation, 808

open-source implementation, 785

stateful, 808

allowed dependencies

defined, 936

entity manifests and, 281–284, 936

942 Index

package groups, 408–413, 939–941

packages, 389–394, 451–454, 937,

939–941

physical aggregates, 300, 938, 942

all-uppercase notation, 371–372, 938

alphabetization of functions, 845

amortized constant time, 534

angle brackets (< >), 202–203, 344, 369–370,

433, 490

ANSI-standard Gregorian calendar, 886

anticipated client usage, modularization and,

523–528

a.out filename, 131

applications. See also compilation; library

software; linkage

agile software development, 433

application-specific dependencies, 758–760,

941

creating, 126–128

defined, 6

development framework for, 433–437, 491

“Hello World!”, 125–126

“ill-formed”, 692–693

library software compared to, 5–13

naming conventions, 435–436, 940

programs in, 434

reusability of, 6–13

structure of, 125–126

top-down design, 6–7

ar archiver program, 145

architecture. See also insulation; metadata

architectural entities, 274

coarsely layered, 22–23

finely graduated, granular, 23–27

interpreters, 384–385

lateral

CCD (cumulative component dependency),

723, 727–732

versus classical layered architecture,

723–726

construction analogy, 723

correspondingly layered architecture, 729

inheritance-based, 732–738

overview of, 499, 601, 722–723

protocols and, 802

purely compositional designs, improving,

726–727

summary of, 738–739, 909, 917–918

testing, 738

layered

CCD (cumulative component dependency),

723, 727–732

classical layered architecture, 723–726

construction analogy, 723

correspondingly layered architecture, 729

defined, 223

versus inheritance-based lateral

architectures, 732–738

layered clients, 498–499

light versus heavy layering, 728–729

mail subsystem, 599

overview of, 722–723

private inheritance versus, 225, 332

protocols and, 802

purely compositional designs, improving,

726–727

summary of, 738–739, 917–918

testing, 738

SOAs (service-oriented architectures)

cyclic physical dependencies and, 519

insulation and, 833

procedural interfaces compared to, 715

archives. See library software

area, polygons, 537–539

argument-dependent lookup (ADL), 200, 314

asDatetimeTz method, 849

as-needed linking, 145

aspect functions, 311, 335, 423, 483, 839,

937–938

Aspects subcategory, 841

assembly code, 129

Assert class, 904

AST (abstract syntax tree), 557

atomicity. See also components

atomic units, 48

libraries, 277

object files (.o), 131–134

physical aggregates, 277

Index 943

automatic storage, 162

autonomous core development team, 98–100

auxiliary date-math types, 878–881

axioms, 437

B
balance, in physical hierarchy, 284–287, 290

ball (BDE Application Library Logger), 599,

761

banners, 335–336

Bar class, 156–157, 355–359

BAS (Bloomberg Application Services), 833

base classes, 331

base names, 292, 310, 372, 936

Base64Encoder class, 521

BaseEntry class, 141

Basic Business Library Day Count package,

570–574

Basic Service Set. See bss segment (executables)

BDE Application Library Logger (ball), 599,

761

BDE Development Environment, 839, 840

BDE Standard Library (bsl), 404

BDEX streaming, 839–848, 898, 902

bdex_StreamIn protocol, 839

bdex_StreamOut protocol, 839

bdlma_pool component, 788

bdlt_testcalendarloader component, 455

Bear Stearns, 15, 89, 783

benign ODR violations, 160, 195, 264

“betting” on single technology, 745–753

“Big Ball of Mud” design, 5

bimodal development, 95

binary relations, transitive closure on, 259

bindage

declaring in header (.h) files, 214–216,

344–345

external/dual, 163, 935

internal, 805, 935

overview of, 160–162, 263

BitArray type, 895–898

bitset, 896

BitStringUtil struct, 898

BitUtil struct, 897–898

black-box testing, 445

Blackjack model, 655–660

blockSize parameter (Pool class), 785

Bloomberg Application Services (BAS), 833

boilerplate component code, 334

“boiling frog” metaphor, 776

Booch’s Class Categories, 301

Boost’s C++98 concepts library, 234

Boost.Test, 456

Box class, 604–609

Breitstein, Steven, 906

bridge pattern, 801

brittleness, 15–17, 116, 781

Brooks, Fred, 4, 88

brute-force solutions, 64–70, 668

bsl (BDE Standard Library) package group, 404

bslma::Allocator, 902

bsls_assert component, 904

bss segment (executables), 131–132

budgeting, 3–5, 115

build process

build requirements metadata, 475–476, 493

example of, 131–134

link phase, 131–132, 260

object files (.o), 131–134

overview of, 129–134

preprocessing phase, 129–130

software organization during, 462

translation phase, 129–130, 132

build requirements metadata, 475–476, 493

build-time behavior, link order and, 151

business-day functionality, date/calendar

subsystem

adding to Date class, 715–717

holidays, 855, 859

locale differences, 854

requirements for, 837

Business-Object-Loaders subsystem, 733

ByteStream class

brute-force solutions based on redundancy,

668

standardizing on abstract ByteStream

interface class, 668–669

944 Index

standardizing on ByteStream concept,

669–671

standardizing on single concrete ByteStream

class, 665–667

C
C language, 125, 811–812

The C++ Programming Language (Stroustrup),

870–871

cache

calendar-cache component, 454–456

date/calendar subsystem

CacheCalendarFactory interface, 867–871

CalendarCache class, 861–867

software reuse and, 85–86

CacheCalendarFactory interface, 867–871

calculateOptimalPartition, 60, 67

calendar and date subsystem. See date/calendar

subsystem

Calendar class, 895–899

Calendar type, 855

CalendarCache class, 861–867

CalendarFactory interface, 867–871

CalendarLoader interface, 862–867

CalendarService class, 715

CalendarUtil structure, 883

callables, 639

callbacks

concept

brute-force solutions based on redundancy,

668

defined, 664–665

standardization on single concrete

ByteStream class, 665–667

standardizing on abstract ByteStream

interface class, 668–671

support for, 664

data, 640–643

function

cyclic rendering of Event/EventMgr

subsystem, 647–648

defined, 643–644

disadvantages of, 651

eliminating framework dependencies with,

649–651

function callbacks in main, 644–647

functor

defined, 651

eliminating framework dependencies with,

652–654

stateless functors, 654–655

overview of, 639

protocol

Blackjack model, 655–660

logger-transport-email example, 655–660

summary of, 915

calling procedural interface functions, 823–824

.cap files, 433

capabilities metadata, 476

capital, software

autonomous core development team, 98–100

benefits of, 91–98

defined, 89

demotion process, 95

hierarchically reusable software repository,

108–109

in-house expertise, 107–108

intrinsic properties of, 91–92

mature infrastructure for, 106–107

motivation for developing, 89–90

origin of term, 89

overview of, 86–98

peer review, 90–91

quality of, 110–114

recursively adaptive development, 100–105

return on investment, 86–88

summary of, 120–121

Cargill, Tom, 643

categories, 564

CC compiler, 136

CCD (cumulative component dependency)

