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Preface

When I wrote my first book, Large-Scale C++ Software Design (lakos96), my publisher wanted 

me to consider calling it Large-Scale C++ Software Development. I was fairly confident that 

I was qualified to talk about design, but the topic of development incorporated far more scope 

than I was prepared to address at that time.

Design, as I see it, is a static property of software, most often associated with an individual 

application or library, and is only one of many disciplines needed to create successful software. 

Development, on the other hand, is dynamic, involving people, processes, and workflows. 

Because development is ongoing, it typically spans the efforts attributed to many applications 

and projects. In its most general sense, development includes the design, implementation, 

testing, deployment, and maintenance of a series of products over an extended period. In short, 

software development is what we do.

In the more than two decades following Large-Scale C++ Software Design, I consistently 

applied the same fundamental design techniques introduced there (and elucidated here), both 

as a consultant and trainer and in my full-time work. I have learned what it means to assemble, 

mentor, and manage large development teams, to interact effectively with clients and peers, and 

to help shape corporate software engineering culture on an enterprise scale. Only in the wake 

of this additional experience do I feel I am able to do justice to the much more expansive (and 

ambitious) topic of large-scale software development.
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A key principle — one that helps form the foundation of this multivolume book — is the pro-

found importance of organization in software. Real-world software is intrinsically complex; 

however, a great deal of software is needlessly complicated, due in large part to a lack of basic 

organization — both in the way in which it is developed and in the final form that it takes. This 

book is first and foremost about what constitutes well-organized software, and also about the 

processes, methods, techniques, and tools needed to realize and maintain it.

Secondly, I have come to appreciate that not all software is or should be created with the same 

degree of polish. The value of real-world application software is often measured by how fast 

code gets to market. The goals of the software engineers apportioned to application develop-

ment projects will naturally have a different focus and time frame than those slated to the 

long-term task of developing reliable and reusable software infrastructure. Fortunately, all of 

the techniques discussed in this book pertain to both application and library software — the 

difference being the extent to and rigor with which the various design, documentation, and 

testing techniques are applied.

One thing that has not changed and that has been proven repeatedly is that all real-world soft-

ware benefits from physical design. That is, the way in which our logical content is factored and 

partitioned within files and libraries will govern our ability to identify, develop, test, maintain, 

and reuse the software we create. In fact, the architecture that results from thoughtful physical 

design at every level of aggregation continues to demonstrate its effectiveness in industry every 

day. Ensuring sound physical design, therefore, remains the first pillar of our methodology, and 

a central organizing principle that runs throughout this three-volume book — a book that both 

captures and expands upon my original work on this subject.

The second pillar of our methodology, nascent in Large-Scale C++ Software Design, involves 

essential aspects of logical design beyond simple syntactic rendering (e.g., value semantics). 

Since C++98, there has been explosive growth in the use of templates, generic programming, 

and the Standard Template Library (STL). Although templates are unquestionably valuable, 

their aggressive use can impede interoperability in software, especially when generic program-

ming is not the right answer. At the same time, our focus on enterprise-scale development and 

our desire to maximize hierarchical reuse (e.g., of memory allocators) compels reexamination 

of the proper use of more mature language constructs, such as (public) inheritance.

Maintainable software demands a well-designed interface (for the compiler), a concise yet 

comprehensive contract (for people), and the most effective implementation techniques avail-

able (for efficiency). Addressing these along with other important logical design issues, as well 
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as providing advice on implementation, documentation, and rendering, rounds out the second 

part of this comprehensive work.

Verification, including testing and static analysis, is a critically important aspect of software 

development that was all but absent in Large-Scale C++ Software Design and limited to test-
ability only. Since the initial publication of that book, teachable testing strategies, such as 

Test-Driven Development (TDD), have helped make testing more fashionable today than it 

was in the 1990s or even in the early 2000s. Separately, with the start of the millennium, more 

and more companies have been realizing that thorough unit testing is cost-effective (or at least 

less expensive than not testing). Yet what it means to test continues to be a black art, and all 

too often “unit testing” remains little more than a checkbox in one’s prescribed SOP (Standard 

Operating Procedure).

As the third pillar of our complete treatment of component-based software development, we 

address the discipline of creating effective unit tests, which naturally double as regression tests. 

We begin by delineating the underlying concept of what it means to test, followed by how to 

(1) select test input systematically, (2) design, implement, and render thorough test cases read-

ably, and (3) optimally organize component-level test drivers. In particular, we discuss delib-

erately ordering test cases so that primitive functionality, once tested, can be leveraged to test 

other functionality within the same component.

Much thought was given to choosing a programming language to best express the ideas corre-

sponding to these three pillars. C++ is inherently a compiled language, admitting both prepro-

cessing and separate translation units, which is essential to fully addressing all of the important 

concepts pertaining to the dimension of software engineering that we call physical design. 

Since its introduction in the 1980s, C++ has evolved into a language that supports multiple 

programming paradigms (e.g., functional, procedural, object-oriented, generic), which invites 

discussion of a wide range of important logical design issues (e.g., involving templates, point-

ers, memory management, and maximally efficient spatial and/or runtime performance), not all 

of which are enabled by other languages.

Since Large-Scale C++ Software Design was published, C++ has been standardized and 

extended many times and several other new and popular languages have emerged.1 Still, for 

both practical and pedagogical reasons, the subset of modern C++ that is C++98 remains the 

language of choice for presenting the software engineering principles described here. Anyone 

1 In fact, much of what is presented here applies analogously to other languages (e.g., Java, C#) that support separate 

compilation units.
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who knows a more modern dialect of C++ knows C++98 but not necessarily vice versa. All 

of the theory and practice upon which the advice in this book was fashioned is independent of 

the particular subset of the C++ language to which a given compiler conforms. Superficially 

retrofitting code snippets (used from the inception of this book) with the latest available C++ 

syntax — just because we’re “supposed to” — would detract from the true purpose of this 

book and impede access to those not familiar with modern C++.2 In those cases where we have 

determined that a later version of C++ could afford a clear win (e.g., by expressing an idea 

significantly better), we will point them out (typically as a footnote).

This methodology, which has been successfully practiced for decades, has been independently 

corroborated by many important literary references. Unfortunately, some of these references 

(e.g., stroustrup00) have since been superseded by later editions that, due to covering new 

language features and to space limitations, no longer provide this (sorely needed) design guid-

ance. We unapologetically reference them anyway, often reproducing the relevant bits here for 

the reader’s convenience.

Taken as a whole, this three-volume work is an engineering reference for software developers 

and is segmented into three distinct, physically separate volumes, describing in detail, from a 

developer’s perspective, all essential technical3 aspects of this proven approach to creating an 

organized, integrated, scalable software development environment that is capable of supporting 

an entire enterprise and whose effectiveness only improves with time.

Audience

This multivolume book is written explicitly for practicing C++ software professionals. The 

sequence of material presented in each successive volume corresponds roughly to the order in 

which developers will encounter the various topics during the normal design-implementation-

test cycle. This material, while appropriate for even the largest software development organiza-

tions, applies also to more modest development efforts.

2 Even if we had chosen to use the latest C++ constructs, we assert that the difference would not be nearly as 

significant as some might assume.

3 This book does not, however, address some of the softer skills (e.g., requirements gathering) often associated 

with full lifecycle development but does touch on aspects of project management specific to our development 

methodology.
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Application developers will find the organizational techniques in this book useful, especially 

on larger projects. It is our contention that the rigorous approach presented here will recoup its 

costs within the lifetime of even a single substantial real-world application.

Library developers will find the strategies in this book invaluable for organizing their software 

in ways that maximize reuse. In particular, packaging software as an acyclic hierarchy of fine-

grained physical components enables a level of quality, reliability, and maintainability that to 

our knowledge cannot be achieved otherwise.

Engineering managers will find that throttling the degree to which this suite of techniques is 

applied will give them the control they need to make optimal schedule/product/cost trade-offs. 

In the long term, consistent use of these practices will lead to a repository of hierarchically 

reusable software that, in turn, will enable new applications to be developed faster, better, and 

cheaper than they could ever have been otherwise.

Roadmap

Volume I (the volume you’re currently reading) begins this book with our domain-independent 

software process and architecture (i.e., how all software should be created, rendered, and 

organized, no matter what it is supposed to do) and culminates in what we consider the state-

of-the-art in physical design strategies.

Volume II (forthcoming) continues this multivolume book to include large-scale logical design, 

effective component-level interfaces and contracts, and highly optimized, high-performance 

implementation.

Volume III (forthcoming) completes this book to include verification (especially unit testing) 

that maximizes quality and leads to the cost-effective, fine-grained, hierarchical reuse of an 

ever-growing repository of Software Capital.4

The entire multivolume book is intended to be read front-to-back (initially) and to serve as a 

permanent reference (thereafter). A lot of the material presented will be new to many readers. 

We have, therefore, deliberately placed much of the more difficult, detailed, or in some sense 

“optional” material toward the end of a given chapter (or section) to allow the reader to skim 

(or skip) it, thereby facilitating an easier first reading.

4 See section 0.9.
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We have also made every effort to cross-reference material across all three volumes and to 

provide an effective index to facilitate referential access to specific information. The material 

naturally divides into three parts: (I) Process and Architecture, (II) Design and Implementation, 

and (III) Verification and Testing, which (not coincidentally) correspond to the three volumes.

Volume I: Process and Architecture

Chapter 0, “Motivation,” provides the initial engineering and economic incentives for imple-

menting our scalable development process, which facilitates hierarchical reuse and thereby 

simultaneously achieves shorter time to market, higher quality, and lower overall cost. This 

chapter also discusses the essential dichotomy between infrastructure and application develop-

ment and shows how an enterprise can leverage these differences to improve productivity.

Chapter 1, “Compilers, Linkers, and Components,” introduces the component as the funda-

mental atomic unit of logical and physical design. This chapter also provides the basic low-level 

background material involving compilers and linkers needed to absorb the subtleties of the 

main text, building toward the definition and essential properties of components and physical 

dependency. Although nominally background material, the reader is advised to review it care-

fully because it will be assumed knowledge throughout this book and it presents important 

vocabulary, some of which might not yet be in mainstream use.

Chapter 2, “Packaging and Design Rules,” presents how we organize and package our com-

ponent-based software in a uniform (domain-independent) manner. This chapter also provides 

the fundamental design rules that govern how we develop modular software hierarchically in 

terms of components, packages, and package groups.

Chapter 3, “Physical Design and Factoring,” introduces important physical design concepts 

necessary for creating sound software systems. This chapter discusses proven strategies for 

designing large systems in terms of smaller, more granular subsystems. We will see how to 

partition and aggregate logical content so as to avoid cyclic, excessive, and otherwise undesir-

able (or unnecessary) physical dependencies. In particular, we will observe how to avoid the 

heaviness of conventional layered architectures by employing more lateral ones, understand 

how to reduce compile-time coupling at an architectural level, and learn — by example — how 

to design effectively using components.
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Volume II: Design and Implementation (Forthcoming)

Chapter 4, “Logical Interoperability and Testability,” discusses central, logical design con-

cepts, such as value semantics and vocabulary types, that are needed to achieve interoperability 

and testability, which, in turn, are key to enabling successful reuse. It is in this chapter that we 

first characterize the various common class categories that we will casually refer to by name, 

thus establishing a context in which to more efficiently communicate well-understood families 

of behavior. Later sections in this chapter address how judicious use of templates, proper use of 

inheritance, and our fiercely modular approach to resource management — e.g., local (“arena”) 

memory allocators — further achieve interoperability and testability.

Chapter 5, “Interfaces and Contracts,” addresses the details of shaping the interfaces of 

the components, classes, and functions that form the building blocks of all of the software 

we develop. In this chapter we discuss the importance of providing well-defined contracts 

that clearly delineate, in addition to any object invariants, both what is essential and what is 

undefined behavior (e.g., resulting from narrow contracts). Historically controversial topics 

such as defensive programming and the explicit use of exceptions within contracts are 

addressed along with other notions, such as the critical distinction between contract checking 

and input validation. After attending to backward compatibility (e.g., physical substitutability), 

we address various facets of good contracts, including stability, const-correctness, 

reusability, validity, and appropriateness.

Chapter 6, “Implementation and Rendering,” covers the many details needed to manufac-

ture high-quality components. The first part of this chapter addresses some important consid-

erations from the perspective of a single component’s implementation; the latter part provides 

substantial guidance on minute aspects of consistency that include function naming, parameter 

ordering, argument passing, and the proper placement of operators. Toward the end of this 

chapter we explain — at some length — our rigorous approach to embedded component-level, 

class-level, and especially function-level documentation, culminating in a developer’s final 

“checklist” to help ensure that all pertinent details have been addressed.

Volume III: Verification and Testing (Forthcoming)

Chapter 7, “Component-Level Testing,” introduces the fundamentals of testing: what it 

means to test something, and how that goal is best achieved. In this (uncharacteristically) con-

cise chapter, we briefly present and contrast some classical approaches to testing (less-well-

factored) software, and we then go on to demonstrate the overwhelming benefit of insisting that 

each component have a single dedicated (i.e., standalone) test driver.
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Chapter 8, “Test-Data Selection Methods,” presents a detailed treatment of how to choose 

the input data necessary to write tests that are thorough yet run in near minimal time. Both clas-

sical and novel approaches are described. Of particular interest is depth-ordered enumeration, 
an original, systematic method for enumerating, in order of importance, increasingly complex 

tests for value-semantic container types. Since its initial debut in 1997, the sphere of applicabil-

ity for this surprisingly powerful test-data selection method has grown dramatically.

Chapter 9, “Test-Case Implementation Techniques,” explores different ways in which previ-

ously identified sampling data can be delivered to the functionality under test, and the results 

observed, in order to implement a valid test suite. Along the way, we will introduce useful 

concepts and machinery (e.g., generator functions) that will aid in our testing efforts. Comple-

mentary test-case implementation techniques (e.g., orthogonal perturbation), augmenting the 

basic ones (e.g., the table-driven technique), round out this chapter.

Chapter 10, “Test-Driver Organization,” illustrates the basic organization and layout of our 

component-level test driver programs. This chapter shows how to order test cases optimally so 

that the more primitive methods (e.g., primary manipulators and basic accessors) are tested 

first and then subsequently relied upon to test other, less basic functionality defined within the 

same component. The chapter concludes by addressing the various major categories of classes 

discussed in Chapter 4; for each category, we provide a recommended test-case ordering along 

with corresponding test-case implementation techniques (Chapter 9) and test-data selection 

methods (Chapter 8) based on fundamental principles (Chapter 7).
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directly in any one application. Our goal, therefore, is to provide some top-level organizational 

structure — such as the one illustrated in Figure 2-1 — that allows us to partition our software 

into discrete physical units so as to facilitate finding, understanding, and potentially reusing 

available software solutions.1

Legacy
Proprietary
Application

Software

Componentized
Proprietary
Application

Software

Componentized
(and Legacy)
Proprietary

Library
Software1

Third-Party
and

Open-Source
Library

Software

Figure 2-1: Enterprise-level view of software organization

As Chapters 0 and 1 describe, most of what we do with respect to creating new library and 

application software involves components as the atomic units of design. But components 

alone, as depicted in Figure 2-2a, are too small to be effective in managing and maintaining 

software on a large scale. We will therefore want to aggregate logically related components 

having similar physical dependencies into a larger physical entity that we refer to as a package, 

which can be treated more effectively as a unit. These larger logically and physically cohesive 

1 Open-source code that has been augmented (or forked) to achieve some particular purpose would also fall into this 

category (e.g., third-party software adapted to use our (polymorphic) memory-allocator model — see Volume II, 

section 4.10).