defined, 727–730

example of, 730–732

minimizing, 727–729

CCF (contract-checking facility), 664

Cevelop, 258

Index 945

Channel class, 230, 745–753

ChannelFactory class, 745–753

channels

channel allocator factories, 505

channel allocators, 505

Channel class, 230, 745–753

channel protocols, 505

ChannelFactory class, 745–753

defined, 505

CharBuf class, 667

charter, package, 502

chunkSize parameter (Pool class), 785, 788

Circle class, 798

cl compiler, 136

Clang, 259, 328

classes. See also enumerations; protocols

Account, 717–722

adapter, 736

Allocator, 785

as alternative to qualified naming, 198–201

Assert, 904

Bar, 156–157, 355–359

base classes, 331

Base64Encoder, 521

BaseEntry, 141

Booch’s Class Categories, 301

Box, 604–609

ByteStream

brute-force solutions based on redundancy,

668

standardizing on abstract ByteStream

interface class, 668–669

standardizing on ByteStream concept,

669–671

standardizing on single concrete

ByteStream class, 665–667

Calendar, 895–899

CalendarCache, 861–867

CalendarService, 715

categories of, 564

Channel, 230, 745–753

ChannelFactory, 745–753

CharBuf, 667

Circle, 798

colocation

component-private classes, 561–564

criteria for, 501, 522–527, 555–560,

591, 941

day-count example, 566–576

mutual collaboration, 555–560, 941

nonprimitive functionality, 541, 941

single-threaded reference-counted functors

example, 576–591

subordinate components, 564–566

summary of, 591–592, 912–914, 941

template specializations, 564

CommonEventInfo, 616–617

component-private

defined, 371, 937

example of, 378–383

identifier-character underscore (_),

371–377

implementation of, 371

modules and, 371

summary of, 384, 486–487

concrete, 498–499

Container_Iterator, 380

Date

business-day functionality, 715–717,

854–855

class design, 838–849

day-count functions in, 567

hidden header files for logical

encapsulation, 763–764

hierarchical reuse of, 886–887

indeterminate value in, 842

nonprimitive functionality in, 709–714

physical dependencies, 740–744

value representation in, 887–895

DateSequence

component/class diagram, 508–509

open-closed principle, 511

single-component wrapper, 509–510

DateSequenceIterator, 509–510, 515

DateUtil, 610–611, 742–743

Default, 785

946 Index

Dstack, 774–775

Edge, 673–674

dumb-data implementation, 629–633

factoring, 675–676

manager classes, 673–674

opaque pointers and, 625–629

enum, 313

Event, 624

EventQueue, 615–618

Foo, 156, 355

FooUtil, 179–183

grouping functionality of, 841

inheritance

constrained templates and, 230–233

equivalent bridge pattern, 801

inheritance-based lateral architectures,

732–738

private, 692

procedural interfaces, 828–829

public, 359–362

relationships and, 234

Link, 671

List, 671–673

local declarations, 507, 594, 794

MailObserver, 663

manager, 671–674

MonthOfYear, 878

MySystem, 231

nested

constructors, 375

declaring, 375–377

defining, 373, 940

protected, 377

Node, 625

dumb-data implementation, 629–633

factoring, 675–676

manager classes, 673–674

opaque pointers and, 625–629

Opaque, 168

OraclePersistor, 736

OsUtil, 742–743

package namespace scope, 312–321, 483,

938, 940

PackedCalendar, 859–861, 900–901

Persistor, 733–738

Point, 169–170, 816–824

PointList, 239–241

Polygon, 35

“are-rotationally-similar” functionality,

541–544

flexibility of implementation, 535–537

implementation alternatives, 534–535

interface, 545–552

invariants imposed, 531

iterator support for generic algorithms,

539–540

nonprimitive functionality, 536–537, 541

performance requirements, 532–533

Perimeter and Area calculations, 537–539

primitive functionality, 533–534, 540

topologicalNumber function, 545

use cases, 531–532

values, 530

vocabulary types, 530–531

Pool, 778–783

inline methods, 781–783

partial insulation, 782

replenishment strategy, 784–789

PricingModel, 758–759

ProprietaryPersistor, 733

PubGraph, 685

Rectangle, 604–609, 798

Registry, 145

RotationalIterator, 544

salient attributes, 515

shadow, 516–517

Shape, 795–798

ShapePartialImp, 799–800

ShapeType, 808

Stack, 49

StackConstIterator, 49

templates, 179–183

TestPlayer, 659

TimeSeries, 509–510

component/class diagram, 508–509

Index 947

hidden header files for logical

encapsulation, 763–765

wrappers, 512–516

TimeSeriesIterator, 508–510

unconstrained attribute, 610

classical layered architecture, 723–726

classically reusable software, 18–20, 116

client-facing interfaces, name cohesion in, 313

clients, layered, 498–499

closure, 528

coarse dependencies, predefining with package

groups, 417–419

coarsely layered architecture, 22–23

Cobol, 125

code bloat, 561, 780

coerced upgrades, 32

coherence, logical/physical

overview of, 294–297

package groups and, 414–417

summary of, 482–484

cohesion, name. See logical/physical name

cohesion

coincidental cohesion, 395–396

collaborative logical relationships

In-Structure-Only, 227–230

Uses-In-Name-Only, 226–227

collaborative software, reusability in, 14–20, 116

colocation

component-private classes, 561–564

criteria for

cyclic dependency, 557, 591

“flea on an elephant,” 559–560, 591

friendship, 556–557, 591

overview of, 522–527, 555–560, 591, 941

single solution, 557–559, 591

substantive nature of, 501

day-count example, 566–576

bbldc package implementation, 570–574

ISMA 30/360 day-count convention, 567

library date class, 567

package implementation, 575–576

protocol class implementation, 573–575

PSA 30/360 day-count convention, 567

single-component implementation,

568–570

mutual collaboration, 555–560, 941

nonprimitive functionality, 541

single-threaded reference-counted functors

example

aggregation of components into packages,

586–589

event-driven programming, 576–586

overview of, 555–576

package-level functor architecture,

586–589

subordinate components, 564–566

summary of, 591–592, 912–914, 941

template specializations, 564

commands. See also functions and methods

dumpbin, 133

nm, 133

CommonEventInfo class, 616–617

compare function, 172–174

competition, perfect, 87

compilation, 259–260. See also library software

build process, 129–134

compiler programs, 136

compile-time, avoidance of, 773

compile-time dependencies, 239, 359–362

avoiding unnecessary, 778–783

defined, 936

encapsulation, 773–776

pervasiveness of, 778

real-world example, 783–789

shared enumerations, 776–777

summary of, 790, 920

compile-time polymorphic byte streaming,

415

cost of, 773

declarations

aspect functions, 335

consistency in, 194–201

defined, 153–154

definitions compared to, 154–159

forward, 358–359

inline functions, 778–783, 939

948 Index

local, 507, 594, 794

at package namespace scope, 312–321

program-wide unique addresses, 163–166

pure, 188, 358

summary of, 188–190, 261–265

typedef, 168, 313

using, 328–333

visibility of, 166–170

defined, 129

definitions

compiler access to definition’s source

code, 166–168

declarations compared to, 154–159

declaring in header (.h) files, 212–214,

344

defined, 153–154

entities requiring program-wide unique

addresses, 163–166

global, 475, 762

local, 475

ODR (one-definition rule), 158, 185–186,

262–264

self-declaring, 155, 188, 261

summary of, 188–190, 261–265

visibility of, 166–170

domain-specific conditional, 754–758

header (.h) files

architectural significance of, 280–281

build process, 129–134

in course-grain modular programs, 192

declaration consistency in, 194–201

external bindage, 214–216, 344–345

external linkage, 212–214, 344–345

in fine-grained modular programs, 193–194

as first substantive line of code, 210–212,

343–344

hiding for logical encapsulation, 762–765,

942

macros in, 212

modularization of logical constructs, 214

overview of, 48, 119, 190–201

pqrs_bar.h, 355–359

private, 192, 279, 352

purpose of, 128–129, 190–191

source-code organization, 333–336,

938–939

structs in, 9

stylistic rendering within, 463–464

summary of, 264–265, 937–939

unique names, 460

in unstructured programs, 191–192

#include directives

component design rules, 359–362, 940

component functionality accessed via,

257–259, 346

external include guards, 205–208, 353

hierarchical testability, 447, 449, 940

internal include guards, 203–209, 353, 939

removing unnecessary, 258

source-code organization, 334

summary of, 265

syntax and use, 201–203, 942

transitive includes, 227, 359–360, 486,

605–609

linkage

bindage, 160–163, 214–216, 263,

344–345, 805

class templates, 179–183

compiler access to definition’s source

code, 166–168

const entities, 188

enumerations, 170–171

explicit specialization, 174–179

extern template functions, 183–185

external, 158, 262–263

function templates, 172–179

how linkers work, 162–163, 260

inline functions, 166–168,

171–172, 177

internal, 159, 262–263

linkers, 131–132, 260

logical nature of, 159

namespaces, 186–188

ODR (one-definition rule), 185–186

overview of, 153

Index 949

program-wide unique addresses and,

163–166

summary of, 188–190, 261–265

type safety, 127–128

object files (.o)

atomicity of, 131–134

build process, 131–134

naming conventions, 131

sections, 135, 138–139

static initialization, 152

undefined symbols in, 133, 146

unique names, 460

weak symbols in, 138–139

zero initialization, 131–132

recompilation, 773

“singleton” registry example, 141–146

complete functionality, 528

completeness, 528, 545, 554, 910, 941

component-private classes, 561–564

defined, 371, 937

example of, 378–383

identifier-character underscore (_), 371–377

implementation of, 371

modules and, 371

summary of, 384, 486–487

components. See also date/calendar subsystem;

dependencies; header (.h) files;

implementation (.cpp) files; physical

design

advantages of, 20

architectural significance of, 280–281, 936

as atomic unit of physical design, 48

bdlma_pool, 788

bsls_assert, 904

completeness, 528, 545, 554, 910, 941

cyclically dependent, 592–594

defined, 2, 47–48, 117, 209–210, 244, 936

design rules

component properties and, 342–346

cyclic physical dependencies, 362–370,

939

#include directives, 359–362, 939–940

inline functions, 354, 939

internal include guards, 353, 939

logical constructs, anchoring to

components, 346–353

regularity in, 353

runtime initialize of file- or namespace-

scope static variables, 354–359, 939

summary of, 485–486, 938–940

drivers associated with, 441–445

as fine-grained modules, 498

focused purpose, need for, 527

hierarchical testability requirement, 437

allowed test-driver dependencies across

packages, 451–454, 940

associations among components and test

drivers, 441–445

black-box testing, 445

dependencies of test drivers, 445–447, 940

directory location of test drivers, 445, 940

fine-grained unit testing, 438

import of local component dependencies,

447–451

#include directives, 447, 449, 940

minimization of test-driver dependencies

on external environment, 454–456

need for, 439–441, 940

summary of, 458–459, 491–492

uniform test-driver invocation interface,

456–458, 941

“user experience,” 458, 941

white-box knowledge, 445

implementation, 677

inherently primitive functionality, 528–553

insulating wrapper, 687

leaf, 251–253, 573–574

logical constructs, anchoring to, 311–312,

346–353

logical versus physical view of, 49–55

minimalism, 528, 554, 910

mocking, 526, 659, 733

my_stack example, 49–53

naming conventions, 53, 301–309, 937–939,

942

package-local (private), 769–772, 942

950 Index

physical uniformity, 46–57

developer mobility and, 47

importance of, 46–47

placement of, 395–396

primitiveness

closure and, 528

defined, 911

manifestly primitive functionality,

528–529, 942

in Polygon example, 533–534

quick reference, 941

properties of

external bindage, 214–216, 344–345

external linkage, 212–214, 344

header as first substantive line of code,

210–212, 343–344

modularization of logical constructs, 214

overview of, 210–216, 280, 342–346

summary of, 265–266, 485

relationships

Depends-On, 218, 237–243, 278

“inheriting,” 234

In-Structure-Only, 227–230

Is-A, 219, 243–251

Uses-In-Name-Only, 226–227

Uses-In-The-Implementation, 221–225,

243–251

Uses-In-The-Interface, 219–220, 243–251

scope of, 55–56

size of, 508

source-code organization, 333–342, 938

standard, 111

subordinate, 372, 486–487, 564–566, 591,

937, 939

sufficiency, 528, 554, 910

suffixes, 553

summary of, 118–119

testability of, 49

testcalendarloader, 455

text-partitioning optimization problem

brute-force recursive solution, 64–70

component-based decomposition, 60–64

dynamic programming solution, 70–76

exception-agnostic code, 62

exception-safe code, 62

lookup speed, 79–83

probability of reuse, 84–86

real-world constraints, 86

reuse in place, 76–79

vocabulary types, 85

as units of deployment, 47, 555

composition. See layered architectures

concepts

concept callbacks

brute-force solutions based on redundancy,

668

defined, 664–665

standardizing on abstract ByteStream

interface class, 668–669

standardizing on ByteStream concept,

669–671

standardizing on single concrete

ByteStream class, 665–667

support for, 664

day-count example, 573–575

defined, 229

history of, 236

concrete classes, 498–499

conditional compilation, domain-specific, 754–

758, 941

conditional runtime statements, 756

conforming types, 172

const references, 619, 622

const correctness, 624

linkage, 188

named constants, 843

non-const access, 624

constrained templates, interface inheritance and,

230–233

constructors, nested classes, 375

consume method, 699

Container_Iterator class, 380

context, 577

continuous refactoring, 14, 419, 461, 634

contract-checking facility (CCF), 664

contracts, 9, 274

Index 951

Coordinated Universal Time (UTC), 849

correctness, const, 624

correspondingly layered architecture, 729

costs

compilation, 773

low-level cycles, 599

procedural interfaces, 830–831

schedule/product/budget trade-offs, 3–5

coupling, compile-time. See also dependencies

avoiding unnecessary, 778–789

encapsulation, 773–776

pervasiveness of, 778

real-world example, 783–789

reducing, 741

shared enumerations, 776–777

summary of, 790, 920

covariant return types, 359

__cplusplus preprocessor symbol, 823–824

.cpp files. See implementation (.cpp) files

cracked plate metaphor, 14–20, 116

cumulative component dependency (CCD)

defined, 727–730

example of, 730–732

minimizing, 727–729

CurrentTimeUtil struct, 849–853

cyclic dependencies. See also levelization

techniques

avoidance of, 592–601

colocation, 557, 591

components, 592–594

cyclically realization of entity/relation

model, 594–596

dependency evolution over time, 597–601

Google’s approach to, 519

physical design thought process, 505–507

subsystems, 596–597

summary of, 601, 914–915

components, 362–370

hierarchical testability requirement

allowed test-driver dependencies across

packages, 451–454, 940

associations among components and test

drivers, 441–445

black-box testing, 445

dependencies of test drivers, 445–447, 940

directory location of test drivers, 445, 940

fine-grained unit testing, 438

import of local component dependencies,

447–451

#include directives, 447, 449, 940

minimization of test-driver dependencies

on external environment, 454–456

need for, 439–441, 940

overview of, 437

summary of, 458–459, 491–492

uniform test-driver invocation interface,

456–458, 941

“user experience”, 458, 941

white-box knowledge, 445

library software, 146–151

logical/physical coherence, 294–295

packages

overview of, 394–395, 939–941

package groups, 411–413

package prefixes, 322–326

physical design and, 45

undesirability of, 292–293

cyclic rendering of Event/EventMgr subsystem,

647–648

cyclically dependent design, 592

D
d_freeList_p function, 776, 781

d_mechanism_p pointer, 699

DAG (directed acyclic graph), 251–252

data, dumb, 629–633, 915

data callbacks, 640–643

data members, number of, 837

Date class, 887–895

business-day functionality, 715–717, 854–855

day-count functions, 567

day-count functions in, 567

hidden header files for logical encapsulation,

763–764

hierarchical reuse of, 886–887

inappropriate physical dependencies, 742

952 Index

nonprimitive functionality in, 709–714

physical dependencies, 740–744

well-factored Date class that degrades over

time, 705–714

date math, 877–878

date utilities, 881–885

date/calendar subsystem

CacheCalendarFactory interface, 867–871

Calendar class, 895–899

calendar library, application-level use of,

862–872

CalendarCache class, 861–867

CalendarFactory interface, 867–871

CalendarLoader interface, 862–867

CurrentTimeUtil struct, 849–853

date and calendar utilities, 881–885

Date class

class design, 838–849

hierarchical reuse of, 886–887

indeterminate value in, 842

value representation in, 887–895

date math, 877–881

Date type, 838–849

DateConvertUtil struct, 889–894

DateParserUtil struct, 873–876, 895

day-count conventions, 877–878

distribution across existing aggregates,

902–907

holidays, 855, 859

multiple locale lookups, 858–861

overview of, 835

PackedCalendar class, 900–901

PackedCalendar object, 859–861

ParserImpUtil struct, 876

requirements

actual (extrapolated), 837–838

calendar, 854–858

originally stated, 835–836

summary of, 908, 922–923

value transmission and persistence, 876–877

weekend days, 855

DateConvertUtil struct, 889–894

DateParserUtil struct, 873–876, 895

DateSequence class

component/class diagram, 508–509

open-closed principle, 511

wrappers, 509–510

DateSequenceIterator class, 509–510, 515

DatetimeTz type, 849

DateUtil class, 610–611, 742–743

day-count functions, colocation of

ISMA 30/360 day-count convention, 567

PSA 30/360 day-count convention, 567

bbldc package implementation, 570–574

library date class, 567

package implementation, 575–576

protocol class implementation, 573–575

single-component implementation,

568–570

DayOfWeek enumeration, 611–613, 839

DayOfWeekUtil class, 611–612

Dealer interface, 658–660

deallocate method, 778

decentralized package creation, 421

declarations

aspect functions, 335

consistency in, 194–201

defined, 153–154, 935

definitions compared to, 154–159

forward, 358

inline functions, 778–783

local, 507, 594, 794

at package namespace scope, 312–321, 483,

938, 940

program-wide unique addresses, 163–166

pure, 188, 358

summary of, 188–190, 261–265

typedef, 168, 313

using, 328–333, 938

visibility of, 166–170

default allocators, 860

Default class, 785

DEFAULT_CHUNK_SIZE value,

785–787

defensive programming, 195

definitions

Index 953

compiler access to definition source code,

166–168

declarations compared to, 154–159

declaring in header (.h) files, 212–214, 344

defined, 153–154, 935

entities requiring program-wide unique

addresses, 163–166

global, 475, 762

local, 475

ODR (one-definition rule), 158, 185–186,

262–264

self-declaring, 155, 188, 261

summary of, 188–190, 261–265

visibility of, 166–170

demotion. See also levelization techniques

importance of, 95, 518–521, 941

library software, 95

overview of, 14, 461, 614–618

shared code, 436–437

summary of, 915

dependencies. See also hierarchical testability

requirement; levelization techniques;