2.1 The Big Picture

The way in which software is organized governs the degree to which we can leverage that 

software to solve current and new business problems quickly and effectively. By design, 

much of the code that we write for use by applications will reside in sharable libraries and not 
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entities can then, in turn, be further aggregated into a yet larger body of software, which we 

call a package group, comprising packages having similar physical dependencies2 that, taken 

as a whole, are  suitable for independent release, as illustrated in Figure 2-2b.

(a) System consisting of individual components

main main main main

2 Note that, while the packages within a group are themselves necessarily internally logically cohesive, such need not 

be the case for a package group as a whole (see sections 2.8 and 2.9, respectively).
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(b) System consisting of pre-aggregated components

main main main main

Figure 2-2: Individual components do not scale up.

In addition, some of the software that we might need to use could be organized quite differently. 

For example, we may want to take advantage of certain third-party and open-source libraries, 

which might not be component-based. We might have our own legacy libraries to use that are 

also not component-based. These software libraries, of necessity, must come together at a level 

of aggregation larger than components, as depicted in Figure 2-3.
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main
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Figure 2-3: Integration with non-component-based (library) software

We generally think of a top-level unit of integration within a large system informally as 

a “library” whose interface typically consists of a collection of header files in a single direc-

tory (e.g., /usr/include) and a single library archive (e.g., libc.a, libc.so) depending 

on the target platform. We might uniquely refer to this particular architectural entity as a 

whole as “The C Library” although its internal structure (i.e., how logical content is partitioned 

among its .o files) is entirely organizational (i.e., not part of its specification or contract; see 

 Volume II, section 5.2) and might vary from one vendor platform to another.

Integration with legacy, open-source, and third-party libraries is important and will be 

addressed. Our purpose in the next few sections, however, is first to identify desirable charac-

teristics of library software and then to provide a prescriptive methodology for packaging our 

own. After that, we will return to the issues of integrating with non-component-based software 

(see section 2.12) and then focus on the custom (nonshareable) top-level application code 

surrounding main() (see section 2.13).
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2.2 Physical Aggregation

In the preceding chapters, we talked about the atomic unit of physical design, which we call a 

component, and also the physical hierarchy created by their (acyclic) physical dependencies. 

Scalability demands hierarchy, and the hierarchy imposed by physical dependency, while of 

critical importance, is only one architectural aspect of large-scale physical design. Separately, we 

must also consider how related components can be packaged into larger cohesive physical units. 

We refer to this other hierarchical dimension of component-based design as physical aggregation.

2.2.1 General Definition of Physical Aggregate

 

DEFINITION: An aggregate is a cohesive physical unit of design comprising logical 
content.

 

The purpose of aggregation is to bring together logical content (in the form of C++ source code) 

as a cohesive physical entity that can be treated architecturally as an atomic unit. At one end of the 

physical-aggregation spectrum lies the component. Each individual component aggregates logi-

cal content. Figure 2-4 illustrates schematically a collection of 15 components having 5 separate 

levels of physical dependency that together might represent a hierarchically reusable subsystem.

Level 5:

Level 4:

Level 3:

Level 2:

Level 1:

Figure 2-4: Logical content aggregated within 15 individual components

2.2.2 Small End of Physical-Aggregation Spectrum

 
DEFINITION: A component is the innermost level of physical aggregation.
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By design, each component embodies a limited amount of code — typically only a few hundred 

to a thousand lines of source3 (excluding comments and the component’s associated test driver). 

A single component is therefore too fine-grained (section 0.4) to fully represent most nontrivial 

architectural subsystems and patterns.4 For example, given a protocol (section 1.7.5) for, say, 

an (abstract) memory allocator (see Volume II, section 4.10), we might want to provide sev-

eral distinct components defining various concrete implementations, each tailored to address 

a different specific behavioral and performance need.5 Taken as a whole, these components 

naturally represent a larger cohesive architectural entity, as illustrated in Figure 2-5. To capture 

these and other cohesive relationships among logically related components — assuming they 

do not have substantially disparate physical dependencies — we might choose to colocate them 

within a larger physical unit (see sections 2.8, 2.9, and 3.3). In so doing, we can facilitate both 

the discovery and management of our library software.

Physically cohesive entityLogically cohesive content

Figure 2-5: Suite of logically similar yet independent components

3 Note that complexity of implementation, coupled with our ability to understand and test a given component — 

more than line count itself — governs its practical maximum “size” (see Volume III, sections 7.3 and 7.5).

4 See gamma94.

5 E.g., bdlma::MultipoolAllocator, bdlma::SequentialAllocator, and 

bdlma::BufferedSequentialAllocator (see bde14, subdirectory /groups/bdl/bdlma/). 
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2.2.3 Large End of Physical-Aggregation Spectrum

 
DEFINITION: A unit of release (UOR) is the outermost level of physical aggregation.

 

At the other end of the physical-aggregation spectrum is the unit of release (UOR), which rep-

resents a physically (and usually also logically) cohesive collection of software (source code) 

that is designed to be deployed and consumed in an all-or-nothing fashion. Each UOR typi-

cally comprises multiple separate smaller physical aggregates, bringing together vastly more 

source code than would occur in any individual component. Even so, we should expect our 

library software will in time grow to be far too large to belong to any one UOR. Hence, from 

an enterprise-wide planning perspective, we must be prepared to accommodate the many UORs 

that are likely to appear at the top level of our inventory of library source code.

2.2.4 Conceptual Atomicity of Aggregates

Guideline

Every physical aggregate should be treated atomically for design purposes.

Even though a UOR may aggregate otherwise physically independent entities, it should 

nonetheless always be treated, for design purposes, as atomic.6 Like a component (and every 

physical aggregate), the granularity with which the contents of a UOR are incorporated into a 

dependent program will depend on organizational, platform-specific, and deployment details, 

none of which can be relied upon at design time. Hence, we must assume that any use of a 

UOR could well result in incorporating all of it — and everything it depends on — into our 

final executable program. For this reason alone, how we choose to aggregate our software into 

distinct UORs is vital.

6 The assertion that a library may not be organizationally atomic is true for conventional static (.a) libraries 

 (section 1.2.4), but not generally so for shared (.so) libraries. Even with static libraries, regulatory requirements (e.g., 

for trading applications) may force substantial retesting of an application when relinked against a static library whose 

timestamp has changed, even when the only difference is an additional unused component. In such cases, we 

may — for the purpose of optimization only — choose to partition our libraries into multiple regions (e.g., multiple 

.so or .a libraries) as a post-processing step during deployment (see section 2.15.10). Again, such organizational 

optimizations in no way affect the architecture, use, or allowed dependencies (see section 2.2.14) of the UOR.
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2.2.5 Generalized Definition of Dependencies for Aggregates

DEFINITION: An aggregate y Depends-On another aggregate x if any file in x is 
required in order to compile, link, or thoroughly test y.

This definition of physical dependency for aggregates intentionally casts a wide net, so that it 

can be applied to aggregates that do not necessarily follow our methodology. For aggregates 

composed entirely of components as defined by the four properties in Chapter 1,7 the defini-

tion of direct dependency of y on x reduces to whether any file in y includes a header from x.

Observation

The Depends-On relation among aggregates is transitive.

Given the atomic nature with which physical aggregates must be treated for design purposes, 

if an aggregate z Depends-On y (directly or otherwise) and y in turn Depends-On x, then we 

must assume, at least from an architectural perspective, that z Depends-On x.

2.2.6 Architectural Significance

DEFINITION: A logical or physical entity is architecturally significant if its name 
(or symbol) is intentionally visible from outside of the UOR in which it is defined.

Architecturally significant entities are those parts of a UOR that are intended to be seen (and 

potentially used) directly by external clients. These entities together effectively form the public
interface of the UOR, any changes to which could adversely affect the stability of its clients. The 

definition of architectural significance emphasizes deliberate intent, rather than just the actual 

physical manifestation, because it is that intent that is necessarily reflected by the architecture.

7 Component Properties 1–3 (sections 1.6.1–1.6.3) and Component Property 4 (section 1.11.1).

Observation
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A suboptimal implementation might, for example, inadvertently expose a symbol (at the 

.o level) that was never intended for use outside the UOR. If such unintentional visibility were 

to occur within a UOR consisting entirely of components, it would likely be due to an acci-

dental violation of Component Property 2 (section 1.6.2) and not a deliberate (and misguided) 

attempt to provide a secret “backdoor” access point. Repairing such defects would not consti-

tute a change in architecture — especially in this case, since any use of such a symbol would 

itself be a violation of Component Property 4 (section 1.11.1).

2.2.7 Architectural Significance for General UORs

In our component-based methodology, all the software that we write outside the file that imple-

ments main() is implemented in terms of components. Unfortunately, not all UORs that we 

might want or need (or be compelled) to use are necessarily component-based (the way we would 

have designed them). We will start by considering the parts of a general UOR that are architec-

turally significant irrespective of whether or not they are made up exclusively of components. 

Later we will discuss the specifics of those that fortunately are.

2.2.8 Parts of a UOR That Are Architecturally Significant

In a nutshell, each externally accessible .h file,8 each nonprivate logical construct declared 

within those .h files, and the UOR itself are all architecturally significant. To make use of logical 

entities from outside the UOR in which they are defined, their (package-qualified) names (see 

section 2.4.6) will be needed. In addition, the .h files declaring those entities must (or at least 

should) be included (section 1.11.1) — by name — directly (see section 2.6) for clients to make 

substantive use of them. Finally, to refer to the particular library comprising the .o files corre-

sponding to a UOR (e.g., for linking purposes), it will be necessary to identify it, again, by name.

2.2.9 What Parts of a UOR Are Not Architecturally Significant?

While .h files are naturally architecturally significant, .cpp files and their corresponding 

.o files are not. If we were to change the names of header files or redistribute the logical  constructs 

declared within them, it would adversely affect the stability of its clients; however, such is not 

the case for .cpp or .o files. Assuming the UOR is identified in totality by its name, the internal 

8 Some methodologies allow for the use of “private” header files (e.g., see Figure 1-30, section 1.4) that are not 

deployed along with the UOR; our component-based approach (sections 1.6 and 1.11) does not (for good reasons; 

see  section 3.9.7), but does provide for subordinate components (see section 2.7.5).
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organization of the library archive that embodies the .o files (corresponding to its .cpp files) 

comprised by that UOR will have absolutely no effect on client source code. What’s more, chang-

ing such insulated details (see section 3.11.1) will not require client code even to recompile.

2.2.10 A Component Is “Naturally” Architecturally Significant

For UORs consisting of .h  /.cpp pairs forming components as defined in Chapter 1, both the 

.h and .cpp files will each have the component name as a prefix (see section 2.4.6), making 

components architecturally significant as well. To maximize hierarchical reuse (section 0.4), 

all components within a UOR and all nonprivate constructs defined within those components 

are normally architecturally significant. There are, however, valid engineering reasons for occa-

sionally suppressing the architectural significance of a component. Section 2.7 describes how 

we can — by conventional naming — effectively limit the visibility of (1) nonprivate logical 

entities outside of the component in which they are defined, and (2) a component as a whole.

2.2.11 Does a Component Really Have to Be a .h /.cpp Pair?

What ultimately characterizes a component architecturally is governed entirely by its .h file. In 

Chapter 1, we arrived at the definition of a component as being a .h /.cpp pair satisfying four 

essential properties. In virtually all cases, this phrasing serves as the definition of a component 

in C++.9 For completeness, however, we point out that, though this definition is sufficient and 

practically useful, it is not strictly necessary. The true essential requirement for components in 

C++ is that there be exactly one .h file and one10 (at least) or more (see below) .cpp files that 

together satisfy these four essential properties.

2.2.12 When, If Ever, Is a .h /.cpp Pair Not Good Enough?

In exceedingly rare cases,11 there might be sufficient justification to represent a single compo-

nent using multiple .cpp files. Unlike header files, .cpp files in a component, and especially 

the resulting .o files in a statically linked library (.a), are not considered architecturally 

significant. For example, a component myutil defining three logically related, but physi-

cally independent functions might reasonably be implemented as having a single header file 

9 More generally, for any given language that supports multiple units of translation (e.g., C, C++, Java, Perl, Ada, 

Pascal, FORTRAN, COBOL), the physical form of a component is standard and independent of its content.

10 We require that the component header be included in at least one component .cpp file so that we can observe, just by 

compiling the component, that its .h file is self-sufficient with respect to compilation (section 1.6.1).

11 E.g., to further reduce the size of already tiny programs (such as embedded C) or to break hopelessly large 

(particularly computer-generated) components into separate translation units of a size manageable for the compiler.
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myutil.h and multiple implementation files — e.g., myutil.1.cpp, myutil.2.cpp, 

and myutil.3.cpp — each uniquely named, but all sharing the component name as a com-

mon prefix. Consequently, a program calling only one of the three functions might, under 

certain deployment strategies (see section 2.15), wind up incorporating only the one .o file 

corresponding to the needed function. Such nuanced considerations are not relevant to typical 

development and are most usually relegated to the subdomain of embedded systems.

2.2.13 Partitioning a .cpp File Is an Organizational-Only Change

It is important to realize that the aggressive physical partitioning discussed above is permissible 

only because it is organizational and not architectural. That is, our view and use of the compo-

nent, its logical design, and its physical dependencies are left unaffected by such architecturally 

insignificant optimizations. Introducing (or removing) such optimizations has no effect on the 

client-facing interface (including any need for recompilation) or logical behavior, only on pro-

gram size. By contrast, introducing multiple .h files for a single component would represent an 

architectural change manifestly affecting usage; hence, a component — in all cases — must have 

exactly one header file, whose root name identifies the component uniquely (see section 2.2.23).

2.2.14 Entity Manifest and Allowed Dependencies

DEFINITION: A manifest is a specification of the collection of physical entities — 
typically expressed in external metadata (see section 2.16) — intended to be part of 
the physical aggregate to which it pertains.

DEFINITION: An allowed dependency is a physical dependency — typically 
expressed in external metadata (see section 2.16) — that is permitted to exist in the 
physical hierarchy to which it pertains.

Observation

The defi nition of every physical aggregate must comprise the specifi cation of (1) the 
entities it aggregates, and (2) the external entities that it is allowed to depend on directly.

To be practically useful, every aggregate (from a component to a UOR) must, at a minimum, 

somehow allow us to specify contractually the entities it aggregates, as well as the other physical 

Observation
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entities upon which those contained entities are allowed (i.e., explicitly permitted) to depend 

directly. Much of our design methodology is anchored in understanding the physical dependen-

cies among the discrete logically and physically cohesive (see section 2.3) entities within our 

software. Given a dependency graph, without knowing the specific (outwardly visible) entities 

at its nodes or its (permissible) edges, there is simply no good way to reason about it.