relationships

acyclic

component collections, 93–95

components, 362–370

defined, 936

levelization and, 251–256, 602

libraries, 149–151, 417–421

package groups, 411–413

package prefixes, 322–326, 937

allowed

defined, 936

entity manifests and, 281–284

package groups, 408–413, 939–941

packages, 389–394, 451–454, 939–941

physical aggregates, 300, 942

compile-time, 239, 359–362

avoiding unnecessary, 778–783

defined, 936

encapsulation, 773–776

pervasiveness of, 778

real-world example, 783–789

shared enumerations, 776–777

summary of, 790, 920

cyclic. See cyclic dependencies

definitions of, 278

dependency injection, 733

dependency metadata

aggregation levels and, 473–474

implementation of, 474–475

overview of, 471–472

weak dependencies, 472–473

Depends-On relationship, 237–243

eliminating with callbacks

function callbacks, 649–651

functor callbacks, 652–654

extracting actual, 256–259, 268

implied, 220, 243–251, 267, 435

library, 146–151, 758–760

link-time

defined, 240, 936, 942

excessive dependencies, avoiding,

704–722, 916

inappropriate dependencies, 739–753,

918–919

insulation and, 802–803

local component, 447–451

modularization and, 521–523

overview of, 411–413

package

allowed, 389–394, 451–454

cyclic, 394–395

dependency metadata, 471–475

physical package structure and, 388

package-group, 408–413, 420–421, 937

physical aggregate

allowed, 281–284, 300, 942

cyclic, 292–295

definitions of, 278

dependency metadata for different levels

of aggregation, 473–474

procedural interface, 813–814

test-driver, 445–447, 491–492

allowed test-driver dependencies across

packages, 451–454, 940

954 Index

import of local component dependencies,

447–451

minimization of test-driver dependencies

on external environment, 454–456

Depends-On relationship, 218, 237–243, 278,

936–937, 942

deployment

application versus library software, 11

enterprise-wide unique names, 461

flexible software deployment, 459–460,

462–463

library software, 464

overview of, 459

package group organization during, 413–414

partitioning of deployed software, 940

business reasons, 467–469

engineering reasons, 464–467

redeployment, 787

software organization, 460–462

stylistic rendering within header files,

462–463

summary of, 469, 492–493

unique .h and .o names, 460, 937

design, logical

components, 49–55

naivete of, 497

role of, 124

design, physical. See physical design

design notation. See notation

design patterns. See patterns

destructors

documentation of, 842

Link objects, 671

protocol, 226

developer mobility, 47

development teams, autonomous core,

98–100

difference function, 566

Dijkstra, Edsger Wybe, 21

directed acyclic graph (DAG), 251–252

direction, in software design space, 498

directives

#include

component design rules, 359–362, 940

component functionality accessed via,

257–259, 346

external include guards, 205–208, 353

hierarchical testability, 447, 449, 940

internal include guards, 203–209, 353, 939

processing of, 130

removing unnecessary, 258

source-code organization, 334, 939

summary of, 265, 936

syntax and use, 201–203, 942

transitive includes, 227, 359–360, 486,

605–609, 937

using, 201, 328–333, 938

directories

doc, 388

include, 388

lib, 388

package

allowed dependencies, 389–394, 451–454,

940

physical package structure and, 388–389

disjoint clients, colocation of classes with,

524–526

DLLs (dynamically linked libraries), 153, 833

doc directory, 388

documentation

application versus library software, 10

destructors, 842

iterators, 548

type constraints, 234–236

domain independence, 756

domain-specific conditional compilation,

754–758, 941

Downey, Steve, 761

drivers, test. See test drivers

Dstack class, 774–775

dual bindage, 160–163, 263, 584–585, 935

dumb data, 629–633, 915

dummy implementations, 656, 744

dumpbin command, 133

duping, 573

dynamic programming, 70–71

dynamic storage, 162

dynamically linked libraries (DLLs), 153, 833

Index 955

E
Edge objects

dumb-data implementation, 629–633

factoring, 675–676

manager classes, 673–674

opaque pointers and, 625–629

Eiffel, 33

The Elements of Programming (Stepanov),

235

ellipses (.), 238

Emerson, R. W., 46

employee/manager functionality

architectural perspective of, 618–629

colocation, 526

cyclic physical dependencies,

505–507

data callbacks, 641–643

encapsulation. See also insulation; wrappers

compile-time dependencies, 773–776

defined, 790–791, 920, 937

escalating

advantages of, 516–517, 701–703

encapsulating wrapper, 679

example of, 364–367

graph subsystem example, 681–682

history of, 688–689

misuse of, 702

multicomponent wrappers, 687–691

overhead due to wrapping, 687

overview of, 364–367, 486, 516–517,

604–614, 677–680

package-sized systems, wrapping,

693–701

reinterpret_cast technique, 692–693

single-component wrapper, 685–686

spheres of encapsulation, 679, 683

summary of, 486, 915

use of implementation components,

683–684

insulation compared to, 791–793

larger units of, 508

logical, 762–765

modules and, 475, 508

Polygon example

“are-rotationally-similar” functionality,

541–544

flexibility of implementation, 535–537

implementation alternatives, 534–535

interface, 545–552

invariants imposed, 531

iterator support for generic algorithms,

539–540

nonprimitive functionality, 536–537, 541

performance requirements, 532–533

Perimeter and Area calculations,

537–539

primitive functionality, 533–534, 540

topologicalNumber function, 545

use cases, 531–532

values, 530

vocabulary types, 530–531

single-component-wrapper approach, 516

of use, 792–793

enterprise namespaces, 309–310

enterprise-specific policy metadata, 476–478,

493

enterprise-wide unique names, 461

entity manifests, 281–283, 936

entity/relation model, 594–596

enum class, 313

enumerations

compile-time dependencies, 776–777

component design rules, 348

day-count example, 576

DayOfWeek, 611–613, 839

enum class, 313

integral types, 576

linkage, 170–171

overview of, 348

envelope/letter pattern

aggregation of components into packages,

586–589

event-driven programming, 576–586

blocking functions, 576–577

classical approach to, 577–579

modern approach to, 579–586

time multiplexing, 577

956 Index

overview of, 555, 583–586

package-level functor architecture, 586–589

equality operator (==), 221–222, 511, 882

escalating encapsulation

advantages of, 516–517, 701–703

encapsulating wrapper, 679

example of, 364–367

graph subsystem example, 681–682

history of, 688–689

misuse of, 702

multicomponent wrappers, 687–691

overhead due to wrapping, 687

overview of, 364–367, 486, 516–517,

604–614, 677–680

package-sized systems, wrapping, 693–701

reinterpret_cast technique, 692–693

single-component wrapper, 685–686

spheres of encapsulation, 679, 683

summary of, 486, 915

use of implementation components, 683–684

Event class

const correctness, 624

non-const access, 624

event loops, 577

event-driven programming, 576–586

blocking functions, 576–577

classical approach to, 577–579

modern approach to, 579–586

time multiplexing, 577

Event/EventMgr subsystem, 647–648

EventQueue class, 615–618

exceptions

exception-agnostic code, 62

exception-safe code, 62

procedural interfaces, 831–833

throwing, 718–719

exchange adapters, 754–758

executables

linking, 126, 131–132

naming conventions, 131

terminology for, 131

explicit keyword, 548

explicit specialization, 174–179

exposed base types, 829

extension without modification (open-closed

principle), 31–40

Account report generator example, 37–40

design for stability, 43

HTTP parser example, 31–33

list component example, 33–36

malleable versus reusable software, 40–42

summary of, 117

extern keyword, 183–185, 346

external bindage, 160–163, 263, 935

external include guards, 205–208, 265, 353

external linkage, 158, 262–263, 938

externally accessible definitions, declaring in

header (.h) files, 212–214, 344

extra underscore convention, 372–377, 561, 591,

771, 939

extracting protocols, 799–800

extreme programming (XP), 29

F
facades, 573, 807–810, 830–831

factories, 505

factoring

application versus library software, 6–13

collaborative software, 14–20

continuous refactoring, 14, 634

cracked plate metaphor, 14–20

defined, 14

hierarchical reuse, 676

finely graduated, granular structure,

20–27, 42

frequency of, 42

inadequately factored subsystems,

14–20

overview of, 14–20, 674–676

reusable solutions and, 14–20

toaster toothbrush metaphor, 14–20

Factory design pattern, 809–810

F.A.S.T. Group, 89, 783

f.cpp file, 159–170

feedback, 115

file1.cpp, 163–165

Index 957

files

assembly code (.s), 129

.cap, 433

executables

linking, 126, 131–132

naming conventions, 131

terminology for, 131

header (.h)

architectural significance of, 280–281

build process, 129–134

in coarse-grained modular programs, 192

declaration consistency in, 194–201

external bindage, 214–216, 344–345

external linkage, 212–214, 344–345

in fine-grained modular programs, 193–194

as first substantive line of code, 210–212,

343–344

hiding for logical encapsulation, 762–765,

942

macros in, 212

modularization of logical constructs, 214

overview of, 48, 119, 190–201

pqrs_bar.h, 355–359

private, 192, 279, 352

purpose of, 128–129, 190–191

source-code organization, 333–336,

938–939

structs in, 9

stylistic rendering within, 463–464

summary of, 264–265, 937–939

unique names, 460

in unstructured programs, 191–192

implementation. See implementation (.cpp)

files

names, 292

object (.o)

atomicity of, 131–134

build process, 131–134

naming conventions, 131

sections, 135, 138–139

static initialization, 152

undefined symbols in, 133, 146

unique names, 460

weak symbols in, 138–139

zero initialization, 131–132

translation units (.i), 129, 259–260, 262

file-scope static objects, runtime initialization of,

354–359, 939

fine-grained modules, components as, 498

fine-grained unit testing, 438

finely graduated, granular structure,

23–27, 31, 42, 118

fixed-size allocation, 783

flags, policy metadata, 477–478

“flea on an elephant” colocation criteria,

559–560, 591

flexible software deployment

importance of, 459–460

need for, 462–463

stylistic rendering within header files,

463–464

summary of, 492–493

Flyweight pattern, 900

focused purpose, need for, 527

Foo class, 156, 355

FooUtil class, 179–183

for syntax, 797

FormatUtil, 61

Fortran, 125

forward declarations. See pure declarations

frameworks, metaframeworks, 47

free functions, 126, 178

scope of, 199–200, 312–321

source-code organization, 335

free operators

colocation of, 560

declaring at package namespace scope,

312–321, 483, 938

overloading, 319–320

source-code organization, 335

friendship

colocation and, 556–557, 591

constraints on, 508, 939

friend declaration, 692

fully insulating concrete wrapper component,

687

example of, 805–807

performance impact of, 807

958 Index

poor candidates for, 807–810

usage model, 804–807

fully qualified names, 311

functions and methods

absEqual, 34

addDaysIfValid, 844

addNode, 667, 673

advanceMonth, 878–879

allocate, 699, 778

alphabetizing in sections, 845

asDatetimeTz, 849

aspect, 311, 335, 423, 483, 839,

937–938

blocking, 576–577

calculateOptimalPartition, 60, 67

callbacks

cyclic rendering of Event/EventMgr

subsystem, 647–648

defined, 643–644

disadvantages of, 651

eliminating framework dependencies with,

649–651

function callbacks in main, 644–647

compare, 172–174

consume, 699

d_freeList_p, 776, 781

deallocate, 778

destructors, 842

difference, 566

extern template, 183–185

free, 126, 178

scope of, 199–200, 312–321

source-code organization, 335

function-call syntax, 652

generateResponse, 746

getYearMonthDay, 845

inline, 511, 539, 778–783

component design rules, 354

linkage, 166–168, 171–172, 177

source-code organization, 336

substitution, 21

insertAfterLink, 328

invoke, 652

isBusinessDay, 896

isLeapYear, 839

isNonBusinessDay, 896

isValidYearMonthDay, 610, 844, 895

load, 862

loadPartition, 79

main, 126–128

function callbacks in, 644–647

multifile program example, 133–134

“singleton” registry example,

144–145

metafunctions, 564

minCost1, 79

myTurnUpTheHeatCallback function, 795

nested class constructors, 375

nthDayOfWeekInMonth, 881

numbers of, 9

numBitsSet, 898

numMonthsInRange, 877

op, 126–127

organizing in source code, 336

overloading, 174

procedural-interfaces functions, 813–814,

823–824

“raw,” 538–539

removeNode, 673

replenish, 784–789

set_lib_handler, 645–646

shiftModifiedFollowingIfValid, 883

signatures, 127

size, 781

static, 159, 161, 315–316

streamIn, 839

streamOut, 664, 839

swap, 550

template, 669, 732

explicit specialization, 175–179

properties of, 172–175

topologicalNumber, 545

turnUpTheHeat, 795

type-safe linkage, 127

virtual, 797, 803

Index 959

functors

callbacks

defined, 651

eliminating framework dependencies with,

652–654

inline functions, 652–654

stateless functors, 654–655

defined, 579

event-driven programming with, 579–586

G
g.cpp file, 159–170

generateResponse function, 746

generic algorithms, iterator support for, 539–540

getYearMonthDay method, 845

global definitions, 475, 762

global resources, 762

GMT (Greenwich Mean Time), 849

goals, software development, 3–5, 115

Google, 519

grandfathering, 473

granular software, 23–27, 31, 42, 118

graph subsystem

Edge objects

dumb-data implementation, 629–633

factoring, 675–676

manager classes, 673–674

opaque pointers and, 625–629

escalating encapsulation

history of, 688–689

individual spheres of encapsulation,

681–682

multicomponent wrappers, 687–691

overhead due to wrapping, 687

package-sized systems, wrapping,

693–701

reinterpret_cast technique, 692–693

single-component wrapper, 685–686

use of implementation components,

683–684

Node objects

dumb-data implementation, 629–633

factoring, 675–676

manager classes, 673–674

opaque pointers and, 625–629

greedy algorithms, 59

Greenwich Mean Time (GMT), 849

Gregorian calendar, 610, 886

groups, package, 942. See also library software;

modularization

bsl (BDE Standard Library), 404–406

defined, 82, 271–272, 402, 937

dependencies, 408–413, 937,

939–941

naming conventions, 326–327, 402–403,

423–424, 937, 939

notation, 406–408

organizing during deployment, 413–414

package names within, 504–505, 939

physical aggregation with, 402–413

practical applications, 414–421

acyclic application libraries, 417–421

decentralized package creation, 421

purpose of, 414–417

role of, 402, 942

summary of, 421–422, 427, 488–490,

940

GTest, 456

H
.h files. See header (.h) files

Halpern, Pablo, 788

handles, 516–517

hash table, text-partitioning optimization, 81

header (.h) files. See also components; directives

architectural significance of, 280–281

build process, 129–134

in coarse-grained modular programs, 192

declaration consistency in, 194–201

external bindage, 214–216, 344–345

external linkage, 212–214, 344

in fine-grained modular programs, 193–194

as first substantive line of code, 210–212,

343–344

hiding for logical encapsulation, 762–765,

942

macros in, 212

modularization of logical constructs,

214

overview of, 48, 119, 190–201

960 Index

pqrs_bar.h, 355–359

private, 192, 279, 352

purpose of, 128–129, 190–191

source-code organization, 333–336, 938–939

structs in, 9

stylistic rendering within, 463–464

summary of, 264–265, 937–939

unique names, 460, 937

in unstructured programs, 191–192

heavy layering, 729

“Hello World!” program, 125–126

helper classes, component-private, 561–564

heterogeneous development teams, 98–100

hidden header files for logical encapsulation,

762–765

hierarchical reuse. See also date/calendar

subsystem; physical interoperability

Date class, 886–887

designing for, 10

factoring and, 676

finely graduated, granular structure,

20–27, 42

frequency of, 42

finely graduated, granular structure, 20–27,

42

frequency of, 42

hierarchical testability requirement, 437

allowed test-driver dependencies across

packages, 451–454, 940

associations among components and test

drivers, 441–445

black-box testing, 445

dependencies of test drivers,

445–447, 940

directory location of test drivers, 445, 940

fine-grained unit testing, 438

import of local component dependencies,

447–451

#include directives, 447, 449, 940

minimization of test-driver dependencies

on external environment, 454–456

need for, 439–441, 940

summary of, 458–459, 491–492

uniform test-driver invocation interface,

456–458, 941

“user experience,” 458, 941

white-box knowledge, 445

overview of, 20–27, 676

software repository, 108–109

summary of, 117

system structure and, 20–27

text-partitioning optimization analogy, 57–86

brute-force recursive solution, 64–70

component-based decomposition, 60–64

dynamic programming solution, 70–76

exception-agnostic code, 62

exception-safe code, 62

greedy algorithm, 59

lookup speed, 79–83

nonlinear global cost function, 59

probability of reuse, 84–86

problem summary, 57–59

real-world constraints, 86

reuse in place, 76–79

summary of, 119–120

vocabulary types, 85

hierarchical testability requirement, 437

allowed test-driver dependencies across

packages, 451–454, 940

associations among components and test

drivers, 441–445

black-box testing, 445

dependencies of test drivers, 445–447, 940

directory location of test drivers, 445, 940

fine-grained unit testing, 438

import of local component dependencies,

447–451

#include directives, 447, 449, 940

minimization of test-driver dependencies on

external environment, 454–456

need for, 439–441, 940

summary of, 458–459, 491–492

uniform test-driver invocation interface,

456–458, 941

“user experience,” 458, 941

white-box knowledge, 445

Index 961

hierarchy, protocol, 231

holidays, date/calendar subsystem, 855, 859

horizontal library development, 811

horizontal packages, 414–415, 502

horizontal subsystems, 730

HTTP parser, 31–33

I
.i files, 129–130, 259–260

_i suffix, 805

“ill-formed” programs, 692–693

implementation (.cpp) files

architectural significance of, 280–281

build process, 129–134

compiling and linking

build process, 129–134

defined, 129

executables, 126, 131–132

library archives, 139–141

object files (.o), 131–139

“singleton” registry example, 141–146

summary of, 259–260

externally accessible definitions, 212–214,

344

f.cpp, 159–170

file1.cpp, 163–165

g.cpp, 159–170

implementation components, 677

.m.cpp suffix, 435

overview of, 48, 119, 124

partitioning, 281

source-code organization, 341–342, 938

structs in, 9

implementation-specific interfaces, 802

implied dependency, 220, 243–251,

267, 435

inadequately factored subsystems, 14–20

inappropriate link-time dependencies, avoiding

“betting” on single technology, 745–753

inappropriate physical dependencies,

740–744

overview of, 739

summary of, 753, 918–919

#include directives, 130

component design rules, 359–362, 940

external include guards, 205–208, 353

header (.h) files, 257–259, 346

hierarchical testability, 447, 449, 940

internal include guards, 203–209, 939

component design rules, 353

examples of, 205

external include guards compared to,

205–208

need for, 203–205

removing unnecessary, 258

source-code organization, 334, 939

summary of, 265, 936

syntax and use, 201–203, 942

transitive includes, 227, 359–360, 486,

605–609, 937

include directory, 388

independent solutions, 45

indexed lookup, 79–83

inequality operator (!=), 221–222, 511

inherently primitive functionality

in higher-level utility structs, 529–530

overview of, 528–529

Polygon example

“are-rotationally-similar” functionality,

541–544

flexibility of implementation, 535–537

implementation alternatives, 534–535

interface, 545–552

invariants imposed, 531

iterator support for generic algorithms,

539–540

nonprimitive functionality, 536–537, 541

performance requirements, 532–533

Perimeter and Area calculations,

537–539

primitive functionality, 533–534, 540

topologicalNumber function, 545

use cases, 531–532

values, 530

vocabulary types, 530–531

quick reference, 941

reducing with iterators, 529, 942

962 Index

inheritance

constrained templates and, 230–233

equivalent bridge pattern, 801

inheritance-based lateral architectures,

732–738

“inheriting” relationships, 234

private, 692

procedural interfaces, 828–829

public, 359–362

in-house expertise, 107–108

initialization

runtime, 354–359, 939

static, 152

zero initialization, 131–132

inline functions, 511, 539, 778–783, 939

component design rules, 354

linkage, 166–168, 171–172, 177

source-code organization, 336

substitution, 21

inline variables, 162

insertAfterLink function, 328

In-Structure-Only collaborative logical

relationship, 227–230

insulation. See also wrappers

defined, 790–791, 793–794, 937

encapsulation compared to, 791–793

fully insulating concrete wrapper component,

687, 795

example of, 805–807

performance impact of, 807

poor candidates for, 807–810

usage model, 804–807

goals of, 791

insulated details, 279–280

modules and, 793, 811

overview of, 790, 794–795

procedural interfaces, 804–807

architecture of, 812–813

defined, 810–811

DLLs (dynamically linked libraries), 833

example of, 816–819

exceptions, 831–833

functions in, 813–814,

823–824

inheritance, 828–829

mapping to lower-level components, 815

mitigating cost of, 830–831

naming conventions, 819–823

physical dependencies within, 813–814

properties of, 812–813, 825–826

return-by-value, 826–827

SOAs (service-oriented architectures), 833

supplemental functionality in, 814

templates, 829–830

vocabulary types, 824–825

when to use, 811–812

protocols

advantages of, 795–798

bridge pattern, 801

effectiveness of, 802

extracting, 799–800

implementation-specific interfaces, 802

runtime overhead, 803–804

static link-time dependencies, 802–803

summary of, 790, 834–835, 920–921

total versus partial, 782, 793–794, 835

virtual functions, 669

when to use, 765

int state, 531

interfaces. See also inheritance; logical/physical

name cohesion

abstract, 498–499, 526

Blackjack model, 658–660

CacheCalendarFactory, 867–871

CalendarFactory, 867–871

CalendarLoader, 862–867

implementation-specific, 802

policies, 654

Polygon example, 545–552

procedural

architecture of, 812–813

defined, 810–811

DLLs (dynamically linked libraries), 833

example of, 816–819

exceptions, 831–833

functions in, 813–814, 823–824

inheritance, 828–829

mapping to lower-level components, 815

mitigating cost of, 830–831

naming conventions, 819–823

Index 963

physical dependencies within, 813–814

properties of, 812–813, 825–826

return-by-value, 826–827

SOAs (service-oriented architectures), 833

supplemental functionality in, 814

templates, 829–830

vocabulary types, 824–825

when to use, 811–812

programmatic, 390, 792

surface area, 16, 42

testability of, 49

types, 741–742

well-defined, 49

internal bindage, 160–162, 263, 805, 935

internal include guards

component design rules, 353

examples of, 205

external include guards compared to,

205–208

overview of, 203–209

summary of, 265

internal linkage, 159, 262–263

interoperability, physical

application-specific dependencies in library

components, 758–760, 941

constraints on side-by-side reuse, 760–761

domain-specific conditional compilation,

754–758, 941

global resource definitions, 762

goals of, 753–754

guarding against deliberate misuse, 761, 941

hidden header files for logical encapsulation,

762–765

nonportable software in reusable libraries,

766–769, 942

package-local (private) components,

769–772, 942

summary of, 772–773, 919

interpreters, 384–385

intuitively descriptive package names, 422–423

investment in Software Capital. See Software

Capital

invocable function objects. See functors

invocation interface, 456–458, 941

invoke method, 652

iostream, 126

iovec (“scatter/gather”) buffer structure, 505

irregular libraries, 431–432, 490

irregular packages, 301, 385–386, 404, 937

irregular UORs (units of release), 432

Is-A logical relationship

arrow notation, 219

implied dependency, 243–251

overview of, 219

isBusinessDay method, 895–896

isLeapYear method, 839

ISMA 30/360 day-count convention, 567

isNonBusinessDay method, 896

ISO (In-Structure-Only) collaborative logical

relationship, 227–230

isolated packages

dependencies, 420–421

naming conventions, 387, 425–426

physical layout of, 387

problems with, 387

istream operator, 873

isValidYearMonthDay method, 610, 844, 895

iterators

documentation of, 548

generic algorithms, support for, 539–540

inherently primitive functionality, reducing,

529, 942

purpose of, 34

type of, 35

J–K
Java, package scope in, 770

Kant, Immanuel, 319

keywords. See also commands; functions and

methods

explicit, 548

extern, 183–185, 346

protected, 221

typename, 173

964 Index

L
Lakos Polymorphic Memory Allocator Model,

271

lambdas, 61, 639

language, impact on design, 125–126

Large-Scale C++ Software Design (Lakos), 497,

602

lateral architecture

CCD (cumulative component dependency),

723

defined, 727–730

example of, 730–732

minimizing, 727–729

versus classical layered architecture, 723–726

construction analogy, 723

correspondingly layered architecture, 729

inheritance-based, 732–738

overview of, 499, 601, 722–723

protocols and, 802

purely compositional designs, improving,

726–727

summary of, 738–739, 909, 917–918

testing, 738

layered architectures

CCD (cumulative component dependency),

723

defined, 727–730

example of, 730–732

minimizing, 727–729

classical layered architecture, 723–726

construction analogy, 723

correspondingly layered architecture, 729

defined, 223

versus inheritance-based lateral architectures,

732–738

layered clients, 498–499

light versus heavy layering, 728–729

mail subsystem, 599

overview of, 722–723

private inheritance versus, 225, 332

protocols and, 802

purely compositional designs, improving,

726–727

summary of, 738–739, 917–918

testing, 738

leaf components, 251–253, 573–574, 936

legacy libraries, 431–432, 490

legacy subsystem, 811

letter pattern. See envelope/letter pattern

levelization techniques

callbacks

concept, 664–671

data, 640–643

function, 643–651

functor, 651–655

overview of, 639

protocol, 655–664

defined, 252

demotion

importance of, 95, 518–521

library software, 95

overview of, 14, 461, 614–618

shared code, 436–437

summary of, 915

dumb data, 629–633, 915

escalating encapsulation

advantages of, 516–517, 701–703

encapsulating wrapper, 679

example of, 364–367

graph subsystem example, 681–682

history of, 688–689

misuse of, 702

multicomponent wrappers, 687–691

overhead due to wrapping, 687

overview of, 364–367, 486, 516–517,

604–614, 677–680

package-sized systems, wrapping,

693–701

reinterpret_cast technique, 692–693

single-component wrapper, 685–686

spheres of encapsulation, 679, 683

summary of, 486, 915

use of implementation components,

683–684

factoring

application versus library software, 6–13

Index 965

collaborative software, 14–20

continuous refactoring, 14, 634

cracked plate metaphor, 14–20

defined, 14

hierarchical reuse, 20–27, 42, 676

inadequately factored subsystems, 14–20

overview of, 14–20, 674–676

reusable solutions and, 14–20

toaster toothbrush metaphor, 14–20

goals of, 602

level numbers, 251–256, 267

levelizable designs, 602

levelizable designs, defined, 936

manager class, 671–674

opaque pointers

architectural perspective of, 618–629

cautions with, 621

defined, 254, 507

overview of, 618

protocols and, 226

restricted uses of concrete classes, 226

summary of, 915

when to use, 625

redundancy, 634–638

summary of, 602–603, 703–704, 915–916

lib archiver program, 145

lib directory, 388

library software. See also package groups;

packages

acyclic application libraries, 417–421

application software compared to, 5–13

atomicity of, 277

Boost’s C++98, 234

bsl (BDE Standard Library), 404–406

calendar library, application-level use of,

862–872

compiling and linking, 139–141

contracts, 9

creating, 139–141

defined, 6

dependencies, 146–151, 758–760

deployment, 464

DLLs (dynamically linked libraries), 153, 833

global resource definitions, 762

integration with, 274

irregular, 431–432, 490, 937

legacy libraries, 431–432, 490

libreg.a, 145

linking, 139–141, 146–151, 153

nonportable software in, 766–769, 942

open-source, 433, 490

reusability of, 6–13

shared (dynamically linked) libraries, 153

std::bitset, 896

std::chrono, 895

std::list, 168

std::map, 79, 81

std::vector, 168

third-party, 431–433, 490

wrappers, 432, 436, 795

Xerces, 432

libreg.a library, 145

lifetime, software, 9

light layering, 728–729

linear test drivers, 756

Link objects, 671

link order

build-time behavior and, 151

runtime behavior and, 151

link phase (build process), 131–132, 260.