For any given component, as illustrated in Figure 2-6a, the manifest of aggregated entities is 

implied by the accessible logical entities declared within its header file. The allowed direct 

dependencies are implied by the combined #include directives embedded within the .h and 

.cpp files of that component (section 1.11). For the second and successive levels of physical 

aggregation, the manifest of member aggregates and list of allowed dependencies is an essential 

part of the architectural specification and must somehow be stated explicitly (Figure 2-6b).

(a) First-level physical aggregate (i.e., a component)

// ...
#include </*...*/>
#include </*...*/>
// ...
class /*...*/ { 
    // ...
};
class /*...*/ { 
    // ...
};

// ...
#include </*...*/>
#include </*...*/>
// ...Implicit

manifest of
aggregated

entities

Implicit
allowed

dependencies

(b) Second-level physical aggregate

Actual physical dependencies

Aggregated entities

Explicit
metadata

Manifest of Aggregated Entities

Set of Allowed Dependencies

Figure 2-6: Specifying members and allowed dependencies for aggregates
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Unfortunately, the C++ language itself does not support any notion of architecture beyond a 

single translation unit.12 Hence, much of the aggregative structure we discuss in this chapter 

will have to be implemented alongside the language using metadata (see section 2.16). This 

metadata will be kept locally as an integral part of each aggregate to help guide the tools we 

use to develop, build, and deploy our software.13 An abstract subsystem consisting of four 

second-level aggregates forming three separate (aggregate) dependency levels is illustrated 

schematically in Figure 2-7.

Aggregate Level 3:

Allowed direct
external dependencies
are stated explicitly.

Aggregate Level 2:

Aggregate Level 1:

Internally, dependencies
among  components

are inferred.

Figure 2-7: Schematic subsystem built from second-level physical aggregates

12  As of this writing, work was progressing in the C++ Standards Committee to identify requirements for a new 

packaging construct called a module (see lakos17a and lakos18), and a preliminary version of this long-anticipated 

modules feature was voted into the draft of the C++20 Standard at the committee meeting in Kona, HI, on 

February, 23, 2019.

13 A detailed overview of this architectural metadata along with its practical application and how build and other 

tools might consume it is provided for reference in section 2.16.
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2.2.15 Need for Expressing Envelope of Allowed Dependencies

Expressing the envelope of allowed dependencies for aggregations of components explicitly 

might, at first, seem redundant and therefore unnecessary. As noted in section 1.11, there are 

numerous dependency-analysis tools available that can be used to extract actual dependen-

cies from the aggregated components and produce the envelope of those dependencies across 

physical aggregates automatically, but to do so misses the point: The purpose of stating allowed
dependencies is to be anticipatory, not reactive. Characterizing a set of proposed aggregations 

and then supplying an envelope of allowed dependencies among those aggregations enables 

us to express our physical design (intent) before any code is written. As new functionality 

is added, unexpected physical dependencies can be detected and flagged as implementation 

errors. Without specifying allowed dependencies a priori, there is no physical design to imple-

ment, let alone verify. Hence, explicitly specifying — and verifying — allowed dependencies 

is necessary at every level of physical aggregation.

2.2.16 Need for Balance in Physical Hierarchy

Observation

To maximize human cognition, peer entities within a physical aggregate should 
be of comparable physical complexity (e.g., have the same level of physical 
aggregation).

Between a component and a UOR, we might imagine that there could (in theory) be any 

number of intermediate levels of physical aggregation, each of which might or might not have 

architectural significance. Some physical aggregation hierarchies are better than others. In 

particular, an unbalanced hierarchy, such as the one illustrated schematically in Figure 2-8, is 

suboptimal.

Observation
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myunbalancedlib

Figure 2-8: UOR having unbalanced levels of physical aggregation (BAD IDEA)

2.2.17 Not Just Hierarchy, but Also Balance

Effective regular decomposition of large systems requires not only hierarchy, but also balance. 

We choose to model our software development accordingly. Although not strictly necessary, we 

want each aggregate to comprise entities having similar physical complexity. In particular, 

we deliberately avoid placing components alongside larger aggregates within a UOR. We find 

that entities having comparable complexity at each aggregation depth improves comprehension 

and facilitates reuse.
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At each increasing level of physical aggregation, we strive to bring together a significant, but 

not overwhelming amount of information and engineering at a uniform level of abstraction such 

that it can be understood and used effectively. As a rule, we would like the relevant schematic 

detail to correspond to what might reasonably fit on a single 8 1/2 × 11 inch piece of paper14 as 

suggested by the complexity of each of the individual diagrams in Figure 2-9. By achieving this 

balance — much like the chapters and sections within this book — we provide fairly uniformly 

chunked content, which makes it more convenient to analyze and discuss.

(a) Aggregation level I: component containing
related logical content

(b) Aggregation level II: package of related components

14 Being an American, I have chosen the most common loose-leaf paper size in the United States, as opposed to ones 

conforming to ISO 216 used by other countries where A4 is the most common (and similar) size (see http://www.

papersizes.org/).

http://www.papersizes.org/
http://www.papersizes.org/
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(c) Aggregation level III: group of related packages

Figure 2-9: Balancing complexity at each level of physical aggregation

2.2.18 Having More Than Three Levels of Physical Aggregation Is Too Many

Observation

More than three levels of appropriately balanced physical aggregation are virtually 
always unnecessary and can be problematic.

While components (being deliberately fine grained) are too small to be practical to release or 

deploy individually, having more than three appropriately balanced levels of physical aggrega-

tion (as illustrated schematically in Figure 2-10) is not especially useful and can be impractical 

due to the sheer magnitude of the code involved. There are limits as to what we can reasonably 

fit into a single physical library and what typical development and build tools can accommo-

date. There are also design and deployment issues that would tend to discourage physically 

aggregating such massive architectural entities.

Observation
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5th level of aggregation

4th level 4th level
3rd 

2nd

2nd 2nd

3rd 
2nd

2nd 2nd

mybiglib

3rd 
2nd

2nd 2nd

3rd 
2nd

2nd

4th level

3rd 
2nd

2nd 2nd

3rd 
2nd

2nd 2nd

3rd 
2nd

2nd 2nd 

3
2

4

5

Figure 2-10: More than three levels of physical aggregation (BAD IDEA)
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2.2.19 Three Levels Are Enough Even for Larger Systems

In our experience, we find that three appropriately balanced, architecturally significant levels of 

physical aggregation have been sufficient to represent very large libraries. When there are three 

architecturally significant levels, we will consistently refer to each entity at the second level 

of architecturally significant aggregates within the UOR as a package15 (see section 2.8) and 

the UOR itself as a package group (see section 2.9).

For example, using even the modest size estimates for a component, package, and package 

group illustrated in Figure 2-11, each UOR would, on average, support a couple of hundred 

thousand lines of noncommentary source code — excluding, of course, the corresponding 

component-level test drivers (see Volume III, section 7.5). Thus, an enterprise-wide body of 

library software consisting of 10 million lines of source code could fit comfortably within fifty 

such UORs, with yet larger code bases requiring only proportionately more.

500  = 200,000
source lines
component × 20

components
package × 20

packages
package group

source lines
UOR

Figure 2-11: Modest size estimates of components, packages, and package groups.

2.2.20 UORs Always Have Two or Three Levels of Physical Aggregation

Hence, in our methodology, the number of appropriately balanced, architecturally significant 

levels of physical aggregation within our library software will always be at least two (i.e., the 

individual components and the UOR that comprises them), but never more than three.

There might, in rare cases, be valid reasons — e.g., to accommodate a large, monolithic, externally 

designed interface16 — to introduce, purely for organizational purposes, an additional, interven-

ing level of physical aggregation. Any such organization-based partitioning of the implementa-

tion of an architecturally significant aggregate — just like with that of a component — should, 

of course, never be architecturally significant (see section 2.11).

15 Note that a UOR can also be an isolated package, but there should be a compelling engineering reason for 

preferring to do so over a package group, especially for (hierarchically reusable) library software.

16 The C++ Standard Library residing entirely in the std namespace, is itself an example of such a monolithic 

specification.
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2.2.21 Three Balanced Levels of Aggregation Are Sufficient. Trust Me!

The “artificial” constraints on physical aggregation suggested here do not in any way stop 

individual developers from being creative; rather, this regularly structured physical aggrega-

tion model helps to focus creativity where it will be most effective — the functionality, not the 

packaging — thereby making our software developers as a whole more successful. It will turn 

out that having a regular, balanced, and fairly shallow architectural structure also lends itself 

to an economical notation for identifying every architecturally significant logical and physical 

entity within our proprietary library software (see section 2.4).

2.2.22 There Should Be Nothing Architecturally Significant Larger Than a UOR

We deliberately avoid creating anything architecturally significant that is larger than a 

single (physical) UOR.17 Treating such expansive logical units atomically, as illustrated in 

Figure 2-12a, would increase our envelope of allowed dependencies without providing any con-

crete encapsulation of logical functionality within a cohesive physical entity (see section 2.3). 

Instead, we choose to model such coarse architectural policy more articulately as individual 

allowed physical dependencies among UORs (Figure 2-12b). The more that we can encapsu-

late each logical subsystem within a single (architecturally significant) physical aggregate, the 

more we will be able to infer useful physical dependencies (section 1.9) from logical relation-

ships across those entities.

17 Having a single, enterprise-wide namespace in which to guard the names within all of the components we 

collectively write is (1) independent of any aspect of specific designs, and (2) a good idea (see section 2.4.6).
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(b) Modeling logical aggregation
      by individual allowed physical

      dependencies among UORs

U8

U6

U2

U1

U5

U7

U4U3MEGA2

MEGA1
(a) Logical aggregation of several physical UORs

U5

U8

U6 U7

U1

U2

U3 U4

Figure 2-12: Supplanting logical aggregation with allowed physical dependency
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2.2.23 Architecturally Significant Names Must Be Unique

Design Rule

The name of every architecturally signifi cant entity must be unique throughout 
the enterprise.

The C++ language requires that the name of every logical entity visible outside of the transla-

tion unit in which it is defined must be unique within a program (section 1.3.1). We need more. 

We require that the names of all externally accessible logical entities within our library identify 

each entity uniquely because, with reuse, a combination of those logical entities might one day 

wind up within the same program (see section 3.9.4). For the same reason, the names of all 

UORs (package groups and packages) and components — each also being visible to external 

clients — must be globally unique as well.

Even without our cohesive naming strategy (see section 2.4), there remain compelling advan-

tages (e.g., see sections 2.4.6 and 2.15.2) to ensuring that component filenames are them-

selves guaranteed to be globally unique throughout the enterprise — irrespective of directory 

structure.18

The benefi t of unique fi lenames is uniqueness. When one sees a fi lename (such 

as xyza_context.h) anywhere in the system — be it in a log message, an 

assertion, an email, or a tab in a text editor – one knows, uniquely, the component 

to which it refers.  Unique fi lenames also make the rendering of include directives 

in source code orthogonal to the physical placement of headers on a fi lesystem. 

A lack of unique fi lenames does not break any one thing, but makes a large 

collection of tasks more diffi  cult because the fi lename itself is no longer a unique 

identifi er. In a large-scale organization with hundreds of thousands of components 

(among which there will inevitably be many having the base name “context”), 

maintaining the fi lename as a unique identifi er has been, and will continue to be, a 

very valuable property indeed!

                                                                                                 — Mike Verschell

18 On April 1, 2019, Mike Verschell became the manager of Bloomberg’s BDE team, replacing its founder 

(John Lakos) after nearly eighteen rewarding years of applying the methodology described in this book 

to developing real-world large-scale C++ software. Mike provided the quoted synthesis of his position on unique 

filenames via personal email.
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2.2.24 No Cyclic Physical Dependencies!

Design Imperative

Allowed (explicitly stated) dependencies among physical aggregates must be 
acyclic.

Cyclic physical dependencies19 among any physical entities — irrespective of the level of 

physical aggregation — do not scale and are always undesirable. Such cyclically interdepen-

dent architectures are not only harder to build, they are also much, much harder to comprehend, 

test, and maintain than their acyclic counterparts. In fact, to help improve human cognition, we 

almost always structure our source code to avoid forward references to logical entities even 

within the same component. Whenever the physical specification of a design would allow cyclic 

dependencies among architecturally significant physical aggregates, we assert that the design is 

unacceptably flawed. Even if, for some unusual (organizational) reason, we were to choose to 

partition an outwardly visible aggregate into subaggregates that were not architecturally signifi-

cant (e.g., see section 2.11), we would nonetheless insist that the allowed dependencies among 

those subaggregates be acyclic as well (see also Figure 2-89, section 2.15.10).

2.2.25 Section Summary

In summary, a physical aggregate is a physically cohesive unit of logical content and a neces-

sary abstraction in any development process. The organizational details of a physical aggregate 

will likely vary from one platform, compiler/linker technology, and deployment strategy to the 

next; hence, each physical aggregate is treated, at least architecturally, as atomic. Our logical 

designs must also, therefore, always be governed by the envelope of architecturally allowed 

(rather than actual) physical dependencies specified for the aggregate. Balancing complexity 

at each successive level of aggregation facilitates human cognition and potential reuse. The 

use of three balanced levels of architecturally significant physical aggregation has been dem-

onstrated to be sufficient (and in fact optimal) to describe even the largest of systems. We do, 

however, want to avoid architecturally significant logical entities (other than an enterprise-wide 

namespace) that span UORs.

19 A collection of interdependent (connected) entities is cyclically dependent if the transitive closure of the binary 

relation matrix representing direct dependencies between any two entities is not antisymmetric.
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2.3 Logical/Physical Coherence

When developing large-scale software, it is essential that our logical and physical designs 

coincide in several fairly specific ways at every level of packaging. Perhaps the most funda-

mental property of well-packaged software is that all logical constructs advertised within the 

collective interface of a physical module or aggregate — e.g., component, package, UOR 

(section 2.2) — are implemented directly within that module. Software that does not have this 

property generally cannot be described in terms of a graph where the nodes represent cohesive 

logical content and the directed edges represent (acyclic) dependencies on other physical 
modules. We refer to such undesirable software as logically and physically incoherent.

For example, Component Property 3 (section 1.6.3) states that if a logical construct having 

external bindage is declared in a component’s header, then that component is the only one per-

mitted to define that construct. Recall from section 1.9 that, knowing the logical relationships 

among classes contained within separate components having Component Property 3, we can 

reliably infer physical dependencies among those components. Arbitrary .h /.cpp pairs that 

do not fully encapsulate the definitions of their logical constructs unnecessarily make reasoning 

about the design (and organizational) dependencies substantially more complicated (e.g., the 

misplaced definition of the output operator for the Date class in Figure 1-46, section 1.6.3). We 

therefore require that whatever logical constructs a component advertises as its own are defined 

entirely within that component, and never elsewhere.

Guideline

Architecturally cohesive logical entities should be tightly encapsulated within 
physical ones.