See also linkage

linkage. See also declarations; definitions;

linking

bindage

declaring in header (.h) files, 214–216,

344–345

external/dual, 163, 935

internal, 805, 935

overview of, 160–162, 263

class templates, 179–183

compiler access to definition’s source code,

166–168

const entities, 188

enumerations, 170–171

explicit specialization, 174–179

extern template functions, 183–185

966 Index

external, 158, 262–263, 938

function templates, 172–179

inline functions, 166–168, 171–172, 177

internal, 159, 262–263

linkers, 131–132, 162–163, 260

logical nature of, 159

namespaces, 186–188

ODR (one-definition rule), 185–186

overview of, 153

program-wide unique addresses and,

163–166

summary of, 188–190, 261–265

type safety, 127–128

linked lists, 671–673

linkers, 131–132, 162–163, 260

linking. See also linkage

build process, 129–134

compiler programs, 136

defined, 129

executables, 126, 131–132

library software, 139–141, 146–151,

153

link order

build-time behavior and, 151

runtime behavior and, 151

link phase (build process), 131–132, 260

linkers, 131–132, 162–163, 260

object files (.o)

atomicity of, 131–134

build process, 131–134

naming conventions, 131

.o versus .obj suffix, 131

sections, 135, 138–139

weak symbols in, 138–139

zero initialization, 131–132

“singleton” registry example, 141–146

summary of, 259–260

type safety, 127

link-time dependencies

defined, 240, 936, 942

excessive dependencies, 704–705

Date class example, 705–717

physically monolithic platform adapter,

717–722

summary of, 722, 916

inappropriate dependencies

“betting” on single technology, 745–753

inappropriate physical dependencies,

740–744

overview of, 739

summary of, 753, 918–919

insulation and, 802–803

List class, 671–673

list component, 33–36

literate programming, 489

load method, 862

loadPartition function, 79

local component dependencies, testing, 447–451

local declarations, 507, 594, 794

local definitions, 475

local time, 742

locales, 855, 858–861

location. See also colocation

absolute, 500

identifying, 301–309, 501

logger facility, 599–601

logger-transport-email example

cyclic link-time dependencies, 592–601

protocol callbacks, 655–664

logical constructs

anchoring to components, 311–312,

346–353

modularization of, 214–216, 344–345

logical design. See also physical design

components, 49–55

naivete of, 497

role of, 124

logical encapsulation, hiding header files for,

762–765, 942

logical relationships

In-Structure-Only, 227–230

Is-A

arrow notation, 219

implied dependency, 243–251

overview of, 219

Uses-In-Name-Only, 226–227, 251, 618

Uses-In-The-Implementation

implied dependency, 243–251

#include directives with, 360–361

overview of, 221–225

Index 967

Uses-In-The-Interface

implied dependency, 220, 243–251

#include directives with, 361–362

overview of, 219–220

logical view components, 53–55

logical/physical coherence

overview of, 294–297

package groups and, 414–417

summary of, 482–484

logical/physical name cohesion

advantages of, 298–299

definitions at package namespace scope,

312–321, 483, 938, 940

design rules, 304, 938–940

enterprise namespaces, 309–310

goals of, 300

history of, 298–299

logical constructs, anchoring to components,

311–312

macro names, 311, 483

packages, 300–301

application packages, 436, 940

architectural significance of, 322–326

nomenclature, 304

package group names, 326–327

point of use, identifying location from,

301–309

summary of, 333, 482–484

using directives/declarations, 328–333

long-distance friendship, 939

insulation and, 795

intractability resulting from, 439–441,

491. See also hierarchical testability

requirement

long-term greedy, 115, 563

lookups

ADL (argument-dependent lookup), 200, 314

locale lookups, date/calendar subsystem,

858–861

text-partitioning optimization problem, 79–83

lowerCamelCase, 217, 371–372

lowercase naming conventions

all-lowercase notation

component names, 304–305, 938

package group names, 423–424, 939

package names, 424–426, 939

procedural interface names, 819–820

component names, 304–305

lowerCamelCase, 217, 371–372

package group names, 423–424

package names, 424–426

procedural interface names, 819–820

low-level cycles, costs of, 599

M
m_ prefix, 436

macros

in header (.h) files, 212

naming conventions, 311, 483

mail subsystem, logger-transport-email example

cyclic link-time dependencies, 592–601

protocol callbacks, 655–664

MailObserver class, 663

main function, 126–128

function callbacks in, 644–647

multifile program example, 133–134

“singleton” registry example, 144–145

malleable software, 8, 29–43

agile software development, 29–30

classical design techniques and, 30–31

defined, 29

fine-grained factoring, 31

manager classes and, 672–673

open-closed principle, 31–40

Account report generator example,

37–40

component functionality and, 40, 941

design for stability, 43

HTTP parser example, 31–33

iterators and, 511

list component example, 33–36

malleable versus reusable software,

40–42

Polygon example, 35, 530–553

summary of, 910

sharing, 771

summary of, 117

XP (extreme programming), 29

968 Index

manager class, 671–674

manager/employee functionality

architectural perspective of, 618–629

colocation, 526

cyclic physical dependencies, 505–507

data callbacks, 641–643

manifestly primitive functionality, 528–529, 942

manifests entity, 281–283, 936

mapping procedural interfaces, 815

Marshall, Thomas, 100, 469

Martin, Robert, 301

max function, 167

maximizing profit, 86

.m.cpp suffix, 435

mechanisms, 862

membership metadata, 476

memoization, 70–71

memory allocation, 808

Meredith, Alisdair, 178, 331

metadata

build requirements, 475–476, 493

“by decree,” 470

dependency

aggregation levels and, 473–474

implementation of, 474–475

overview of, 471–472

summary of, 493

weak dependencies, 472–473

membership, 476

policy, 476–478, 493

purpose of, 469–470

rendering, 478–479

summary of, 479–480, 493

metaframeworks, 47

metafunctions, 564

methods. See functions and methods

Meyer, Bertrand, 33

Meyers, Scott, 258

microsecond resolution, 852–853

MiFID regulatory requirement, 851

minCost1 function, 79

minimalism, 528, 554, 910

mnemonic naming, 298–299

mocking components, 526, 659, 733

modifiable private access, 441

modularization. See also colocation; modules

criteria for, 517–518, 942

demotion process

anticipated client usage, 523–528

failure to maintain, 518–519

importance of, 518–521

physical implementation dependencies

and, 521–523

semantics versus syntax as modularization

criteria, 552–553

summary of, 553–554, 910–912

logical constructs, 214, 346–353

overview of, 517

semantics versus syntax as modularization

criteria, 552–553

modules

compile-time dependencies, 778

component-private classes and, 371

goals of, 772

insulation in, 793, 811

introduction of, 283, 375, 555, 687, 722

metadata in, 475

module scope, 475

potential functionality of, 564, 693

monolithic platform adapter, 717–722

monolithic software blocks, 20–21

MonthOfYear class, 878

MonthOfYearSet type, 878–880

MonthOfYearSetUtil struct, 880

Moschetti, Buzz, 15

multicomponent wrappers, 687–691

escalating-encapsulation levelization

technique, 516–517

problems with, 513–514

special access with, 515

wrapping interoperating components

separately, 516

multifile program example, 133–134

multiparadigm language, C++ as, 910

multiple masters, software with, 44

multiplexing, time, 577

Index 969

mutual collaboration, 555–560, 565–566, 941.

See also colocation

my_ prefix, 201

mythical man month, 4, 88

The Mythical Man Month (Brooks), 4

myTurnUpTheHeatCallback function, 795

N
naivete of logical design, 497

named entities. See also naming conventions

architectural significance of names, 292, 938

constants, 843

declarations

aspect functions, 335

consistency in, 194–201

defined, 153–154

definitions compared to, 154–159

forward, 358–359

inline functions, 778–783, 939

local, 507, 594, 794

at package namespace scope, 312–321

program-wide unique addresses, 163–166

pure, 188, 358

summary of, 188–190, 261–265

typedef, 168, 313

using, 328–333

visibility of, 166–170

definitions

compiler access to definition’s source

code, 166–168

declarations compared to, 154–159

declaring in header (.h) files, 212–214,

344

defined, 153–154

entities requiring program-wide unique

addresses, 163–166

global, 475, 762

local, 475

ODR (one-definition rule), 158, 185–186,

262–264

self-declaring, 155, 188, 261

summary of, 188–190, 261–265

visibility of, 166–170

linkage

bindage, 160–163, 214–216, 263,

344–345, 805

class templates, 179–183

compiler access to definition’s source

code, 166–168

const entities, 188

definition visibility, 168–170

enumerations, 170–171

explicit specialization, 175–179

extern template functions, 183–185

external, 158, 262–263, 938

function templates, 172–179

inline functions, 166–168, 171–172, 177

internal, 159, 262–263

linkers, 131–132, 260

logical nature of, 159

namespaces, 186–188

ODR (one-definition rule), 185–186

overview of, 153

partial specialization, 179–183

program-wide unique addresses, 163–166

summary of, 188–190, 261–265

logical/physical coherence

overview of, 294–297

package groups and, 414–417

summary of, 482–484

overview of, 163–166

package groups, 402–403

program-wide unique addresses, 163–166

qualified-name syntax, 156, 198, 264–265

typenames, 173

namespaces

aliases, 200

as alternative to qualified naming, 198–201

enterprise, 309–310

linkage, 186–188

namespace-scope static objects, 354–359, 939

nonatomic nature of, 200

package namespace scope, 312–321, 483,

938, 940

pollution, 298

source-code organization, 341–342, 938

970 Index

naming conventions, 942. See also named entities

applications, 435–436, 940

architectural significance of names, 292, 938

base names, 292, 310, 372, 936

component names, 53, 301–309, 937–939,

942

components, 53, 937

executables, 131

logical/physical name cohesion

advantages of, 298–299

definitions at package namespace scope,

312–321, 483, 938, 940

design rules, 304, 938–940

enterprise namespaces, 309–310

goals of, 300

history of, 298

logical constructs, anchoring to

components, 311–312

macro names, 311, 483

package prefixes, 304, 322–327, 436, 940

packages, definition of, 300–301

point of use, identifying location from,

301–309

summary of, 333, 482–484

using directives/declarations, 328–333

lowercase

all-lowercase notation, 304–305,

423–426, 819–820, 938–939

component names, 304–305

lowerCamelCase, 217, 371–372

package group names, 423–424

package names, 424–426

procedural interface names, 819–820

object files (.o), 131

packages

intuitively descriptive names, weaknesses

with, 422–423

package groups, 326–327, 402–403,

423–424, 937, 939

package names within groups, 504–505

physical design thought process, 502–503

prefixes, 201, 304, 322–326, 399–401

summary of, 427, 489–490, 942

unique names, 422–427, 937

physical entities, 218

procedural interfaces, 819–823

templates, 829–830

types, 217

unique names

enterprise-wide, 461

header (.h) files, 460

object (.o) files, 460

object files (.o), 460

overview of, 292

packages, 422–427

uppercase

all-uppercase notation, 371–372, 938

UpperCamelCase, 217, 371–372,

819–820, 823

nested classes

constructors, 375

declaring, 375–377

defining, 373, 940

protected, 377

NewDeleteAllocator protocol, 860

NIH (not-invented-here) syndrome, 110

nm command, 133

Node objects, 625

factoring, 675–676

manager classes, 673–674

opaque pointers and, 625–629

dumb-data implementation, 629–633

noexcept, 808

nonlinear global cost function, 59

nonmodifiable backdoor access, 441

nonportable software in reusable libraries,

766–769, 942

nonprimitive, semantically related functionality,

501–502, 941

notation

constrained templates

interface inheritance and, 230–233

type constraint documentation, 234–236

Depends-On relationship, 218,

237–243, 936

Index 971

“inheriting” relationships, 234

In-Structure-Only collaborative logical

relationship, 227–230

Is-A logical relationship, 219

arrow notation, 219

implied dependency, 243–251

overview of, 219

overview of, 216–219

package groups, 406–408

summary of, 237, 266–267

Uses-In-Name-Only collaborative logical

relationship, 226–227, 251, 618

Uses-In-The-Implementation logical

relationship

implied dependency, 243–251

#include directives with, 360–361

overview of, 221–225

Uses-In-The-Interface logical relationship

implied dependency, 220, 243–251

#include directives with, 361–362

overview of, 219–220

not-invented-here (NIH) syndrome, 110

NRVO (return-value optimization), 808

nthDayOfWeekInMonth function, 881

numBitsSet function, 898

numMonthsInRange function, 877

O
object (.o) files. See also library software;

linking

atomicity of, 131–134

build process, 131–134

initialization

static, 152

zero initialization, 131

.o versus .obj suffix, 131

sections, 135, 138–139

undefined symbols in, 133, 146

unique names, 460

weak symbols in, 138–139

objects, 625. See also classes; functors; object

(.o) files

allocator-aware (AA), 807–808

scope

file-scope, 354–359, 939

namespace-scope, 354–359, 939

serialization, 146

odema::Pool component, 784–789

odet::DateSequence. See DateSequence class

ODR. See one-definition rule (ODR)