The same benefits of logical/physical coherence that we derive from individual components 

apply also to library software at higher levels of aggregation. Imagine, for example, that we 

have two fairly large logical subsystems that we call buyside and sellside. Each subsys-

tem is composed of several classes. For this discussion, let us assume that each of the classes 

is defined in its own separate component, and that the dependency graph of the unbundled 
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components is acyclic. Figure 2-13 shows what often happens when subsystems conceived 

from only a logical perspective materialize. Although the logical and physical aspects of these 

systems coincide, the cyclic physical nature of the aggregate design does not scale, and is there-

fore unacceptable (section 2.2.24).

buyside::

lib1 lib2

buyside::ClassC

buyside::ClassB

buyside::ClassA

sellside::

sellside::ClassD

sellside::ClassC

sellside::ClassB

sellside::ClassA

buyside::ClassD

Figure 2-13: Cyclic physical dependencies (BAD IDEA)

Avoiding cyclic physical dependencies across aggregate boundaries is not only for the benefit 

of build tools, it also facilitates human cognition and reasoning. If all that were needed was to 

have two libraries where the envelope of component dependencies across aggregates was 

 acyclic, then it would suffice to mechanically repartition these components as shown in 

 Figure  2-14. But for software packaging to facilitate human cognition, in addition to being 

physically acyclic, the logical and physical aspects of a design must remain coherent.
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buyside::

buyside::ClassC

lib4

lib3

sellside::

sellside::ClassC

buyside::ClassD sellside::ClassD

buyside::ClassB sellside::ClassB

buyside::ClassA sellside::ClassA

Figure 2-14: Logical/physical incoherence (BAD IDEA)

Although the cyclic physical dependencies between the two libraries have been eliminated, the 

logical and physical designs have diverged. Now, neither logical subsystem is encapsulated by 

either physical library. As a result, our ability to infer aggregate physical dependencies from 

abstract logical usage — i.e., at the subsystem level — is lost. That is, if a client abstractly uses 

either the buyside or sellside logical subsystems, we must either know the details of that 

usage or otherwise assume an implied physical dependency on both libraries. Just as with cyclic 

physical dependencies, our ability to reason about logically and physically incoherent designs 

does not scale; hence, such designs are to be avoided.

Uniting the logical and physical properties of software is what makes the efficient development 

of large-scale systems possible. Achieving an effective modularization of logical subsystems 

is not always easy and might require significant adjustment to the logical design of our sub-

systems (see Chapter 3). As Figure 2-15 suggests, the reworked design might even yield a 

somewhat different logical model. Achieving designs having both logical/physical coherence 

and acyclic physical dependencies early in the development cycle requires forethought but is far 

easier than trying to tweak a design after coding is underway. Once released to clients, however, 

the already arduous task of re-architecting a subsystem will invariably become qualitatively 

more intractable, often insurmountably so.
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seller::ClassW seller::ClassX

seller::ClassY seller::ClassZ

buyer::

seller::

lib6

lib5

buyer::ClassW buyer::ClassX

buyer::ClassY buyer::ClassZ

Figure 2-15: Acyclic logical/physical coherence (GOOD IDEA)

Achieving logical and physical coherence along with acyclic physical dependencies across 

our entire code base is absolutely essential. In addition to ensuring these important properties, 

however, we will need a strategy that guarantees not just that the name of each architecturally 

significant logical and physical entity is unique throughout the enterprise, but that it can also be 

identified (and its definition located) just from its point of use, without having to resort to tools 

(e.g., an IDE). The following section addresses how we realize these additional goals in practice.

2.4 Logical and Physical Name Cohesion

The ability to identify the physical location of the definition of essentially every logical 

construct — directly from its point of use — is an important aspect of design that distinguishes 

our methodology from others used in the software industry. The practical advantages of this 

aspect of design, however, are many and are explored in this section.
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2.4.1 History of Addressing Namespace Pollution

Global namespace pollution — specifically, local constructs usurping short common names — 

is an age-old problem. All of us have learned that naming a class Link or a function max at 

file scope — even in a .cpp file — is just asking for trouble. Left unmanaged, the probability 

of name conflicts increases combinatorially with program size. Developers have traditionally 

responded to this problem with ad hoc conventions for naming logical constructs based on what 

are hopefully unique prefixes (e.g., ls_Link, myMax, size_t). When the use of a logical con-

struct is confined to a single .cpp file, we can always make individual functions static and 

nest local classes within the unnamed namespace. The problem of name collisions, however, 

extends to header files as well.

2.4.2 Unique Naming Is Required; Cohesive Naming Is Good for Humans

Recall from section 2.2.6 that a logical or physical entity is architecturally significant if its name 

(or symbol) is intentionally visible from outside of the UOR that defines it. To refer to each archi-

tecturally significant entity unambiguously, we require the name of each such entity to be glob-

ally unique. How we achieve this uniqueness is, to some extent, an implementation detail — at 

least from the compiler’s perspective. When it comes to human beings, however, cohesive nam-

ing, as we will elucidate in this section, has proven to provide powerful cognitive reinforcement.

Suppose we want to implement an architecturally significant type, say one that represents a 

price — e.g., for a financial instrument. How should we ensure that the name of this type 

is globally unique? In theory, there are many ways to achieve unique naming. We could, for 

example, maintain a central registry of logical names. The first developer to choose Price 

gets it! The next developer implementing a similar concept (there are many ways to character-

ize a price) would be forced to choose something else (e.g., MyPrice, Price23). The same 

approach could just as easily be used to reserve unique filenames.

2.4.3 Absurd Extreme of Neither Cohesive nor Mnemonic Naming

Taking this approach to the extreme, we could even have the registry generate unique type 

names based on a global counter — e.g., T125061, T125062, T125063, and so on. We could 

do similarly for component names (e.g., c05684, c05685, c05686) and even for units of 

release (e.g., u1401, u1135, u1564), as illustrated in Figure 2-16. It all works just fine as far 

as the compiler and linker are concerned. Moreover, physically moving a component from one 

aggregate to another would have no nominal implications. Human cognition, however, is not 

served by this approach.
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// c27341.h              // component defining our "date" class

#include <c11317.h>      // Declares T161459 implementing day-of-week.

// ...

class T121056;           // Local Declaration of In-Stream Facility
class T121059;           // Local Declaration of Out-Stream Facility 

class T121547 {          // definition of our "date" class

    static bool isYearMonthDayValid(int year, int month, int day); 

    // ...

    T121547();
    T121547(int year, int month, int day);
    T121547(const T121547& original);
    ~T121547();

    // ...

    T121547& operator=(const T121547& rhs);

    // ...

    void setYearMonthDay(int year, int month,int day);
    int setYearMonthDayIfValid(int year, int month, int day);

    // ...

    int year() const;
    int month() const;
    int day() const;
    T161459::Enum dayOfWeek() const;

};

// ...

T121056& operator>>(T121056&  inStream,       T121547& date);
T121059& operator<<(T121059& outStream, const T121547& date);

Figure 2-16: Absurdly opaque, noncohesive generated unique names (BAD IDEA)

Maintaining a central database to reserve individual class or component names is not practical 

and clearly not the best answer. Instead, we will exploit hierarchy to allocate multiple levels of 

namespaces at once. This hierarchy, however, is neither ad hoc nor arbitrary; with the exception 

of an overarching enterprise-wide namespace (see below), each namespace that we employ in 

our methodology will correspond to a coherent, architecturally significant, logically and physi-

cally cohesive aggregate.
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2.4.4 Things to Make Cohesive

For every architecturally significant logical entity there are at least three related architectural 

names:

 1. The name (or symbol) of the logical entity itself

 2. The name of the component (or header) that declares the logical entity

 3. The name of the UOR that implements the logical entity

Ensuring that these names are deliberately cohesive will have significant implications 

with respect to development and maintenance. Hence, how and at what physical levels we 

achieve nominal cohesion is a distinctive and very important design consideration within our 

methodology.

2.4.5 Past/Current Definition of Package

 

DEFINITION: A package is the smallest architecturally significant physical aggre-
gate larger than a component.

 

COROLLARY: The name of each package must be unique throughout the 
enterprise.

A package (see section 2.8) is an architecturally significant — i.e., globally visible — unit of 

logical and physical design that serves to aggregate components, subject to explicitly stated, 

allowed dependency criteria (section 2.2.14). A package is also a means for making related 

components physically and, as we are about to see, nominally cohesive. In these ways, pack-

ages enable designers to capture and reflect, in source code, important architectural information 

not easily expressed in terms of components alone.

Historically,20 a package was defined as a collection of components organized as a (logically 

and) physically cohesive unit (see section 2.8.1). Although every package we write ourselves 

20 lakos96, section 7.1, pp. 474–483
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will necessarily be implemented exclusively in terms of components, other kinds of well-

reasoned architecturally significant physical entities comprising multiple header files, yet not 

aggregating components, are certainly possible.21

With the definition as worded above, the word package can serve as a unifying term to describe 

any architecturally significant body of code that is larger than a component, but without neces-

sarily being component-based. We will, however, consistently characterize packages that are 

not composed entirely of components adhering to our design rules — especially those pertain-

ing to our cohesive naming conventions delineated throughout the remainder of this section 

(section 2.4) — as irregular (see section 2.12).

Suppose now that we have a logical subsystem called the Bond Trading System (referred to 

in code as bts for short). Suppose further that this logical subsystem consists of a number of 

classes (including a price class) that have been implemented in terms of components, which, in 

turn, have been aggregated into a package to be deployed atomically as an independent library 

(e.g., libbts.a). How should we distinguish the bts bond price class from other price classes, 

and what should be the name of the component in which that price class is defined?

2.4.6 The Point of Use Should Be Sufficient to Identify Location

Guideline

The use of each logical entity declared at package-namespace scope should alone 
be suffi  cient to indicate the component, package, and UOR in which that entity is 
defi ned.

Whenever we see a logical construct used in code, we want to know immediately to which 

component, package, and UOR it belongs. Without an explicit policy to do otherwise, the name 

21 Robert Martin is the only other popular author we know of to describe in terms of C++ (previous to lakos96 or 

otherwise) an even remotely similar concept. In his adaptation of Booch’s Class Categories, which originally 

were themselves just logical entities (booch94, section 5.1, “Essentials: Class Categories,” pp. 581–584), Martin’s 

category unites a cluster of classes related by both logical and physical properties. Based on personal (telephone) 

correspondence (c. 2005), his augmented categories were intended to be significantly larger than a component, but 

somewhat smaller than a typical package (see Figure 2-11, section 2.2.19), virtually always sporting exactly one class 

per header (see section 3.1.1); see martin95, “High-Level Closure Using Categories,” pp. 226–231.
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of a class, the header file declaring that class, and the UOR implementing that class might all 

have unrelated names, as illustrated Figure 2-17. Clients reading BondPrice will not be able to 

predict, from usage alone, which header file defines it, nor which library implements it; hence, 

global search tools would be required during all subsequent maintenance of client code.

bts

cost.h cost.cpp

BondPrice
#include <cost.h> 

Figure 2-17: Noncohesive logical and physical naming (BAD IDEA)

By the same token, other components packaged together to implement this logical subsys-

tem might well have names that are unrelated to each other, obscuring the cohesive physical 

modularity of this subsystem. Although not strictly necessary, experience shows that human 

cognition is facilitated by explicit “visual” associations within the source code. This nomi-

nal cohesion, in turn, reinforces the more critical requirement of logical/physical coherence 

(section 2.3). Hence, logical and physical name cohesion across related architecturally signifi-

cant entities is an explicit design goal of our packaging methodology.

Design Rule

Component fi les (.h /.cpp) must have the same root name as that of the compo-
nent itself (i.e., they diff er only in suffi  x).
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By their nature, components implemented as .h /.cpp pairs naturally already exhibit some 

degree of physical name cohesion. Note that as recently as the writing of my first book (1996), 

however, such was not the case. Due to unreasonable restrictions on the length of names that 

could be accommodated to distinguish .o files contained in library archive (.a) files of the day, 

.o files often had to be shortened; hence, an external cross-reference needed to be maintained 

in order to reestablish the cohesive nature of components.22 

 

COROLLARY: Every library component filename must be unique throughout the 
enterprise.

Recall from section 2.2.23 that every globally visible physical entity must itself be uniquely 

named. Since library component headers are at least potentially (see section 3.9.7) clearly vis-

ible from outside their respective units of release, and their corresponding .cpp file(s) derive 

from the same root name and yet are distinct among themselves, they too must be globally 

unique. Note that, unlike library components, the names of components residing in applica-

tion packages (see section 2.13) do not have to be distinct from those in other application 

packages so long as their logical and physical names do not conflict with those in our library 

as, in our methodology, no two such application packages would ever be present in the same 

program.

Design Rule

Every component must reside within a package.

Components, which are intended to address a highly focused purpose and are tailored to bolster 

hierarchical reuse (section 0.4), are invariably too fine grained to be practical to be released 

individually (section 2.2.20). Hence, in our methodology, each component is necessarily nested 

within a higher-level, architecturally significant aggregate, which (by definition) is a package. 

Although the benefits of physical uniformity — enhanced understandability and facilitation of 

automation tools — as outlined in section 0.7 alone are compelling, mindless adherence to this 

22 lakos96, Appendix C, pp. 779–813 and, in particular, Appendix C.1, pp. 180–193
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rule, however, will fall far short of the potential benefit it seeks to motivate. The intent here is 

not just to provide a uniform and balanced physical representation of software, but also to craft 

a hierarchical repository where the contained elements, from a logical as well as a physical 

perspective, are cohesive and synergistic (see section 2.8.3). Moreover, we want to ensure that 

each library component we write has a natural and obvious place in the physical hierarchy of 

our firm-wide repository (see sections 3.1.4 and 3.12).

Design Rule

The (all-lowercase) name of each component must begin with the (all-lowercase) 
name of the package to which it belongs, followed by an underscore (_).

A first step toward ensuring overt visible cohesion between architecturally significant names 

is making sure that the component name reflects the name of the package in which it resides, 

as shown in Figure 2-18. Just by looking at the name of the bts_cost component, we know 

that there exist two component files named bts_cost.h and bts_cost.cpp, which reside in 

the bts package.23,24

23 In our methodology, packages (see section 2.8) are either aggregated into a group (see section 2.9) or else 

released as standalone packages, with these two categories each having its own distinct (nonoverlapping) naming 

conventions (see section 2.10). Packages that belong to a group have names that are four to six characters in length 

with the first three corresponding to the name of the package group, which serves as the unit of release (UOR). 

Typical standalone packages have names that are seven or more characters in order to ensure that they remain 

disjoint from those of all grouped packages. In rare cases, particularly for very widely used (or standard) libraries, 

we may choose to create a package-group sized package having just a single three-character prefix, such as bts 

(or std). Although having a single ultra-short namespace name across a very large number of components can 

sometimes enhance productivity across a broad client base, such libraries typically demand significantly more skill 

and effort to develop and maintain than their less coarsely named package-group-based counterparts. The use of 

(architecturally insignificant) subpackages to support such nominally monolithic libraries is discussed in 

section 2.11.

24 This nomenclature stems from way back before standardization, and we had to use logical package prefixes 

to implement logical namespaces — e.g., bget_Point instead of bget::Point. Even with the advent of the 

namespace construct in the C++98 Standard, we continue to exploit this approach to naming of physical 

entities and, occasionally, even logical ones — e.g., in procedural interfaces (see section 3.11.7).



Section 2.4 Logical and Physical Name Cohesion 305

bts

bts_cost.h bts_cost.cpp

#include <bts_cost.h>
BondPrice

Figure 2-18: Component names always reflect their enclosing package.

Our preference that the names of physical entities (e.g., files, packages, and libraries) not 

contain any uppercase letters (section 1.7.1) begins with the observation that some popular 

file systems — Microsoft’s NTFS, in particular — do not distinguish between uppercase and 

lowercase.25 Theoretically, it is sufficient that the lowercased rendering of all filenames be 

unique. Practically, however, having any unnecessary extra degree of freedom in our physical 

packaging, thereby complicating development/deployment tools, let alone human comprehen-

sion, makes the use of mixed-case filenames for C++ source code suboptimal.26

Separately, and perhaps most importantly, we find that having class names, which we consis-

tently render in mixed case (section 1.7.1) — being distinct from physical names, which we 

render in all lowercase — is notationally convenient and also visually reinforces the distinction 

25 With the intent of improving readability (and/or nominal cohesion), it is frequently suggested that we change to 

allow uppercase letters in component filenames and require them to match exactly the principal class or common 

prefix of contained classes (see section 2.6), instead of the lowercased name as is currently required. We recognize 

that the readability of multiword filenames can suffer (ironically providing a welcome incentive to keep component 

base names appropriately concise).

26 Insisting that our component filenames be rendered in all_lowercase also effectively precludes “overloading” on 

case for logical names, e.g., having both DateTimeMap and DatetimeMap in separate components — which, from a 

readability standpoint, is something we would probably want to avoid anyway. Imagine trying to communicate such 

a distinction over a customer-service telephone hotline!
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between these two distinct dimensions of design, e.g., in component/class diagrams such as the 

one shown above (Figure 2-18). The utility afforded by this visual distinction within source 

code and external documents, such as this book, should not be underestimated.

Although the namespace construct can and will be used effectively with respect to logical 
names, it cannot address the corresponding physical ones — i.e., component filenames. That 

is, even with namespaces, having a header file employing a simple name such as date.h is 

still problematic. We could, as many do, force clients to embed a partial (relative) path to the 

appropriate header file (e.g., #include <bts/date.h>) within their source code; however, 

ensuring enterprise-wide uniqueness in the filename itself (e.g., #include <bts_date.h>) 

provides superior flexibility with respect to deployment.27 In other words, by making all com-

ponent filenames themselves unique by design (irrespective of relative directory paths), we 

enable much more robustness and flexibility with respect to repackaging during deployment 

(see section 2.15.2).

Taking a software vendor’s perspective, an early explicit requirement of our packaging meth-

odology was the ability to select one component, or an arbitrary set of specific components, 

from a vast repository, extract (copies of) them along with just the components on which those 

components depended (directly or indirectly), and make these components available to custom-

ers as a library having a single (“flat”) include directory and a single archive. Had we allowed 

our development directory structure to adulterate our source files, we would be forced to rep-

licate a perhaps very large and sparsely populated directory structure on our clients’ systems. 

Similarly, nonunique.cpp filenames would make re-archiving .o files from multiple packages 

into a single library archive anything but straightforward.

This unnecessarily sparse directory structure would be exacerbated by a third level of physical 

aggregation. For example, the same header that resided within the package-level #include 

directory during development can co-exist (i.e., within a single group-level #include direc-

tory) alongside headers from other packages grouped together within the same UOR, which can 

be more convenient (and also more efficient28) for use by external clients. Having this superior 

flexibility in deployment — especially for library software — trumps any arguments based on 

aesthetics or “common practice.”

27 We assert (see section 2.10.2) that this approach is viable for even the largest of source-code repositories. For 

example, see potvin16.

28 lakos96, section 7.6.1 (pp. 514–520), and, in particular, Figures 7-21 and 7-22 (p. 519 and p. 520, respectively)
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There are other collateral benefits for ensuring globally unique filenames. Having the file-

name embody its unique package prefix also simplifies predicting include-guard names. As 

illustrated in Figure 1-40, in section 1.5.2, the guard name is simply the prefix INCLUDED_ 

followed by the root filename in uppercase (e.g., for file bts_bondprice.h the guard symbol 

is simply INCLUDED_BTS_BONDPRICE). Compilers often make use of the implementation 

filename as the basis for generating unique symbols within a program — e.g., for virtual tables 

or constructs in an unnamed namespace. Hard-coding the unique package prefix in the file-

name also means that its globally unique identity is preserved outside the directory structure 

in which it was created — e.g., in ~/tmp, as an email attachment, or on the printer tray. Con-

sistently repeating the filename as a comment on the very first line of each component file, as 

we do (see section 2.5), further reinforces its identity. Knowing the context of a file simply by 

looking at its name is a valuable property that one soon comes to expect and then depend on.

Design Rule

Each logical entity declared within a component must be nested within a 
namespace having the name of the package in which that entity resides.

Before the introduction of the namespace keyword into the C++ language (and currently 

for languages such as C that do not provide a logical namespace construct), the best solution 

available was to require that (where possible) the name of every logical entity declared at file 

scope begin with a (registered) prefix unique to the architecturally significant physically cohe-

sive aggregate immediately enclosing them, namely, a package.29 Attaching a logical package 

prefix to the name of every architecturally significant logical entity within a component, albeit 

aesthetically displeasing to many, was effective not only at avoiding name collisions, but also 

at achieving nominal cohesion, thereby reinforcing logical/physical coherence. A reimple-

mentation of the physical module of Figure 2-17 (above) using logical package prefixes (now 

deprecated) is shown for reference only in Figure 2-19.

29 lakos96, section 7.6.1, pp. 514–520, and in particular Figure 7-21, p. 519
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bts

bts_cost.h bts_cost.cpp

#include <bts_cost.h>
bts_BondPrice

Logical 
package prefix
(deprecated)

Figure 2-19: (Classical) logical package prefixes (deprecated)

Now that the namespace construct has long since been supported by all relevant C++ compil-

ers, there has been an inculcation toward having concise, unadulterated logical names. Hence, 

we now (since c. 2005) nest each logical entity within a namespace having the same name as 

the package containing the component that defines the construct, as shown in Figure 2-20. 

Our use of logical package namespaces is isomorphic to our original use of logical package 

prefixes, and therefore consistent with our continued use of physical package prefixes for com-

ponent filenames to preserve logical and physical name cohesion.
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bts

MyLongCompanyName::

bts::30

bts_cost.h bts_cost.cpp

#include <bts_cost.h>
bts::BondPrice

Enterprise-wide namespace

Package namespace

Figure 2-20: (Modern) logical package and enterprise namespaces30

2.4.7 Proprietary Software Requires an Enterprise Namespace

Notice how Figure 2-20, section 2.4.6, anticipates that we now also recommend an overarching 

enterprise-wide namespace as a way of enabling us to disambiguate (albeit extremely rare in 

practice) collisions with other software that might follow our (or a similar) naming methodology.

Design Rule

Each package namespace must be nested within a unique enterprise-wide namespace.

By shielding all of our proprietary code (other than application main functions, see section 2.13) 

behind a single enterprise-wide name, e.g., our full company name (as illustrated in 

30 Note that when namespaces are not appropriate (e.g., functions having extern "C" linkage), we revert back to the 

use of logical package prefixes (see section 3.11.7).
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Figure 2-20, section 2.4.6), we all but eliminate any chance of accidental external collision. 

And, since all of our components reside within the same enterprise namespace, there is no need 

or temptation to employ using declarations or directives.31 In the very unlikely event that a 

collision with external software occurs — even in the presence of using directives — all that 

is required to disambiguate the collision is to prepend (1) the firm-wide symbol, (2) the third-

party product’s symbol, or (3) :: if the third-party code failed to take this precaution.

Having, instead, each individual package represented by a namespace at the highest level would 

lead, at least conceptually, to myriad short global symbols, combinatorially increasing the 

probability of collision with vendors adopting a similar strategy (see the birthday problem in 

Volume III, section 8.3).32 In any event, having a single (somehow unique) enterprise-wide 

“umbrella” namespace for our own code serves to mitigate risk and is therefore desirable.

The next step in achieving logical and physical name cohesion is to formalize how logical enti-

ties defined within a component are named so that their use alone identifies the component in 

which they are defined. To simplify the description, we provide the following definition of a 

component’s base name.

 

DEFINITION: The base name of a component is the root name of the component’s 
header file, excluding its package prefix and subsequent underscore.

 

For example, the base name of the component illustrated in Figure 2-20, section 2.4.6, is cost. 

This name, however, fails to achieve nominal cohesion with the class BondPrice, which it 

defines.

31 Note that for large code bases that make significant use of templates, having a long enterprise namespace name can 

prove prohibitive with respect to the size of the debug symbols that the compiler generates, which may force us to 

go for a much shorter name — e.g., our stock ticker.

32 Decentralized registration of packages via package groups (see section 2.9.4) is effective at managing naming 

conflicts within a single organization. We can, however, easily envisage a world in which source code from 

multiple enterprises having distinct naming regimes (consistent with our methodology) needs to co-exist within a 

single code base. Under those circumstances, there might be affirmative value in preventing accidental header-file 

collisions by proactively adding a very short (e.g., exactly two-character) mutually unique physical prefix (e.g., 

“bb_”) to each organization’s component names corresponding to (but not necessarily the same as) their respective 

unique  enterprise-wide (logical) namespace names (see sections 2.4.6, 2.4.7, and 2.10.2).
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2.4.8 Logical Constructs Should Be Nominally Anchored to Their Component

 

DEFINITION: An aspect function is a named (member or free) function of a given 
signature having ubiquitously uniform semantics (e.g., begin or swap) and, if 
free, behaves much like an operator — e.g., with respect to argument-dependent 
lookup (ADL).

 

Design Rule

The name of every logical construct declared at package-namespace scope — 
other than free operator and aspect functions (such as operator== and swap) 
— must have, as a prefi x, the base name of the component that implements it; 
macro names (ALL_UPPERCASE), which are not scoped (lexically) by the package 
namespace, must incorporate, as a prefi x, the entire uppercased name of the com-
ponent (including the package prefi x).

 

COROLLARY: The fully qualified name (or signature, if a function or operator) of 
each logical entity declared within an architecturally significant component header 
file must be unique throughout the enterprise.

Naming a component after its principal class or struct (but in all lowercase), as shown in 

Figure 2-21, usually resolves most potential ambiguity. For example, we would expect that class 

bts::PackedCalendar would be defined in a component called bts_packedcalendar 

(or conceivably, bts_packed, if the component defined other intimately related “packed” 

types). Note that in our methodology, however, we tend to have a single (principal) class per 

component unless there is one of four specific countervailing reasons to do otherwise (see 

section 3.3.1). Whenever there is more than one class defined at package-namespace scope 

within a single component, each such class name will incorporate that component’s base name 

(albeit in “UpperCamelCase”) as a prefix.33

33 Note that this rule may not apply when the external (“client-facing”) component headers are already specified 

otherwise — e.g., standardized interfaces or established legacy libraries.
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bts

bts_bondprice.h bts_bondprice.cpp

#include <bts_bondprice.h>
BondPrice

bts::

Figure 2-21: Nominally cohesive class and component (GOOD IDEA)

Where appropriate, we routinely define outwardly accessible (“public”) auxiliary classes, such 

as iterators, in the same component either by appending to the name of the primary class (e.g., 

bdlt::PackedCalendarHolidayIterator), or else by nesting the auxiliary class within 

the principal class itself (e.g., PackedCalendar::HolidayIterator).34 Note, however, that 

some detective work might be unavoidable when operators, inheritance, or user-defined conver-

sion are involved. The rules surrounding the placement of free operators within components 

are discussed below.

2.4.9 Only Classes, structs, and Free Operators at Package-Namespace Scope

Design Rule

Only classes, structs, and free operator functions (and operator-like aspect 
functions, e.g., swap) are permitted to be declared at package-namespace scope in 
a component’s .h fi le.

34 In practice, the nested iterator type, PackedCalendar::HolidayIterator, would likely be a typedef to the 

non-nested auxiliary iterator class, bts::PackedCalendarHolidayIterator, which grants the container private 

(friend) access (e.g., see section 3.12.5.1). The mandatory colocation of two classes where one grants private 

access to another is discussed in section 2.6.
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To minimize clutter, we have consistently avoided declaring individual functions as well as 

enumerations, variables, constants, etc., at namespace scope in component header files, prefer-

ring instead always to nest these logical constructs within the scope of an appropriate class 

or struct.35 In so doing, we anchor these less substantial constructs within a larger, architec-

turally significant logical entity that, unlike a namespace (section 1.3.18), is necessarily fully 

contained within a single component (section 0.7). We understand that this rule, like the previ-

ous one, might not be applicable when there are valid countervailing business reasons such as 

an externally specified (“client-facing”) interface.36

Having modifiable global variables at namespace scope is simply a bad idea. Nesting such 

variables within a class as static data members and providing only functional access is also 

generally a bad idea, but at least addresses the issue of nominal cohesion. On the other hand, 

nesting compile-time-initialized constants along with typedef declarations37 within the scope 

of a class or struct is perfectly fine. Requiring that enumerations be nested within a class, 

struct, or function ensures that all of the enumerators are scoped locally and cannot collide 

with those in other components within the same package namespace.38

35 lakos96, section 2.3.5, p. 77–79, in particular p. 77

36 Sometimes it might be useful to know that the name of a class is itself unique throughout the enterprise. For 

example, if for some reason we were to implement streaming (a.k.a. externalization or serialization) of polymorphic 

objects outside of our process space (see Volume II, section 4.1), it would be important that we identify uniquely 

the concrete class that we are streaming. One common and effective approach is to prepend the stream data with the 

character string name of the concrete class whose value we are transmitting. As with the include guard symbols for 

files (section 1.5.2), this process is reduced to rote mechanics, provided we are assured that the name of every 

potentially streamable concrete class in our organization is guaranteed to be unique. Logical package prefixes (now 

predicated) addressed this issue directly, but we can still achieve the same effect by streaming the (ultra-concise) 

package name (section 2.10.1)  followed by that of the class, along with a (single-character) delimiter (of course).

37 typedef declarations, although often useful (e.g., to specify an aspect, as in SomeContainer::iterator), 

obscure the underlying types in code and, consequently, can easily detract from readability. In particular, one would 

not typically use a typedef to alias a fundamental type to one more specific to its application — e.g.,

typedef int NumElements;

would be a BAD IDEA. Separately, there would ideally be a single C++ type to represent each truly distinct platonic 

type used widely across interface boundaries (see Volume II, section 4.4).

38 C++11 provides what is known as an enum class, which addresses the issue of scoping the enumerators, as well 

as providing for stronger type safety. Note that all enumerations in C++11 allow their underlying integral type to 

be specified and, unlike C++03, thereby form what is known as a complete type, enabling them to be declared and 

used locally (i.e., without also specifying the enumerators). The ability to elide enumerators can constitute what is 

sometimes referred to in tort law as an “attractive nuisance” in that, unless the elided enumeration is supplied by a 

library in a header separate from the one containing its complete definition, a client wishing to insulate itself from 

the enumerators would be forced to declare the enumeration locally in violation of Component Property 3 

(section 1.6.3).
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The justification for avoiding free functions, except operator and operator-like “aspect” func-

tions, which might benefit from argument-dependent lookup (ADL), derives from our desire 

to encapsulate an appropriate amount of logically and physically coherent functionality within 

a nominally cohesive component. While classes are substantial architectural entities that are 

easily identifiable from their names, individual functions are generally too small and specific 

for each to be made nominally cohesive with the single component that defines them, as in 

Figure 2-22a.39

Creating components that hold multiple functions in which there is no nominal cohesion 

(Figure 2-22b) makes human reasoning about such physical nodes much more difficult and is 

therefore also a bad idea. Forcing the name of each function to have, as a prefix, the initial-

lowercased rendering of the base name of the component (Figure 2-22c) achieves nominal 

cohesion, but is awkward at best, and fails to emphasize logical coherence (section 2.3). 