OFFLINE ONLY tag, 477

Olkin, Jeffrey, 612

one-definition rule (ODR), 158, 185–186, 262–264

op function, 126–127

Opaque class, 168

opaque pointers

architectural perspective of, 618–629

cautions with, 621

defined, 254, 507

overview of, 618

protocols and, 226

summary of, 915

when to use, 625

open-source software, 271

open-closed principle

Account report generator example, 37–40

component functionality and, 40, 941

design for stability, 43

HTTP parser example, 31–33

iterators and, 511

list component example, 33–36

malleable versus reusable software, 40–42

overview of, 31–40, 528, 941

Polygon example, 35

“are-rotationally-similar” functionality,

541–544

flexibility of implementation, 535–537

implementation alternatives, 534–535

interface, 545–552

invariants imposed, 531

iterator support for generic algorithms,

539–540

nonprimitive functionality, 536–537, 541

performance requirements, 532–533

Perimeter and Area calculations, 537–539

primitive functionality, 533–534, 540

972 Index

topologicalNumber function, 545

use cases, 531–532

values, 530

vocabulary types, 530–531

summary of, 117, 910

open-source libraries, 433, 490

operators

equality (==), 221–222, 511, 882

free

colocation of, 560

declaring at package namespace scope,

312–321, 483, 938

overloading, 319–320

source-code organization, 335

inequality (!=), 221–222, 511

istream, 873

postfix, 847

relational, 846

stream-out, 819

optimization, return-value, 808

OraclePersistor class, 736

organization, software

during build process, 462

during deployment, 460–461

organizational units of deployment, package

groups as, 413–414

OSI network model, 22

OsUtil class, 742–743

overloading

free operators, 319–320

functions, 174

overriding virtual functions, 797

P
package directory, 388

package groups. See also library software

bsl (BDE Standard Library), 404–406

defined, 82, 271–272, 402, 937

dependencies, 408–413, 937, 939–941

naming conventions, 326–327, 402–403,

423–424, 937, 939

notation, 406–408

organizing during deployment, 413–414

physical aggregation with, 402–413

practical applications, 414–421

acyclic application libraries, 417–421

decentralized package creation, 421

purpose of, 414–417

role of, 402, 942

summary of, 421–422, 427, 488–490, 940

package-local (private) components, 769–772,

942

packages. See also components; library

software; utility packages

application, 433–437, 491, 940

architectural significance of, 300, 322–326,

385–386

charter, 502

coincidental cohesion, 395–396

day-count example, 575–576

decentralized package creation, 421

defined, 300–301, 332, 384, 386, 481,

936–937

dependencies

allowed, 389–394, 451–454, 937, 939,

940–941

cyclic, 394–395

dependency metadata, 471–475

physical package structure and,

388–389

factoring subsystems with, 384–394

horizontal, 414–415, 502

irregular, 301, 385–386, 404, 937

isolated

dependencies, 420–421

naming conventions, 387, 425–426

physical layout of, 387

problems with, 387

levelization and, 251–252

metadata

build requirements, 475–476, 493

“by decree,” 470

dependency, 471–475, 493

membership, 476

policy, 476–478, 493

purpose of, 469–470

Index 973

rendering, 478–479

summary of, 479–480, 493

naming conventions

intuitively descriptive names, weaknesses

with, 422–423

package names within groups, 504–505,

939

physical design thought process, 502–503

prefixes, 201, 304, 322–326, 399–401

summary of, 427, 489–490, 942

unique names, 422–427, 937

notation, 388–389

package groups

bsl (BDE Standard Library), 404–406

defined, 82, 271–272, 402, 937

dependencies, 408–413

names, 326–327, 402–403

naming conventions, 326–327, 402–403,

423–424, 937, 939

notation, 406–408

organizing during deployment, 413–414

physical aggregation with, 402–413

practical applications, 414–421

purpose of, 414–417

role of, 402, 942

summary of, 421–422, 427, 488–490, 940

physical layout of, 387–388

regular, 487

scope of, 312–321, 395–399, 483, 502, 938,

940

single-threaded reference-counted functors

example

aggregation of components into packages,

586–589

event-driven programming, 576–586

overview of, 555–576

structural organization of, 270–274, 481

subpackages, 427–431, 490

suffixes, 552

summary of, 401, 487–488, 942

package-sized systems, wrapping, 693–701

PackedCalendar class, 859–861, 900–901

PackedIntArray class, 901

PackedIntArrayConstIterator type, 901

PackedIntArrayUtil struct, 901

parallel processing, 456

parentheses, 652

Parnas, D. L., 20–21

ParserImpUtil struct, 876

parsers, extension of, 31–33

partial insulation, 782, 793–794, 835

partial specialization, 179–183

partitioning

deployed software, 940

for business reasons, 467–469

for engineering reasons, 464–467

implementation (.cpp) files, 281

patches, 920

patterns

“Big Ball of Mud,” 5

Factory, 809–810

Flyweight, 900

singleton, 919

peer review, 90–91

peers, 557–558

perfect competition, 87

perimeter, polygons, 537–539

persistence, date/calendar subsystem, 876–877

Persistor class, 733–738

Phonebloks, 27

physical aggregation, 940

architectural significance of, 278–281

components, 280–281

names, 292, 938

summary of, 278–280

atomicity of, 277

balance in, 284–287, 290

defined, 275, 936

dependencies

allowed, 281–284, 300, 938, 942

cyclic, 292–293

definitions of, 278, 942

dependency metadata for different levels

of aggregation, 473–474

entity manifests, 281–283, 936

levels of, 287–290, 942

974 Index

package groups, 402–413

physical-aggregation spectrum, 275–277

summary of, 293, 481–482

UORs (units of release)

architectural significance of, 278–280,

290–291, 942

defined, 277, 936

in isolated packages, 289

physical dependencies. See dependencies

physical design, 124. See also dependencies;