We could employ a third level of namespace (Figure 2-22d), but for reasons discussed below 

(Figure 2-23) and also near the end of section 2.5, we feel that would be suboptimal.

(a) Nominally cohesive function at package-namespace scope (BAD IDEA)

// xyza_roundtowardzero.h

namespace xyza {

double roundTowardZero(double value);

}  // close package namespace

// xyza_mathutil.h

namespace xyza {

double roundTowardZero(double value);

double factorial(double value);

}  // close package namespace

(b) Nominally noncohesive functions at package-namespace scope (BAD IDEA)

39 Given that we virtually always open and close a package namespace exactly once within a component (see 

section 2.5), we choose not to indent its contents, thereby increasing usable real estate given a practical maximum 

line length (e.g., 79) suitable for efficient reading, printing, side-by-side comparison, etc. (see Volume II, 

section 6.15).
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// xyza_mathutil.h

namespace xyza {

double mathUtilRoundTowardZero(double value);

double mathUtilFactorial(double value);

}  // close package namespace

(c) Nominally cohesive functions at package-namespace scope (AWKWARD)

// xyza_mathutil.h

namespace xyza {

namespace MathUtil {

    double roundTowardZero(double value);

    double factorial(double value);

}  // close local namespace

}  // close package namespace

(d) Nominally cohesive namespace containing functions (NOT OPTIMAL)

// xyza_mathutil.h

namespace xyza {

struct MathUtil {

    static double roundTowardZero(double value);

    static double factorial(double value);

};

}  // close package namespace

(e) Nominally cohesive utility struct containing functions (WHAT WE DO)

Figure 2-22: Ensuring nominal cohesion for free functions and components

We therefore generally avoid declaring free (nonoperator) functions at package-namespace 

scope, and instead achieve both nominal logical and physical cohesion by grouping related 

functionality within an extra level of namespace matching the component name using static 

methods within a struct (Figure 2-22e), which we will consistently refer to as a utility 
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(see section 3.2.7) and so indicate with a Util suffix (e.g., xyza::MathUtil).40  Additional, 

 collateral advantages for preferring a struct (e.g., Figure 2-22e) over a third level of 

namespace (e.g.,  Figure 2-22d) for implementing a utility are summarized in Figure 2-23.414243

There are many advantages of using a struct (e.g., Figure 2-22e) over a third level of namespace (e.g., 
Figure 2-22d) for aggregating related (what would otherwise be free) functions into a single utility component.

(1) The distinct syntax and atomic nature of a struct having static methods makes its purpose as a 
      component-scoped entity clearer than would yet another, nested namespace, leaving namespaces for routine 
      use at the package and enterprise levels exclusively.

(2) The self-declaring nature of functions and data defined at namespace scope (section 1.3.1) are necessarily 
      eliminated when they are instead nested (as static members) within a struct.

(3) Unlike a namespace, a struct does not permit using directives (or declarations) to import function names
      into the current (e.g., package) namespace, thereby preventing any consequent loss in readability.42

(4) Unlike a namespace, a struct can support private nested data — e.g., as an optimization for accessing
     insulated (external bindage) table-based implementation details, residing in the .cpp file, by one or more inline
     functions, residing in the .h file (see Volume II, section 6.7).

(5) Unlike a namespace, a struct can be passed as a template parameter — e.g., as a cartridge of related
      functions satisfying a concept (e.g., see Figure 3-29, section 3.3.7).

(6) Unlike a namespace, a C-style function in a struct does not participate in Argument-Dependent Lookup
      (ADL), thereby avoiding potentially large overload sets, which could needlessly affect compile-time 
      performance and possibly introduce unanticipated (perhaps even latent) ambiguity, or — much worse — 
      invoke the wrong function.43 By placing our “free” functions in a struct, we make our design decision not to 
      employ ADL explicit.

(7) Except for a few very stylized cases, such as std::placeholders (e.g., _1, _2, _3) and std::literals, 
     use of namespace declarations are generally ill-advised.  Should we subsequently discover a rare valid 
     engineering reason for enabling local using declarations, we can easily migrate a struct to a namespace 
     by creating a new component-private struct (see section 2.9.1), e.g., MathUtil_Imp, and forwarding calls 
     to it from the new nested (e.g., MathUtil) namespace. Note that, except when used as in (5), it is always 
     possible to migrate from a struct to a namespace without forcing any clients to rework their source code, 
     but, given the possibility of using directives/declarations, not vice versa (see Volume II, section 5.5).

Figure 2-23: Prefer struct to namespace for aggregating “free” functions.

40 Note that it is not possible to have partial specializations for static method templates in a struct the way you can 

for free-function templates.

41 Because only free (i.e., non-member) functions participate in ADL, extending the C++ language to accommodate 

new features, e.g., redeclaration (voutilainen19), for such functions (as opposed to static members of a struct) is 

considered by some to be substantially more technically difficult to implement in relevant C++ compilers. For more on 

why such extensions might be practicably useful in future incarnations of the C++ language, see Volume II, section 6.8.

42 Although using declarations can be used to import declarations of overloaded functions of a given name from a 

private (or protected) base class into a public one, we generally discourage such use, as it would require a public 

client to view otherwise private (or protected) detail; instead, we prefer to create (and document) an inline 

forwarding function. Note that a similar issue arises with forwarding constructors as of C++11.

43 Titus Winters of Google has recently (c. 2018) expressed increasing concerns as to the scalability and stability of 

such overload sets (winters18a, “ADL”); see also winters18b, particularly starting at the 11:30 time marker.
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Design Rule

A component header is permitted to contain the declaration of a free (i.e., non-
member) operator or aspect function (at package-namespace scope) only when one 
or more of its parameters incorporates a type defi ned in the same component.

In our methodology, operators, whether member or free, are by their nature fundamental to the 

type(s) on which they operate. Every unary and homogeneous binary operator — i.e., one writ-

ten in terms of a single user-defined type, e.g.,

bool operator==(const BondPrice& lhs, const BondPrice& rhs);

is declared and defined within the same component (e.g., bts_bondprice) as the type (e.g., 

bts::BondPrice) on which it operates. Note that, except for forms of assignment 

(e.g., =, +=, *=), we will always choose to make a binary operator free (as opposed to a mem-

ber) to ensure symmetry with respect to user-defined conversions (see Volume II, section 6.13). 

For conventionally heterogeneous operators such as

std::ostream& operator<<(std::ostream&    stream,

                         const BondPrice& price);

the motivation to make them free is born of extensibility without modification, as in the open-closed 

principle (section 0.5). In any event, the place to look for the definition of an operator (entirely 

consistent with ADL) is within a component that defines a type on which that operator operates.

If we were to allow free operators to be defined in arbitrary components, how could we even 

know if they exist? If we saw one being used, how would we track down its definition? 

Even more insidious is the possibility that a client unwittingly duplicates such a definition 

locally. The resulting latent incompatibilities, manifested by future multiply-defined-symbol 

linker errors, would threaten to destabilize our development process.

As an important, relevant example, consider the standard template container class, std::vector, 

for which no standard output operator is defined. Referring to Figure 2-24, suppose that 

the author of component my_stuff finds outputting a vector to be generally useful, and so 

“thoughtfully” provides

template <class TYPE>

std::ostream& operator<<(std::ostream&            lhs,

                         const std::vector<TYPE>& rhs);
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(along with an appropriate definition) in its header for general use by clients. It is not hard to 

imagine that component your_stuff might do so as well. Now consider what happens when 

their_stuff.cpp includes both my_stuff.h and your_stuff.h. The inevitable result is 

multiply defined symbols!44

their::Stuff

their_stuff

std::vector

your::Stuff

your_stuff.h

template<class TYPE>
std::ostream&
operator<<(
  std::ostream& lhs, const 
   std::vector<TYPE>& rhs);

my::Stuff

my_stuff.h

template<class TYPE>
std::ostream&
operator<<(
  std::ostream& lhs, const 
   std::vector<TYPE>& rhs);

Multiply defined
symbols!

Figure 2-24: Problems with defining operators in unexpected components

Instead, the functionality should have been implemented as a static member function of a 

utility struct (see section 3.2.7) in a separate component, as illustrated in Figure 2-25.

44 Because the offending operator is a template, which has dual bindage (section 1.3.4), it is entirely possible that the 

duplicate definitions will go unnoticed by either the compiler or the linker for quite some time — that is, until the 

compiler can see the two template definitions side-by-side in a single translation unit.  Had the construct instead had 

external bindage, such as an ordinary function or an explicit instantiation, merely linking the two components into 

the same program would have been sufficient to expose the incompatibility.
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// xyza_printutil.h

// ...

namespace xyza {

// ...

struct PrintUtil {

    // ...

    template<class TYPE>
    static std::ostream& print(std::ostream&      stream,
                         const std::vector<TYPE>& object);

    // ...
};

// ...

}  // close package namespace

// ...

Figure 2-25: Avoiding free operators on nonlocal types

As illustrated in Figure 2-26, providing an output operator on a type my::Type — or con-

ceivably even on a std::vector<my::Type> — in component my_type is perfectly fine. 

The general design concept being illustrated here is to follow the teachings of the philosopher 

Immanuel Kant and avoid doing those things that, if also done by others, would adversely affect 

society (see section 3.9.1). By adhering to this simple rule for operators, we ensure that (1) we 

know where to look for each operator, and (2) operator definitions will not be duplicated (and 

therefore cannot conflict at higher levels in the physical hierarchy).
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// my_type.h
// ...

namespace my {

class Type {
    // ...
};

std::ostream& operator<<(std::ostream& stream, const Type& object);

std::ostream& operator<<(std::ostream&            stream,
                         const std::vector<Type>& object);

}  // close package namespace

// ...

Correct

Not wrong

Figure 2-26: Overloading free operators on types within the same component

If a single free operator refers to two types implemented in separate components, where one 

depends on the other, the operator would of course be defined in the higher-level component. 

If, however, the components are otherwise independent (as illustrated Figure 2-27a), we have 

two alternatives:

 1. [Suboptimal] Arbitrarily choose one of the components to be at a higher-level and place 

the free operator there, as in Figure 2-27b (thus introducing additional physical depen-

dency for one of the components).

 2. [Preferred] Create a utility class in a separate component, as in Figure 2-27c, and define 

one or more nonoperator functions nested within a struct that serves the same pur-

pose (see section 3.2.7). Note that it is never appropriate to escalate (see section 3.5.2) 

co-dependent free operators to a separate component.

Use of operators for anything but the most fundamental, obvious, and intuitive operations (see 

Volume II, section 6.11) are almost always a bad idea and should generally be avoided; any 

valid, practical need for operators across otherwise independent user-defined types is virtually 

nonexistent.45

45 We note that the C++ streaming operators and Boost.Spirit are (rare) arguably plausible counter-examples; still, we 

maintain that heterogeneous equality comparison operators across disparate user-defined value types (see Volume II, 

section 4.1), such as Square and Rectangle (Figure 2-27), remain invariably misguided for entirely different 

reasons (see Volume II, section 4.3).
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(a) Addressing placement of heterogeneous operators

bool operator==(const xyza::Square&    lhs, const xyza::Rectangle& rhs);
bool operator==(const xyza::Rectangle& lhs, const xyza::Square&    rhs);

xyza_square xyza_rectangle

xyza::Square

xyza::Square

xyza::Rectangle

xyza::Rectangle

bool operator==(const xyza::Square&    lhs, const xyza::Square&    rhs);
bool operator==(const xyza::Square&    lhs, const xyza::Rectangle& rhs);
bool operator==(const xyza::Rectangle& lhs, const xyza::Square&    rhs);

xyza_square

bool operator==(const xyza::Rectangle& lhs, const xyza::Rectangle& rhs);

xyza_rectangle
(b) By introducing additional dependencies [SUBOPTIMAL] 

namespace xyza {
// ...
struct SquareRectangleUtil {
    static bool areEqual(const Square&    square,
                         const Rectangle& rectangle);
    static bool areEqual(const Rectangle& rectangle,  // optional 
                         const Square&    square);
};
// ...
}  // close package namespace  

xyza_squarerectangleutil

(c) By escalating and replacing with static methods of a struct [PREFERRED] 
xyza_square xyza_rectangle

xyza::Square xyza::Rectangle

xyza::SquareRectangleUtil

Figure 2-27: Implementing “free operators” referring to multiple peer types
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2.4.10 Package Prefixes Are Not Just Style

Make no mistake, how packages are named is not just a matter of style; package names have 

profound architectural significance. As an example, consider Figure 2-28, which shows a 

hierarchy of components whose dependencies form a binary tree. Clearly these components 

are levelizable (section 1.10) and, hence, have no cycles. However, it is not in general possible 

to assign components of a multipackage subsystem to arbitrary packages without introducing 

package-level cycles. In this example, the packages containing these components (as implied 

by the package prefixes embedded in the component names) would be cyclic and therefore not 
levelizable.

Component Level 3:

Component Level 2:

Component Level 1:

subc_comp5

subim_comp1 subim_comp2

subc_comp4subc_comp3subc_comp2subc_comp1

Figure 2-28: Implied cyclic package dependencies (BAD IDEA)

The problem, identified by Figure 2-29, can easily arise in practice. Consider the design of 

a single package that is intended to contain everything that is directly usable by clients of a 

multipackage subsystem. If this presentation package (subc) defines both protocol (i.e., pure 

abstract interface) classes (which are inherently very low level) and wrapper components 

(which are inherently very high level), it will not be possible to interleave components from a 

separate implementation package (subim).46

46 For complex subsystems, the implementation components represented here as a single package subim may 

appropriately span many packages at several different levels; however, the basic idea remains the same.
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subc

subc

subc_comp1 subc_comp2 subc_comp3 subc_comp4

subim

subim_comp1 subim_comp2

subc_comp5

Figure 2-29: Acyclic component hierarchy; cyclic package hierarchy (BAD IDEA)

COROLLARY: Allowed (explicitly stated) dependencies among packages must be 
acyclic.

Allowing cyclic dependencies among packages, like any other aggregate, would make our soft-

ware qualitatively more complicated. Ultimately, all cyclically involved packages would have 

to be treated as a unit. A general solution to this common problem, illustrated in Figure 2-30, 

is simply to provide two separate client-facing packages. One package (subw) will reside at the 

top of the subsystem and contain components that define only wrappers47 (e.g., subw_comp1); 

the second will reside at the bottom of the package hierarchy and incorporate components 

47 A wrapper is a facade that allows clients to manipulate objects (typically of some other type) without providing 

direct programmatic access to those objects (see sections 3.1.10 and 3.11.6).
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(e.g., subv_comp1) that define protocol and other vocabulary types (see Volume II, section 4.4) 

exposed programmatically through the wrapper interface.48

subw

subv

subim

subv_comp1 subv_comp2 subv_comp3 subv_comp4

subw_comp1

subim_comp1 subim_comp2

Figure 2-30: Repackaging of components to avoid cyclic package dependencies

Components that are used in the interface of the wrapper components (subw), and also in name 

only by low-level protocols, typically reside either in the same package as the protocols (e.g., 

subv in Figure 2-30) or in a separate, lower-level package, as illustrated in Figure 2-31b, as 

opposed to at the same level (Figure 2-31a), in order to enable concrete test implementations 

of the protocols to properly reside along with them (e.g., in subp), yet allow such test imple-

mentations to depend on the actual concrete vocabulary types (e.g., in subt) rather than having 

to mock them.