encapsulation; insulation; levelization

techniques; packages

class colocation

component-private classes, 561–564

criteria for, 501, 522–527, 555–560, 591,

941

day-count example, 566–576

mutual collaboration, 555–560, 941

nonprimitive functionality, 541, 941

single-threaded reference-counted functors

example, 576–591

subordinate components, 564–566

summary of, 591–592, 912–914, 941

template specializations, 564

components, 54–57

date/calendar subsystem example

CacheCalendarFactory interface, 867–871

Calendar class, 895–899

calendar library, application-level use of,

862–872

CalendarCache class, 861–867

CalendarFactory interface, 867–871

CalendarLoader interface, 862–867

CurrentTimeUtil struct, 849–853

date and calendar utilities, 881–885

Date class, 838–849, 886–895

date math, 877–881

Date type, 838–849

DateConvertUtil struct, 889–894

DateParserUtil struct, 873–876

day-count conventions, 877–878

distribution across existing aggregates,

902–907

holidays, 855, 859

multiple locale lookups, 858–861

overview of, 835

PackedCalendar class, 859–861, 900–901

ParserImpUtil struct, 876

requirements, 835–838, 854–858

summary of, 908, 922–923

value transmission and persistence,

876–877

weekend days, 855

defined, 44

importance of, 2

lateral versus layered architectures

CCD (cumulative component dependency),

727–732

classical layered architecture, 723–726

construction analogy, 723

correspondingly layered architecture,

727–732

inheritance-based lateral architectures,

732–738

light versus heavy layering, 728–729

overview of, 722–723

protocols and, 802

purely compositional designs, improving,

726–727

summary of, 738–739, 917–918

testing, 738

logical/physical coherence

overview of, 294–297

package groups and, 414–417

summary of, 482–484

logical/physical name cohesion

advantages of, 298–299

definitions at package namespace scope,

312–321, 483, 938, 940

design rules, 304, 938–940

enterprise namespaces, 309–310

goals of, 300

history of, 298

logical constructs, anchoring to

components, 311–312

macro names, 311, 483

Index 975

packages, 300–301, 304, 322–327, 436,

940

point of use, identifying location from,

301–309

summary of, 333, 482–484

using directives/declarations, 328–333

modularization

anticipated client usage, 523–528

criteria for, 517–518, 942

demotion process, 518–521, 552–554,

910–912

failure to maintain, 518–519

overview of, 517

physical implementation dependencies

and, 521–523

semantics versus syntax as modularization

criteria, 552–553

summary of, 553–554, 910–912

notation

constrained templates, 230–233

Depends-On relationship, 218, 237–243,

936

“inheriting” relationships, 234

In-Structure-Only collaborative logical

relationship, 227–230

Is-A logical relationship, 219, 243–251

overview of, 216–219

summary of, 237, 266–267

type constraint documentation, 234–236

Uses-In-Name-Only collaborative logical

relationship, 226–227, 251, 618

Uses-In-The-Implementation logical

relationship, 221–225, 243–251,

360–361

Uses-In-The-Interface logical relationship,

219–220, 243–251, 361–362

overview of, 496–497

physical aggregation, 940

allowed dependencies, 281–284, 300, 938,

942

architectural significance of, 278–281,

290–292, 294–295

atomicity of, 277

balance in, 284–287, 290

cyclic physical dependencies, 292–293

defined, 275

dependencies, 278, 281–284, 292–293,

300, 473–474, 942

entity manifests, 281–283

levels of, 287–290, 942

package groups, 402–413

physical-aggregation spectrum, 275–277

summary of, 293, 481–482

UORs (units of release), 277–280,

289–291

physical interoperability

application-specific dependencies in

library components, 758–760, 941

constraints on side-by-side reuse, 760–761

domain-specific conditional compilation,

754–758, 941

global resource definitions, 762

goals of, 753–754

guarding against deliberate misuse, 761,

941

hidden header files for logical

encapsulation, 762–765

nonportable software in reusable libraries,

766–769, 942

package-local (private) components,

769–772, 942

summary of, 772–773, 919

physical uniformity

developer mobility and, 47, 119. See also

components

importance of, 46–47

summary of, 118–119

quick reference, 935–942

role of, 2, 44–46, 118

schedule/product/budget trade-offs, 3–5

thought processes in

absolute position, 500

abstract interfaces, 498–499

colocation, criteria for, 501, 522–527

components as fine-grained modules, 498

976 Index

cyclic physical dependencies, avoidance

of, 503, 505–507

direction, 498

friendship, constraints on, 508

multicomponent wrappers, 513–517

naivete of logical design, 497

nonprimitive, semantically related

functionality, 501–502

open-closed principle, 511

overview of, 497

package charter, 502

package names, 502–505, 939

package prefixes, 502–504

package scope, 502

physical location, identifying, 501

private access within single component,

511

private access within wrapper component,

512–513

software reuse, 500

summary of, 517, 909–910

wrappers, 508–510

physical interoperability

application-specific dependencies in library

components, 758–760, 941

constraints on side-by-side reuse, 760–761

domain-specific conditional compilation,

754–758, 941

global resource definitions, 762

goals of, 753–754

guarding against deliberate misuse,

761, 941

hidden header files for logical encapsulation,

762–765

nonportable software in reusable libraries,

766–769, 942

package-local (private) components, 769–

772, 942

summary of, 772–773, 919

physical location, identifying, 501

physical name cohesion. See logical/physical

name cohesion

physical substitutability, 441

physical uniformity

developer mobility and, 47, 119. See also

components

importance of, 46–47

summary of, 118–119

physical view, components, 53–55

physically monolithic platform adapter, 717–722

PIMPL (Pointer-to-IMPLementation), 807

PIs. See procedural interfaces

platforms, coupling with, 741–742

Player interface, 658–660

plug-ins, 47

plus sign (+), 431–432

PMR (Polymorphic Memory Resource), 222,

785

Point class, 169–170, 816–824

point of use, identifying location from, 301–309

pointers, opaque. See opaque pointers

Pointer-to-IMPLementation (PIMPL), 807

PointList class, 239–241

policies

inappropriate physical dependencies, 742

interface, 654

policy metadata, 476–478, 493

policy-based design, 654, 744

Polygon example

“are-rotationally-similar” functionality, 541

flexibility of implementation, 535–537

implementation alternatives, 534–535

interface, 545–552

invariants imposed, 531

iterator support for generic algorithms,

539–540

nonprimitive functionality, 536–537, 541

open-closed principle, 35

performance requirements, 532–533

Perimeter and Area calculations, 537–539

primitive functionality, 533–534, 540

topologicalNumber function, 545

use cases, 531–532

values, 530

vocabulary types, 530–531

Polymorphic Memory Resource (PMR), 222,

785

Index 977

polymorphic object serialization, 146

polymorphism, runtime, 415–417, 574

Pool class, 778–783

inline methods, 781–783

partial insulation, 782

replenishment strategy, 784–789

population count, 898

portability, enabling, 766–769

position, absolute, 500

positions, brokerage accounts, 594

POSIX-standard proleptic Gregorian calendar,

886

postfix operators, 847

pqrs_bar.h file, 355–359

prefixes

package, 502–504

application packages, 436

architectural significance of, 322–326

my_ prefix, 201

nomenclature, 304

value of, 399–401

package groups, 304, 326–327

procedural interfaces, 823

purpose of, 829

z_, 815, 819–823

preprocessing phase, 129

pricing engines, 758–759

PricingModel class, 758–759

PrimitiveDateUtil utility, 894

primitiveness

closure and, 528

defined, 911, 937

inherently primitive functionality

in higher-level utility structs, 529–530

overview of, 528–529

Polygon example, 530–553

reducing with iterators, 529, 942

manifestly primitive functionality, 528–529,

942

in Polygon example, 533–534

quick reference, 941

private access

within single components, 511

within wrapper components, 512–513

private classes, 561–564

defined, 371

example of, 378–383

identifier-character underscore (_), 371–377

implementation of, 371

modules and, 371

summary of, 384, 486–487

private components, 769–772

private header (.h) files, 192, 279, 352

private inheritance, 692

probability of reuse, 84–86

procedural interfaces

architecture of, 812–813

defined, 810–811

DLLs (dynamically linked libraries), 833

example of, 816–819

exceptions, 831–833

functions in, 823–824

inheritance, 828–829

mapping to lower-level components, 815

mitigating cost of, 830–831

naming conventions, 819–823

physical dependencies within, 813–814

physical separation of PI functions, 813–814

properties of, 812–813

return-by-value, 826–827

SOAs (service-oriented architectures), 833

supplemental functionality in, 814

templates, 829–830

vocabulary types, 824–825

when to use, 811–812

profit maximization, 86

programmatic interfaces, 390, 792

programs, 434. See also applications

program-wide unique addresses, 163–166

proleptic Gregorian calendar, 610, 886

proprietary software, enterprise namespaces for,

309–310

ProprietaryPersistor class, 733

protected keyword, 221

protected nested classes, 377

978 Index

protocols

Allocator, 860, 902

bdex_StreamIn, 839

bdex_StreamOut, 839

cache components and, 454

callbacks

Blackjack model, 655–660

logger-transport-email example, 655–660

channel, 505

component design rules, 352

day-count example, 573–575

defined, 226, 936

destructors, 226

hierarchy, 231, 737–738

insulation with

advantages of, 795–798

bridge pattern, 801

implementation-specific interfaces, 802

protocol effectiveness, 802

protocol extraction, 799–800

runtime overhead, 803–804

static link-time dependencies, 802–803

NewDeleteAllocator, 860

physical position, 498–499

test implementations, 659

PSA 30/360 day-count convention, 567

pseudo package names, 498, 506

Pthreads, 768

PubGraph class, 685

public classes

colocation of

component-private classes, 561–564

criteria for, 501, 522–527, 555–560, 591

day-count example, 566–576

mutual collaboration, 555–560, 941

nonprimitive functionality, 541, 941

single-threaded reference-counted functors

example, 576–591

subordinate components, 564–566

summary of, 591–592, 912–914, 941

template specializations, 564

defined, 555

public inheritance, 359–362

pure abstract interfaces. See protocols

pure declarations, 188, 358

pure functional languages, 43

purely compositional designs, improving,

726–727

Q
qualified-name syntax, 156, 198, 264–265

quality

schedule/product/budget trade-offs, 3–5

of Software Capital, 110–114

quantifying hierarchical reuse, text-partitioning

optimization analogy, 57–86

brute-force recursive solution, 64–70

component-based decomposition, 60–64

dynamic programming solution, 70–76

exception-agnostic code, 62

exception-safe code, 62

greedy algorithm, 59

lookup speed, 79–83

nonlinear global cost function, 59

probability of reuse, 84–86

problem summary, 57–59

real-world constraints, 86

reuse in place, 76–79

summary of, 119–120

vocabulary types, 85

quick reference guide, 935–942

quotation marks ("), 202–203, 344, 369–370,

433, 460, 490

R
race conditions, eliminating, 829

RAII (Resource Acquisition Is Initialization), 62

“raw” methods, 538–539

realms, 599

recompilation, 773. See also compilation

Rectangle class, 604–609, 798

recursion

brute-force text-partitioning algorithm, 68–69

recursively adaptive development, 100–105

redeployment, 787

redundancy

advantages of, 77

Index 979

brute-force solutions based on, 668

overview of, 634–638, 916

redundant include guards,

205–209, 265

refactoring, continuous, 419, 461, 634

reference, access by, 539–540

reference-counted functors, 654

references symbol, 162

registries

Registry class, 145

“singleton,” 141–146

Registry class, 145

regular packages, 487

regularity in design, 353

reinterpret_cast technique, 692–693

relational operators, 846

relationships. See also dependencies

Depends-On, 218, 237–243, 278, 936–937,

942

implied dependency, 243–251, 267

“inheriting” relationships, 234

In-Structure-Only, 227–230

Is-A

arrow notation, 219

implied dependency, 243–251

overview of, 219

Uses-In-Name-Only, 226–227, 251, 618

Uses-In-The-Implementation

implied dependency, 243–251

#include directives with, 360–361

overview of, 221–225

Uses-In-The-Interface

implied dependency, 220, 243–251

#include directives with, 361–362

overview of, 219–220

release, units of. See UORs (units of release)

relevance, software, 10

reliability, software, 9

removeNode function, 673

rendering metadata, 478–479

replenish method, 784–789

replenishment, Pool class,

784–789

report generator, extension of, 37–40

repositories, hierarchically reusable, 108–109

Resource Acquisition Is Initialization (RAII), 62

return on investment, 86–88

return-by-value, 826–827

return-value optimization (NRVO), 808

reusable software. See also date/calendar

subsystem; demotion; hierarchical

reuse; Software Capital

application versus library software, 5–13

classically reusable software, 18–20, 116

collaborative software, 14–20, 116

constraints on side-by-side reuse, 760–761

factoring for reuse

application versus library software, 6–13

collaborative software, 14–20

continuous refactoring, 14, 634

cracked plate metaphor, 14–20

defined, 14

inadequately factored subsystems, 14–20

toaster toothbrush metaphor, 14–20

“fanatical obsession” with, 637–638

hiding, 769–772, 942

hierarchical reuse, 20–27. See also text-

partitioning optimization problem

designing for, 10

finely graduated, granular structure,

20–27, 42

frequency of, 42

software repository, 108–109

summary of, 117

system structure and, 20–27

text-partitioning optimization analogy,

57–86

malleable versus, 40–42

nonportable software in, 766–769, 942

physical design thought process, 500

probability of reuse, 84–86

quality in, 110–114

real-world constraints, 86

vocabulary types, 85

Rivest, Ronald, 83

rodata segment (executables), 131

980 Index

root names, 302, 483, 938

RotationalIterator class, 544

rotationally similar polygons identifying,

541–544

runtime behavior, link order and, 151

runtime initialization, 354–359, 939

runtime overhead, total insulation, 803–804

runtime polymorphism, 415–417, 574

S
.s files, 129

salient attributes, 515

“sameness,” procedural interface, 825

Sankel, David, 353, 387, 436, 536, 563,

601, 612, 771

Schmidt, Douglas C., 719

scope

components, 55–56

free functions, 199–200

modules, 475

objects

file-scope, 354–359

namespace-scope, 354–359

package namespace, 312–321, 483, 938, 940

packages, 395–399, 502

scoped allocator model, 222

SEC (Securities and Exchange Commission),

467

“security by obscurity,” 775

self-declaring definitions, 155, 188, 261

semantics

as modularization criteria, 552–553

value, 530, 629

serialization, 146, 665

service-oriented architectures. See SOAs

(service-oriented architectures)

set_lib_handler function, 645–646

settlement dates, 835

shadow classes, 516–517

Shape class, 795–798

ShapePartialImp class, 799–800

ShapeType class, 808

shared enumerations, 776–777

shared libraries, 153

shiftModifiedFollowingIfValid function, 883

side-by-side reuse, constraints on, 760–761

signatures, 127

single solution colocation criteria, 557–559, 591

single technology, “betting” on, 745–753

single-component wrapper, 685–686

single-threaded reference-counted functors

aggregation of components into packages,

586–589

event-driven programming, 576–586

blocking functions, 576–577

classical approach to, 577–579

modern approach to, 579–586

time multiplexing, 577

overview of, 555–576

package-level functor architecture, 586–589

singleton pattern, 754, 919

“singleton” registry example, 141–146

size function, 781

sliders, schedule/product/budget, 4

Snyder, Van, 110

SOAs (service-oriented architectures)

cyclic physical dependencies and, 519

insulation and, 833

procedural interfaces compared to, 715

Software Capital, 86–98. See also date/calendar

subsystem

advantages of, 20

autonomous core development team, 98–100

benefits of, 91–98

defined, 89

demotion process, 95, 941

hierarchically reusable software repository,

108–109

in-house expertise, 107–108

intrinsic properties of, 91–92

mature infrastructure for, 106–107

motivation for developing, 89–90

origin of term, 89

peer review, 90–91

quality of, 110–114

recursively adaptive development, 100–105

Index 981

return on investment, 86–88

summary of, 120–121

Software Capital (Zarras), 89

software development. See also components;

demotion; physical design; reusable

software

application software

defined, 6

library software compared to, 5–13

reusability of, 6–13

top-down design, 6–7

“Big Ball of Mud” approach, 5

bimodal, 95

changes in, 2

collaborative software, 14–20, 116

deployment

application versus library software, 11

enterprise-wide unique names, 461

flexible software deployment, 459–460,

462–464

library software, 464

overview of, 459

package group organization during,

413–414

partitioning of deployed software,

464–469, 940

redeployment, 787

software organization, 460–462

stylistic rendering within header files,

462–463

summary of, 469, 492–493

unique .h and .o names, 460

design for stability, 43

goals of, 3–5

hierarchical reuse, 10

impact of language on, 125–126

library software

application software compared to, 5–13

defined, 6

reusability of, 6–13

logical design, 124, 497

malleability versus stability, 29–43

agile software development, 29–30

classical design techniques and, 30–31

defined, 29

fine-grained factoring, 31

manager classes and, 672–673

open-closed principle, 31–40

sharing and, 771

summary of, 117

XP (extreme programming), 29

NIH (not-invented-here) syndrome, 110

policy-based, 654, 744

quality in, 110–114, 121–122

recursively adaptive, 100–105

schedule/product/budget trade-offs, 3–5, 115

Software Capital, 86–98

autonomous core development team,

98–100

benefits of, 91–98

defined, 89

demotion process, 95, 941

hierarchically reusable software repository,

108–109

in-house expertise, 107–108

intrinsic properties of, 91–92

mature infrastructure for, 106–107

motivation for developing, 89–90

origin of term, 89

peer review, 90–91

quality of, 110–114

recursively adaptive development,

100–105

return on investment, 86–88

summary of, 120–121

subsystems, identification of, 11–12

text-partitioning optimization analogy, 57–86

brute-force recursive solution, 64–70

component-based decomposition, 60–64

dynamic programming solution, 70–76

exception-agnostic code, 62

exception-safe code, 62

greedy algorithm, 59

lookup speed, 79–83

nonlinear global cost function, 59

probability of reuse, 84–86

982 Index

problem summary, 57–59

real-world constraints, 86

reuse in place, 76–79

summary of, 119–120

vocabulary types, 85

top-down, 6–7

software organization

during build process, 462

during deployment, 460–461

Sommerlad, Peter, 258

source-code organization. See also header (.h)

files; implementation (.cpp) files

header (.h) files, 333–336, 938

implementation (.cpp) files, 341–342, 938

summary of, 484–485, 938

specializations

colocation of, 564

explicit, 174–179

partial, 179–183

spheres of encapsulation, 679, 683

stability, software, 29–43

agile software development, 29–30

application versus library software, 8–9

classical design techniques and, 30–31

defined, 29

fine-grained factoring, 31

open-closed principle, 31–40

Account report generator example, 37–40

component functionality and, 40, 941

design for stability, 43

HTTP parser example, 31–33

iterators and, 511

list component example, 33–36

malleable versus reusable software, 40–42

Polygon example, 35, 530–553

summary of, 910

summary of, 117

text-partitioning optimization problem, 76–79

XP (extreme programming), 29

Stack type, 34, 49

StackConstIterator class, 49

standard components, adoption of, 111

standard-layout types, 692

stateful allocators, 808

stateless functors, 654–655

static functions/methods, 159, 161, 315–316

static initializations, 152

static link-time dependencies, 802–803

static storage, 162

static variables, 161

std::bitset, 896

std::chrono, 895

std::list, 168

std::map, 79, 81

std::vector, 168

Stepanov, Alexander, 235–236

Stock Studio service, date/calendar subsystem

actual (extrapolated) requirements, 837–838

CacheCalendarFactory interface, 867–871

Calendar class, 895–899

calendar library, application-level use of,

862–872

calendar requirements, 854–858

CalendarCache class, 861–867

CalendarFactory interface, 867–871

CalendarLoader interface, 862–867

CurrentTimeUtil struct, 849–853

date and calendar utilities, 881–885

Date class

class design, 838–849

hierarchical reuse of, 886–887

indeterminate value in, 842

value representation in, 887–895

date math, 877–881

Date type, 838–849

DateConvertUtil struct, 889–894

DateParserUtil struct, 873–876, 895

day-count conventions, 877–878

distribution across existing aggregates,

902–907

holidays, 855, 859

multiple locale lookups, 858–861

originally stated requirements, 835–836

overview of, 835

PackedCalendar object, 859–861, 900–901

ParserImpUtil struct, 876

Index 983

requirements

actual (extrapolated), 837–838

calendar, 854–858

originally stated, 835–836

summary of, 908, 922–923

value representation in, 887–895

value transmission and persistence, 876–877

weekend days, 855

storage

automatic, 162

dynamic, 162

static, 162

streamIn method, 839

streaming, BDEX, 839–848, 898, 902

streamOut method, 664, 839

stream-out operator, 819

strong symbols, 138–139

Stroustrup, Bjarne, 12, 98, 111, 236, 244,

870–871

structs. See also classes

as alternative to qualified naming, 198–201

BitStringUtil, 898

BitUtil, 897–898

CalendarUtil, 883

CurrentTimeUtil, 849–853

DateConvertUtil, 889–894

DateParserUtil, 873–876

DayOfWeekUtil, 611–612

declaring at package namespace scope,

312–321, 483, 938

inherently primitive functionality in,

529–530

MonthOfYearSetUtil, 880

multiple copies of, 9

PackedIntArrayUtil, 901

ParserImpUtil, 876

Point, 169–170

stylistic rendering within header files, 463–464

subordinate components, 372, 486–487,

564–566, 591, 937, 939

subpackages, 427–431, 490

substantive use, 239

substitution, 441

subsystems. See also date/calendar subsystem;

packages

cyclically dependent, 596–597

Event/EventMgr, 647–648

exchange adapters, 754–758

factoring with packages, 384–394

horizontal, 730

identification of, 11–12

legacy, 811

tree-like, 414–415

sufficiency, 528, 554, 910

suffixes

component, 553

_i, 805

package, 552

test drivers, 441–445

util, 315, 553, 573

surface area, 16, 42

surface to volume ratio, 116

swap function, 335, 550

symbols. See also definitions

symbol references, 162

undefined, 133, 146

weak/strong, 138–139, 151

syntax-centric modularization criteria, 517–518

system structure

coarsely layered architecture, 22–23

finely graduated, granular, 23–27

monolithic blocks, 20–21

properties of, 21

top-down, 25

T
.t.cpp suffix, 435

TDD (test-driven development), 738–739

teams, development, 98–100

telescoping. See partitioning

templates

extern template functions, 183–185

function

explicit specialization, 175–179

properties of, 172–175

interface inheritance and, 230–233

984 Index

naming conventions, 829–830

procedural interfaces, 829–830

source-code organization, 335

specializations

colocation of, 564

explicit, 174–179

partial, 179–183

template methods, 669, 732

type constraint documentation, 234–236

variadic, 557–558, 581, 584

test drivers

associating with components, 441–445, 940

black-box testing, 445

dependencies, 445–447

allowed test-driver dependencies across

packages, 451–454, 940

import of local component dependencies,

447–451

minimization of test-driver dependencies

on external environment, 454–456

directory location of, 445, 940

#include directives, 447, 449, 940

linear, 756

overview of, 48–49

summary of, 458–459, 491–492

uniform test-driver invocation interface,

456–458, 941

“user experience,” 458, 941

white-box knowledge, 445

testcalendarloader component, 455

test-driven development (TDD), 738–739

testing. See also test drivers

hierarchical testability requirement, 437

allowed test-driver dependencies across

packages, 451–454, 940

associations among components and test

drivers, 441–445

black-box testing, 445

dependencies of test drivers, 445–447,

940

directory location of test drivers, 445, 940

fine-grained unit testing, 438

import of local component dependencies,

447–451

#include directives, 447, 449, 940

minimization of test-driver dependencies

on external environment, 454–456

need for, 439–441, 940

summary of, 458–459, 491–492

uniform test-driver invocation interface,

456–458, 941

“user experience,” 458, 941

white-box knowledge, 445

lateral versus layered architectures, 738

TDD (test-driven development), 738–739

TestPlayer class, 659

text segment (executables), 131

text-partitioning optimization problem, 57–86

brute-force recursive solution, 64–70

component-based decomposition, 60–64

dynamic programming solution, 70–76

exception-agnostic code, 62

exception-safe code, 62

greedy algorithm, 59

lookup speed, 79–83

nonlinear global cost function, 59

probability of reuse, 84–86

problem summary, 57–59

real-world constraints, 86

reuse in place, 76–79

summary of, 119–120

vocabulary types, 85

third-party libraries, 431–433, 490

thought processes, in physical design, 497

absolute position, 500

abstract interfaces, 498–499

colocation

component-private classes, 561–564

criteria for, 501, 522–527, 555–560, 591,

941

day-count example, 566–576

mutual collaboration, 555–560

nonprimitive functionality, 541, 941

single-threaded reference-counted functors

example, 576–591

subordinate components, 564–566

summary of, 591–592, 912–914

template specializations, 564

Index 985

colocation, criteria for, 522–527

components as fine-grained modules, 498

cyclic physical dependencies, avoidance of,

505–507

direction, 498

friendship, constraints on, 508

multicomponent wrappers

escalating-encapsulation levelization

technique, 516–517

problems with, 513–514

special access with, 515

wrapping interoperating components

separately, 516

naivete of logical design, 497

nonprimitive, semantically related

functionality, 501–502

open-closed principle, 511, 910

package charter, 502

package names, 502–505, 939

package prefixes, 502–504

package scope, 502

physical location, identifying, 501

private access within single component,

511

private access within wrapper component,

512–513

quick reference, 935–942

software reuse, 500

summary of, 517, 909–910

wrappers, 508–510

thread-safe reference counting, 589

throwing exceptions, 718–719

tight coupling, 741–742

time

multiplexing, 577

mythical man month, 4, 88

schedule/product/budget trade-offs, 3–5

TimeSeries class

component/class diagram, 508–509

hidden header files for logical encapsulation,

763–765

wrappers, 509–510, 512–516

TimeSeriesIterator class, 508–510

toaster toothbrush metaphor, 14–20, 27–30,

116–117

top-down design, 6–7

topologicalNumber function, 545

total insulation

defined, 793–794

fully insulating concrete wrapper component

example of, 805–807

performance impact of, 807

poor candidates for, 807–810

usage model, 804–807

overview of, 794–795

procedural interfaces, 804–807

architecture of, 812–813

defined, 810–811

DLLs (dynamically linked libraries), 833

example of, 816–819

exceptions, 831–833

functions in, 813–814, 823–824

inheritance, 828–829

mapping to lower-level components, 815

mitigating cost of, 830–831

naming conventions, 819–823

physical dependencies within, 813–814

properties of, 812–813, 825–826

return-by-value, 826–827

SOAs (service-oriented architectures), 833

supplemental functionality in, 814

templates, 829–830

vocabulary types, 824–825

when to use, 811–812

protocols

advantages of, 795–798

bridge pattern, 801

effectiveness of, 802

extracting, 799–800

implementation-specific interfaces, 802

runtime overhead, 803–804

static link-time dependencies, 802–803

summary of, 834–835, 920–921

transitive closure, 259

transitive includes, 227, 359–360, 486, 605–609,

937

986 Index

translation phase, 132

translation units (.i), 130, 259–260, 262

transmitting values, 876–877

transport facility, 599–600

transport subsystem, logger-transport-email

example

cyclic link-time dependencies, 592–601

protocol callbacks, 655–664

tree-like subsystems, 414–415

try/catch blocks, 832

turnUpTheHeat method, 795

typedef declarations, 168, 313

typename keyword, 173

typenames, 173

types, 10, 461, 509–510, 530

ADTs (abstract data types), 192

BitArray, 895–898

in Blackjack model, 657

Calendar, 855

conforming, 172

constraints, 234–236

covariant return types, 359

Date, 838–849

DatetimeTz, 849

defined, 27, 935

envelope components, 584

exporting, 772

flexible software deployment and, 492

incomplete, 168

in insulating wrapper component, 804–805

interface, 741–742

logical/physical name cohesion and, 323–324

naming conventions, 217

PackedIntArrayConstIterator, 901

in Polygon example, 530–531

in procedural interfaces, 824–825

purpose of, 705

redundancy with, 635

safety, 127–128

specification, 229

Stack, 34

standard-layout, 692

text-partitioning optimization problem, 85

typenames, 173

when to use, 935

U
u suffix, 552

UML, 217

unconstrained attribute classes, 610

undefined behavior, 692

undefined symbols, 133, 146

underscore (_)

in component names, 53, 304,

381–383, 487, 938–939

conventional use of, 371–377

extra underscore convention, 372–377,

561, 591, 771, 939

in package names, 425

subordinate components, 381–383, 487

two-consecutive underscores, 591

uniform test-driver invocation interface,

456–458, 941

uniformity, physical, 46–57

developer mobility and, 47, 119. See also

components

importance of, 46–47

summary of, 118–119

unique addresses, 163–166

unique names

enterprise-wide, 461

header (.h) files, 460, 937

object (.o) files, 460

overview of, 292, 937

packages, 422–427

units of release. See UORs (units of release)

universal time, 742

Unix

iovec (“scatter/gather”) buffer structure, 505

nm command, 133

unstructured programs, header (.h) files in,

191–192

Index 987

UORs (units of release). See also package

groups

architectural significance of, 278–280,

290–291, 942

defined, 277, 936

inappropriate physical dependencies, 743,

937

irregular, 432

in isolated packages, 289

mutual collaboration and, 565–566

upgrades

coerced, 32

extension without modification (open-closed

principle), 31–40

Account report generator example, 37–40

design for stability, 43

HTTP parser example, 31–33

list component example, 33–36

malleable versus reusable software, 40–42,

941

summary of, 117

UpperCamelCase, 217, 371–372, 819–820, 823

uppercase naming conventions

all-uppercase notation, 371–372, 938

UpperCamelCase, 217, 371–372, 819–820,

823

use, encapsulation of, 792–793

use of implementation components,

encapsulating, 683–684

“user experience” test drivers, 458, 941

Uses-In-Name-Only collaborative logical

relationship, 226–227, 251, 618

Uses-In-The-Implementation logical relationship

implied dependency, 243–251

#include directives with, 360–361

overview of, 221–225

Uses-In-The-Interface logical relationship

implied dependency, 220, 243–251

#include directives with, 361–362

overview of, 219–220

using directives/declarations, 201, 328–333, 938

UTC (Coordinated Universal Time), 849

util suffix, 315, 553, 573

utility packages, 315, 501, 910

utility structs. See also classes

BitStringUtil, 898

BitUtil, 897–898

CalendarUtil, 883

CurrentTimeUtil, 849–853

DateConvertUtil, 889–894

DateParserUtil, 873–876

DayOfWeekUtil, 611–612

MonthOfYearSetUtil, 880

multiple copies of, 9

PackedIntArrayUtil, 901

ParserImpUtil, 876

V
value types. See types

values

access by value, 532, 539–540

additive, 839

in Date class, 887–895

return by value, 826–827

semantics, 530, 629

transmitting, 876–877

value semantics, 629

value types, 530

by-value use, 168

value-preserving integrals, 176

van Winkel, JC, 4, 27, 160, 208, 519

variables

declaring at package namespace scope, 313

inline, 162

runtime initialization of, 354–359

static, 161

variadic templates, 557–558, 581, 584

Verschell, Mike, 292

vigilance, need for, 110–114, 121–122

virtual functions, 797, 803

vocabulary types. See types

W
Wainwright, Peter, 469

weak dependencies, 472–473

weak symbols, 138–139, 151

988 Index

weekend days, date/calendar subsystem, 855

well-factored Date class that degrades over time,

705–714

white-box knowledge, 445

Wilson, Clay, 906

wrappers. See also encapsulation; insulation

Basic Business Library Day Count package,

573

cyclic physical dependencies, avoidance of,

323–324

defined, 323, 512

fully insulating concrete wrapper component,

687

example of, 805–807

performance impact of, 807

poor candidates for, 807–810

usage model, 804–807

insulation and, 687, 795

for irregular software, 432, 436

multicomponent, 687–691

escalating-encapsulation levelization

technique, 516–517

problems with, 513–514

special access with, 515

wrapping interoperating components

separately, 516

overhead due to, 687

physically monolithic wrapper module,

717–722

private access within, 512–513

single-component, 685–686

TimeSeries example, 508–510

X-Y-Z
Xerces open-source library, 432

XP (extreme programming), 29

z_ prefix, 815, 819–823

Zarras, Dean, 89

zero initialization, 131–132

Zvector, 15

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Dedication
	Contents
	Preface
	Acknowledgments
	2.1 The Big Picture
	2.2 Physical Aggregation
	2.2.1 General Definition of Physical Aggregate
	2.2.2 Small End of Physical-Aggregation Spectrum
	2.2.3 Large End of Physical-Aggregation Spectrum
	2.2.4 Conceptual Atomicity of Aggregates
	2.2.5 Generalized Definition of Dependencies for Aggregates
	2.2.6 Architectural Significance
	2.2.7 Architectural Significance for General UORs
	2.2.8 Parts of a UOR That Are Architecturally Significant
	2.2.9 What Parts of a UOR Are Not Architecturally Significant?
	2.2.10 A Component Is “Naturally” Architecturally Significant
	2.2.11 Does a Component Really Have to Be a .h /.cpp Pair?
	2.2.12 When, If Ever, Is a .h /.cpp Pair Not Good Enough?
	2.2.13 Partitioning a .cpp File Is an Organizational-Only Change
	2.2.14 Entity Manifest and Allowed Dependencies
	2.2.15 Need for Expressing Envelope of Allowed Dependencies
	2.2.16 Need for Balance in Physical Hierarchy
	2.2.17 Not Just Hierarchy, but Also Balance
	2.2.18 Having More Than Three Levels of Physical Aggregation Is Too Many
	2.2.19 Three Levels Are Enough Even for Larger Systems
	2.2.20 UORs Always Have Two or Three Levels of Physical Aggregation
	2.2.21 Three Balanced Levels of Aggregation Are Sufficient. Trust Me!
	2.2.22 There Should Be Nothing Architecturally Significant Larger Than a UOR
	2.2.23 Architecturally Significant Names Must Be Unique
	2.2.24 No Cyclic Physical Dependencies!
	2.2.25 Section Summary

	2.3 Logical/Physical Coherence
	2.4 Logical and Physical Name Cohesion
	2.4.1 History of Addressing Namespace Pollution
	2.4.2 Unique Naming Is Required; Cohesive Naming Is Good for Humans
	2.4.3 Absurd Extreme of Neither Cohesive nor Mnemonic Naming
	2.4.4 Things to Make Cohesive
	2.4.5 Past/Current Definition of Package
	2.4.6 The Point of Use Should Be Sufficient to Identify Location
	2.4.7 Proprietary Software Requires an Enterprise Namespace
	2.4.8 Logical Constructs Should Be Nominally Anchored to Their Component
	2.4.9 Only Classes, structs, and Free Operators at Package-Namespace Scope
	2.4.10 Package Prefixes Are Not Just Style
	2.4.11 Package Prefixes Are How We Name Package Groups
	2.4.12 using Directives and Declarations Are Generally a BAD IDEA
	2.4.13 Section Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