48 See the escalating encapsulation levelization technique (section 3.5.10).
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(a) Parallel protocol and concrete vocabulary-type packages (BAD IDEA)

2

subt_comp2subt_comp1

1

subp_comp2subp_comp1

subw

subp subt

subim

Uses-In-Name-Only

1

subim_comp2subim_comp1

subw_comp1

3

subw_comp1
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subw_comp1subw_comp1

4

3

subim_comp2subim_comp1

(b) Subordinate local vocabulary-type  package (GOOD IDEA)

subw

subp

subt

Uses-In-Name-Only

Uses substantively

subim

2

1

subp_comp1 subp_comp2

subt_comp2subt_comp1

subp_testcomp1

Figure 2-31: Alternative packaging strategies

2.4.11 Package Prefixes Are How We Name Package Groups

Although packages, being architecturally significant aggregates, have unique names (and 

namespaces), it is often advantageous to bundle packages having similar purposes and/or simi-

lar envelopes of physical dependency into a larger, logically and physically coherent, nominally 

cohesive aggregate. We could make a big deal about this issue (and perhaps we should, given 

its importance). Instead we will avoid the drama and just make our point: The first three let-

ters of a package name identify the physically cohesive package group in which a grouped 

package resides.
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The reason for this simple approach is, well, simple (see section 2.10.1): We simply must 

have an ultra-efficient way to specify the package group and package of each component 

and class in order to obviate noisome and debilitating using directives and declarations (see 

section 2.4.12). The choice of three letters (as opposed to, say, two or four) is simply an engi-

neering trade-off. This simple, concise, and effective approach to naming package groups is 

illustrated in Figure 2-32. We will revisit our package-naming rules (in much greater depth) in 

section 2.10.

subt_comp2subt_comp1

subw

subp

subt

sub

subim_comp2subim_comp1

subw_comp1

subp_comp2subp_comp1

subp_testcomp1

subim

Figure 2-32: Logically and physically cohesive package group
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2.4.12 using Directives and Declarations Are Generally a BAD IDEA

Let us now take a closer look at our use of the C++ namespace construct to partition logi-

cal entities along package boundaries. One of the solid benefits of package namespaces is 

that access to other entities local to that package does not require explicit qualification. This 

advantage is particularly pronounced at the application level, where much of the code that 

interoperates is defined locally (see section 2.13). Absent using directives and declarations, 

an unqualified reference is as informative as a qualified one: An unqualified reference implies 

that the entity is local to this package.49

In the code example of Figure 2-33, we cannot simply look at the definition of the 

insertAfterLink helper function and know which Link class we are talking about without 

potentially having to scan back through the entire file for preceding occurrences of using.

49 There is still, however, one pragmatic reason to prefer the inflexibility of the hard-coded logical package pre-

fix that continues to give us pause even though we have fully embraced package namespaces in our day-to-day 

work. Unfortunately, any use of using directives and declarations render case-by-case explicit use of the package 

namespace “tag” for remotely defined types optional, at the expense of nominal cohesion. Occasionally, library 

developers will need to “search the universe” for all uses of some class or utility. When we consider the possible use 

of using directives and declarations, any hope of relying on a simple search and replace (e.g., in the event a compo-

nent “moves” from one package to another) is lost. Instead, we are forced to parse every line of source code. Even 

when we have such an elaborate tool (e.g., Clang), it, like the compiler itself, runs many orders of magnitude slower 

than a simple search engine looking for a fixed identifier string. We saw this same kind of speed issue with respect to 

determining the envelope of direct physical dependencies by scanning for just the #include directives nested within 

a component (section 1.11). Hence, use of the namespace construct, at least in this particular respect, is not as scal-

able as the classical, albeit archaic (and now deprecated), logical package prefix.
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// my_link.cpp
#include <my_link.h>

// ...

#include <your_list.h>  // defines class 'Link'

// ...

namespace Foo {
    class Link { /*...*/ };  // another definition of 'Link' 
}

// ...
// ...
// ... 
// ... 
// ...

inline 
static void insertAfterLink(Link *node, Link *newNode)
{
    BSLS_ASSERT(node);
    BSLS_ASSERT(newNode);

    newNode->next = node->next;
    newNode->prev = node;
    node->next = newNode;
    
    if (newNode->next) {
        newNode->next->prev = newNode;
    }
}

// ...

(See Volume II, section 6.8.)

Cannot determine which Link is 
being used without looking at

prior using directives

Figure 2-33: Nonlocal namespace names are optional! (BAD IDEA)

What’s worse, it might be that using directives or declarations are not even local to the imple-

mentation file, but are instead imported quietly in one or more of many included header files 

as illustrated in Figure 2-34. And, unlike the C++ Standard Library (or std in code), which is 

comparatively small, unchanging, and well known, we cannot be expected to know every class 

within every component of every package throughout our enterprise. Still worse, nesting a vari-

ety of using directives and declarations within header files risks making relevant the relative 

order in which these headers are incorporated into a translation unit!50

50 sutter05, item 59, pp. 108–110
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// my_app.cpp
#include <my_app.h>
#include <cdel_log.h>
#include <ddet_swap.h>
#include <ddet_table.h>
#include <ddeu_isma30360.h>
#include <dteal_technology.h>
#include <emeg_protocol.h>
#include <emem_list.h>
#include <etef_fizzbin.h>
#include <etet_trade.h>
#include <eteu_semiannual.h>
#include <fmeec_transport.h>
#include <fteem_balloon.h>
#include <ftet_account.h>
#include <ftet_position.h>
#include <ftex_prepayment.h>
// ...
// ...
// ...
#include <pcst_client.h>
#include <otem_config.h>
#include <tdep_render.h>
#include <ynot_evenmore.h>

// ...
// ...
// ... 
// ... 
// ...
// ...
// ...

static void communicate(Relay *relay)
{
    static Callback myCallback;

    if (relay->isOperational()) {
        relay->setForwardCallback(&myCallback):
    }
    else {
        Log::singleton().write("Life is like a box of chocolates..."); 
    }

    // ...
}

// ...

Cannot determine which Relay is being used even after looking at every 
statement in this file — using directives/declarations or otherwise!

Figure 2-34: using directives/declarations can be included! (BAD IDEA)
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Design Rule

Neither using directives nor using declarations are permitted to appear outside 
function scope within a component.

No matter what, we must forbid any using directives or declarations in header files outside 

of function scope.51,52,53,54 Perhaps some advocates of using in headers might not yet have 

realized that the incorporation of names from one namespace, A, into another, B, does not 

end with the closing brace of B into which names from A were imported, but remain in B 

until the end of the translation unit. Consequently, using directives or declarations are some-

times used (we should say horribly misused) in header files when declaring class member 

data and function prototypes to shorten the names of types declared in distant namespaces 

51 And, in library code, using is generally best avoided altogether. If used there at all, a using declaration (not 

directive) — whether employed to enable ADL (e.g., for a free aspect function, such as swap), or merely as a 

compact alias (e.g., as an entry into a dispatch table) — should appear only within a very limited lexical context, i.e., 

function (or block) scope.

52 In C++98, using declarations replaced access declarations (which were deprecated intermediately and, in C++11, 

finally removed) for the purpose of promoting all overloads of a given (named) member function from a base class 

into the current scope while potentially increasing its level of access, e.g., from private to public. As we will discuss 

shortly, we avoid any use of class-scope using declarations, especially those that might force public clients to refer 

to less-than-public regions of a class’s implementation.

53 C++11 introduced other contexts in which the using keyword is valid (e.g., as an alias declaration used to replace 

typedef) having nothing to do with either using declarations or using directives.

54 Alisdair Meredith notes (via personal email, 2018) that, when a base class is a template, the set of overloads to 

forward is an open set. Accidental breakage can occur when a design requires that each of the overloads be exposed 

manually. When the intent is to perfectly forward an overload set from a base class, a using declaration is a clear 

statement of that design intent.

Nonetheless, our recommended approach is to avoid such uses of (typically structural) inheritance (see Volume II, 

section 4.6), preferring the more compositional Has-A (section 1.7.4) approach to layering (see section 3.7.2) 

instead.

That said, exceptional cases do exist. Alisdair Meredith further points out (again, via personal email, 2018) that we 

ourselves have, on occasion, been known to introduce a base class having fewer template parameters, and then use 

structural inheritance and using declarations to expose that functionality as the public interface. If we were now to 

replace using declarations with, say, inline forwarding functions, we would negate the intended effect of reducing 

template-induced code bloat (see Volume II, section 4.5).
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(BAD IDEA).55 Instead, we must use the package-qualified name of each logical entity not 

local to the enclosing package. For this reason, we will want to ensure that widely used 

(“package”) namespace names, like std, are very short indeed.

The use of using declarations for function forwarding during private (never mind protected) 

inheritance is also to be avoided because (1) our ability to document and understand such 

functionality in the derived header itself is compromised, and (2) inheritance necessarily 

implies compile-time coupling (section 1.9; see also section 3.10). We generally prefer to avoid 

private inheritance, in favor of layering (a.k.a. composition), and explicit (inline) function 

forwarding.

Finally, using namespaces to define a logical “location” independent of its physical location, 

say, to avoid changing #include directives (should some class be logically “repackaged”) 

is — in our view — misguided. If we change the logical location of a class then — in our 

methodology — that class must be moved to its proper physical location as well. Unless logical 

and physical locations coincide, many of the advantages of sound physical design — e.g., 

reduced compile time, link time, and executable size (not to mention organization and under-

standability) — are compromised.

Adhering to these cohesive naming rules does, however, impose some extra burden on library 

developers. That is, if a logical construct were to “move” from one architectural location to 

another, its address (i.e., its component name), and therefore some aspect of its fully qualified 

logical name, must necessarily change as well. This “deficiency” is actually a feature in that it 

allows for a reasonable deprecation strategy: During refactoring, it is possible for two versions 

55 Local typedefs have historically been effective at addressing long names in data definitions and function 

prototypes due to specific template instantiations:

class Book {
    // ...
    typedef std::map<std::string, std::string>       StrStrMap;
    typedef std::map<std::string, std::vector<int> > StrIntarrayMap;
    // ...
    StrStrMap      d_glossary;
    StrIntarrayMap d_index;
    // ...
};

We recognize that C++11 offers using as a syntactic alternative, and that thoughtful (discriminating) use of auto 

can also help eliminate redundant (or otherwise superfluous) explicit type information in source code. See lakos21. 
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of the same logical entity to co-exist for a period of time as clients rework their code to refer to 

the new component before the original one is finally removed.56

2.4.13 Section Summary 

In summary, our rigorous approach to cohesive naming — packages, components, classes, and 

free (operator) functions — not only avoids collisions, it also provides valuable visual cues 

within the source code that serve to identify the physical location of all architecturally signifi-

cant entities. Experience shows that human cognition is facilitated by such visual associations. 

In turn, this nominal cohesion reinforces the even more critical requirement of logical/physical 

coherence (section 2.3). Hence, logical and physical name cohesion across related architectur-

ally significant entities is an integral part of our component-based packaging methodology.
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procedural interfaces, 828–829

public, 359–362

relationships and, 234

Link, 671

List, 671–673

local declarations, 507, 594, 794

MailObserver, 663
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minimization of test-driver dependencies 

on external environment, 454–456

need for, 439–441, 940

overview of, 437

summary of, 458–459, 491–492

uniform test-driver invocation interface, 

456–458, 941

“user experience”, 458, 941
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day-count functions in, 567

hidden header files for logical encapsulation, 

763–764

hierarchical reuse of, 886–887

inappropriate physical dependencies, 742



952  Index

nonprimitive functionality in, 709–714

physical dependencies, 740–744

well-factored Date class that degrades over 

time, 705–714

date math, 877–878

date utilities, 881–885

date/calendar subsystem

CacheCalendarFactory interface, 867–871

Calendar class, 895–899

calendar library, application-level use of, 

862–872

CalendarCache class, 861–867

CalendarFactory interface, 867–871

CalendarLoader interface, 862–867

CurrentTimeUtil struct, 849–853

date and calendar utilities, 881–885
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summary of, 772–773, 919

physical location, identifying, 501

physical name cohesion. See logical/physical 

name cohesion

physical substitutability, 441

physical uniformity

developer mobility and, 47, 119. See also 

components

importance of, 46–47

summary of, 118–119

physical view, components, 53–55

physically monolithic platform adapter, 717–722

PIMPL (Pointer-to-IMPLementation), 807

PIs. See procedural interfaces

platforms, coupling with, 741–742

Player interface, 658–660

plug-ins, 47

plus sign (+), 431–432

PMR (Polymorphic Memory Resource), 222, 

785

Point class, 169–170, 816–824

point of use, identifying location from, 301–309

pointers, opaque. See opaque pointers

Pointer-to-IMPLementation (PIMPL), 807

PointList class, 239–241

policies

inappropriate physical dependencies, 742

interface, 654

policy metadata, 476–478, 493

policy-based design, 654, 744

Polygon example

“are-rotationally-similar” functionality, 541

flexibility of implementation, 535–537

implementation alternatives, 534–535

interface, 545–552

invariants imposed, 531

iterator support for generic algorithms, 

539–540

nonprimitive functionality, 536–537, 541

open-closed principle, 35

performance requirements, 532–533

Perimeter and Area calculations, 537–539

primitive functionality, 533–534, 540

topologicalNumber function, 545

use cases, 531–532

values, 530

vocabulary types, 530–531

Polymorphic Memory Resource (PMR), 222, 

785
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polymorphic object serialization, 146

polymorphism, runtime, 415–417, 574

Pool class, 778–783

inline methods, 781–783

partial insulation, 782

replenishment strategy, 784–789

population count, 898

portability, enabling, 766–769

position, absolute, 500

positions, brokerage accounts, 594

POSIX-standard proleptic Gregorian calendar, 

886

postfix operators, 847

pqrs_bar.h file, 355–359

prefixes

package, 502–504

application packages, 436

architectural significance of, 322–326

my_ prefix, 201

nomenclature, 304

value of, 399–401

package groups, 304, 326–327

procedural interfaces, 823

purpose of, 829

z_, 815, 819–823

preprocessing phase, 129

pricing engines, 758–759

PricingModel class, 758–759

PrimitiveDateUtil utility, 894

primitiveness

closure and, 528

defined, 911, 937

inherently primitive functionality

in higher-level utility structs, 529–530

overview of, 528–529

Polygon example, 530–553

reducing with iterators, 529, 942

manifestly primitive functionality, 528–529, 

942

in Polygon example, 533–534

quick reference, 941

private access

within single components, 511

within wrapper components, 512–513

private classes, 561–564

defined, 371

example of, 378–383

identifier-character underscore (_), 371–377

implementation of, 371

modules and, 371

summary of, 384, 486–487

private components, 769–772

private header (.h) files, 192, 279, 352

private inheritance, 692

probability of reuse, 84–86

procedural interfaces

architecture of, 812–813

defined, 810–811

DLLs (dynamically linked libraries), 833

example of, 816–819

exceptions, 831–833

functions in, 823–824

inheritance, 828–829

mapping to lower-level components, 815

mitigating cost of, 830–831

naming conventions, 819–823

physical dependencies within, 813–814

physical separation of PI functions, 813–814

properties of, 812–813

return-by-value, 826–827

SOAs (service-oriented architectures), 833

supplemental functionality in, 814

templates, 829–830

vocabulary types, 824–825

when to use, 811–812

profit maximization, 86

programmatic interfaces, 390, 792

programs, 434. See also applications

program-wide unique addresses, 163–166

proleptic Gregorian calendar, 610, 886

proprietary software, enterprise namespaces for, 

309–310

ProprietaryPersistor class, 733

protected keyword, 221

protected nested classes, 377



978  Index

protocols

Allocator, 860, 902

bdex_StreamIn, 839

bdex_StreamOut, 839

cache components and, 454

callbacks

Blackjack model, 655–660

logger-transport-email example, 655–660

channel, 505

component design rules, 352

day-count example, 573–575

defined, 226, 936

destructors, 226

hierarchy, 231, 737–738

insulation with

advantages of, 795–798

bridge pattern, 801

implementation-specific interfaces, 802

protocol effectiveness, 802

protocol extraction, 799–800

runtime overhead, 803–804

static link-time dependencies, 802–803

NewDeleteAllocator, 860

physical position, 498–499

test implementations, 659

PSA 30/360 day-count convention, 567

pseudo package names, 498, 506

Pthreads, 768

PubGraph class, 685

public classes

colocation of

component-private classes, 561–564

criteria for, 501, 522–527, 555–560, 591

day-count example, 566–576

mutual collaboration, 555–560, 941

nonprimitive functionality, 541, 941

single-threaded reference-counted functors 

example, 576–591

subordinate components, 564–566

summary of, 591–592, 912–914, 941

template specializations, 564

defined, 555

public inheritance, 359–362

pure abstract interfaces. See protocols

pure declarations, 188, 358

pure functional languages, 43

purely compositional designs, improving, 

726–727

Q
qualified-name syntax, 156, 198, 264–265

quality

schedule/product/budget trade-offs, 3–5

of Software Capital, 110–114

quantifying hierarchical reuse, text-partitioning 

optimization analogy, 57–86

brute-force recursive solution, 64–70

component-based decomposition, 60–64

dynamic programming solution, 70–76

exception-agnostic code, 62

exception-safe code, 62

greedy algorithm, 59

lookup speed, 79–83

nonlinear global cost function, 59

probability of reuse, 84–86

problem summary, 57–59

real-world constraints, 86

reuse in place, 76–79

summary of, 119–120

vocabulary types, 85

quick reference guide, 935–942

quotation marks ("), 202–203, 344, 369–370, 

433, 460, 490

R
race conditions, eliminating, 829

RAII (Resource Acquisition Is Initialization), 62

“raw” methods, 538–539

realms, 599

recompilation, 773. See also compilation

Rectangle class, 604–609, 798

recursion

brute-force text-partitioning algorithm, 68–69

recursively adaptive development, 100–105

redeployment, 787

redundancy

advantages of, 77
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brute-force solutions based on, 668

overview of, 634–638, 916

redundant include guards, 

205–209, 265

refactoring, continuous, 419, 461, 634

reference, access by, 539–540

reference-counted functors, 654

references symbol, 162

registries

Registry class, 145

“singleton,” 141–146

Registry class, 145

regular packages, 487

regularity in design, 353

reinterpret_cast technique, 692–693

relational operators, 846

relationships. See also dependencies

Depends-On, 218, 237–243, 278, 936–937, 

942

implied dependency, 243–251, 267

“inheriting” relationships, 234

In-Structure-Only, 227–230

Is-A

arrow notation, 219

implied dependency, 243–251

overview of, 219

Uses-In-Name-Only, 226–227, 251, 618

Uses-In-The-Implementation

implied dependency, 243–251

#include directives with, 360–361

overview of, 221–225

Uses-In-The-Interface

implied dependency, 220, 243–251

#include directives with, 361–362

overview of, 219–220

release, units of. See UORs (units of release)

relevance, software, 10

reliability, software, 9

removeNode function, 673

rendering metadata, 478–479

replenish method, 784–789

replenishment, Pool class, 

784–789

report generator, extension of, 37–40

repositories, hierarchically reusable, 108–109

Resource Acquisition Is Initialization (RAII), 62

return on investment, 86–88

return-by-value, 826–827

return-value optimization (NRVO), 808

reusable software. See also date/calendar 

subsystem; demotion; hierarchical 

reuse; Software Capital

application versus library software, 5–13

classically reusable software, 18–20, 116

collaborative software, 14–20, 116

constraints on side-by-side reuse, 760–761

factoring for reuse

application versus library software, 6–13

collaborative software, 14–20

continuous refactoring, 14, 634

cracked plate metaphor, 14–20

defined, 14

inadequately factored subsystems, 14–20

toaster toothbrush metaphor, 14–20

“fanatical obsession” with, 637–638

hiding, 769–772, 942

hierarchical reuse, 20–27. See also text-

partitioning optimization problem

designing for, 10

finely graduated, granular structure, 

20–27, 42

frequency of, 42

software repository, 108–109

summary of, 117

system structure and, 20–27

text-partitioning optimization analogy, 

57–86

malleable versus, 40–42

nonportable software in, 766–769, 942

physical design thought process, 500

probability of reuse, 84–86

quality in, 110–114

real-world constraints, 86

vocabulary types, 85

Rivest, Ronald, 83

rodata segment (executables), 131
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root names, 302, 483, 938

RotationalIterator class, 544

rotationally similar polygons identifying, 

541–544

runtime behavior, link order and, 151

runtime initialization, 354–359, 939

runtime overhead, total insulation, 803–804

runtime polymorphism, 415–417, 574

S
.s files, 129

salient attributes, 515

“sameness,” procedural interface, 825

Sankel, David, 353, 387, 436, 536, 563, 

601, 612, 771

Schmidt, Douglas C., 719

scope

components, 55–56

free functions, 199–200

modules, 475

objects

file-scope, 354–359

namespace-scope, 354–359

package namespace, 312–321, 483, 938, 940

packages, 395–399, 502

scoped allocator model, 222

SEC (Securities and Exchange Commission), 

467

“security by obscurity,” 775

self-declaring definitions, 155, 188, 261

semantics

as modularization criteria, 552–553

value, 530, 629

serialization, 146, 665

service-oriented architectures. See SOAs 

(service-oriented architectures)

set_lib_handler function, 645–646

settlement dates, 835

shadow classes, 516–517

Shape class, 795–798

ShapePartialImp class, 799–800

ShapeType class, 808

shared enumerations, 776–777

shared libraries, 153

shiftModifiedFollowingIfValid function, 883

side-by-side reuse, constraints on, 760–761

signatures, 127

single solution colocation criteria, 557–559, 591

single technology, “betting” on, 745–753

single-component wrapper, 685–686

single-threaded reference-counted functors

aggregation of components into packages, 

586–589

event-driven programming, 576–586

blocking functions, 576–577

classical approach to, 577–579

modern approach to, 579–586

time multiplexing, 577

overview of, 555–576

package-level functor architecture, 586–589

singleton pattern, 754, 919

“singleton” registry example, 141–146

size function, 781

sliders, schedule/product/budget, 4

Snyder, Van, 110

SOAs (service-oriented architectures)

cyclic physical dependencies and, 519

insulation and, 833

procedural interfaces compared to, 715

Software Capital, 86–98. See also date/calendar 

subsystem

advantages of, 20

autonomous core development team, 98–100

benefits of, 91–98

defined, 89

demotion process, 95, 941

hierarchically reusable software repository, 

108–109

in-house expertise, 107–108

intrinsic properties of, 91–92

mature infrastructure for, 106–107

motivation for developing, 89–90

origin of term, 89

peer review, 90–91

quality of, 110–114

recursively adaptive development, 100–105
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return on investment, 86–88

summary of, 120–121

Software Capital (Zarras), 89

software development. See also components; 

demotion; physical design; reusable 

software

application software

defined, 6

library software compared to, 5–13

reusability of, 6–13

top-down design, 6–7

“Big Ball of Mud” approach, 5

bimodal, 95

changes in, 2

collaborative software, 14–20, 116

deployment

application versus library software, 11

enterprise-wide unique names, 461

flexible software deployment, 459–460, 

462–464

library software, 464

overview of, 459

package group organization during, 

413–414

partitioning of deployed software, 

464–469, 940

redeployment, 787

software organization, 460–462

stylistic rendering within header files, 

462–463

summary of, 469, 492–493

unique .h and .o names, 460

design for stability, 43

goals of, 3–5

hierarchical reuse, 10

impact of language on, 125–126

library software

application software compared to, 5–13

defined, 6

reusability of, 6–13

logical design, 124, 497

malleability versus stability, 29–43

agile software development, 29–30

classical design techniques and, 30–31

defined, 29

fine-grained factoring, 31

manager classes and, 672–673

open-closed principle, 31–40

sharing and, 771

summary of, 117

XP (extreme programming), 29

NIH (not-invented-here) syndrome, 110

policy-based, 654, 744

quality in, 110–114, 121–122

recursively adaptive, 100–105

schedule/product/budget trade-offs, 3–5, 115

Software Capital, 86–98

autonomous core development team, 

98–100

benefits of, 91–98

defined, 89

demotion process, 95, 941

hierarchically reusable software repository, 

108–109

in-house expertise, 107–108

intrinsic properties of, 91–92

mature infrastructure for, 106–107

motivation for developing, 89–90

origin of term, 89

peer review, 90–91

quality of, 110–114

recursively adaptive development, 

100–105

return on investment, 86–88

summary of, 120–121

subsystems, identification of, 11–12

text-partitioning optimization analogy, 57–86

brute-force recursive solution, 64–70

component-based decomposition, 60–64

dynamic programming solution, 70–76

exception-agnostic code, 62

exception-safe code, 62

greedy algorithm, 59

lookup speed, 79–83

nonlinear global cost function, 59

probability of reuse, 84–86
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problem summary, 57–59

real-world constraints, 86

reuse in place, 76–79

summary of, 119–120

vocabulary types, 85

top-down, 6–7

software organization

during build process, 462

during deployment, 460–461

Sommerlad, Peter, 258

source-code organization. See also header (.h) 

files; implementation (.cpp) files

header (.h) files, 333–336, 938

implementation (.cpp) files, 341–342, 938

summary of, 484–485, 938

specializations

colocation of, 564

explicit, 174–179

partial, 179–183

spheres of encapsulation, 679, 683

stability, software, 29–43

agile software development, 29–30

application versus library software, 8–9

classical design techniques and, 30–31

defined, 29

fine-grained factoring, 31

open-closed principle, 31–40

Account report generator example, 37–40

component functionality and, 40, 941

design for stability, 43

HTTP parser example, 31–33

iterators and, 511

list component example, 33–36

malleable versus reusable software, 40–42

Polygon example, 35, 530–553

summary of, 910

summary of, 117

text-partitioning optimization problem, 76–79

XP (extreme programming), 29

Stack type, 34, 49

StackConstIterator class, 49

standard components, adoption of, 111

standard-layout types, 692

stateful allocators, 808

stateless functors, 654–655

static functions/methods, 159, 161, 315–316

static initializations, 152

static link-time dependencies, 802–803

static storage, 162

static variables, 161

std::bitset, 896

std::chrono, 895

std::list, 168

std::map, 79, 81

std::vector, 168

Stepanov, Alexander, 235–236

Stock Studio service, date/calendar subsystem

actual (extrapolated) requirements, 837–838

CacheCalendarFactory interface, 867–871

Calendar class, 895–899

calendar library, application-level use of, 

862–872

calendar requirements, 854–858

CalendarCache class, 861–867

CalendarFactory interface, 867–871

CalendarLoader interface, 862–867

CurrentTimeUtil struct, 849–853

date and calendar utilities, 881–885

Date class

class design, 838–849

hierarchical reuse of, 886–887

indeterminate value in, 842

value representation in, 887–895

date math, 877–881

Date type, 838–849

DateConvertUtil struct, 889–894

DateParserUtil struct, 873–876, 895

day-count conventions, 877–878

distribution across existing aggregates, 

902–907

holidays, 855, 859

multiple locale lookups, 858–861

originally stated requirements, 835–836

overview of, 835

PackedCalendar object, 859–861, 900–901

ParserImpUtil struct, 876
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requirements

actual (extrapolated), 837–838

calendar, 854–858

originally stated, 835–836

summary of, 908, 922–923

value representation in, 887–895

value transmission and persistence, 876–877

weekend days, 855

storage

automatic, 162

dynamic, 162

static, 162

streamIn method, 839

streaming, BDEX, 839–848, 898, 902

streamOut method, 664, 839

stream-out operator, 819

strong symbols, 138–139

Stroustrup, Bjarne, 12, 98, 111, 236, 244, 

870–871

structs. See also classes

as alternative to qualified naming, 198–201

BitStringUtil, 898

BitUtil, 897–898

CalendarUtil, 883

CurrentTimeUtil, 849–853

DateConvertUtil, 889–894

DateParserUtil, 873–876

DayOfWeekUtil, 611–612

declaring at package namespace scope, 

312–321, 483, 938

inherently primitive functionality in, 

529–530

MonthOfYearSetUtil, 880

multiple copies of, 9

PackedIntArrayUtil, 901

ParserImpUtil, 876

Point, 169–170

stylistic rendering within header files, 463–464

subordinate components, 372, 486–487, 

564–566, 591, 937, 939

subpackages, 427–431, 490

substantive use, 239

substitution, 441

subsystems. See also date/calendar subsystem; 

packages

cyclically dependent, 596–597

Event/EventMgr, 647–648

exchange adapters, 754–758

factoring with packages, 384–394

horizontal, 730

identification of, 11–12

legacy, 811

tree-like, 414–415

sufficiency, 528, 554, 910

suffixes

component, 553

_i, 805

package, 552

test drivers, 441–445

util, 315, 553, 573

surface area, 16, 42

surface to volume ratio, 116

swap function, 335, 550

symbols. See also definitions

symbol references, 162

undefined, 133, 146

weak/strong, 138–139, 151

syntax-centric modularization criteria, 517–518

system structure

coarsely layered architecture, 22–23

finely graduated, granular, 23–27

monolithic blocks, 20–21

properties of, 21

top-down, 25

T
.t.cpp suffix, 435

TDD (test-driven development), 738–739

teams, development, 98–100

telescoping. See partitioning

templates

extern template functions, 183–185

function

explicit specialization, 175–179

properties of, 172–175

interface inheritance and, 230–233
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naming conventions, 829–830

procedural interfaces, 829–830

source-code organization, 335

specializations

colocation of, 564

explicit, 174–179

partial, 179–183

template methods, 669, 732

type constraint documentation, 234–236

variadic, 557–558, 581, 584

test drivers

associating with components, 441–445, 940

black-box testing, 445

dependencies, 445–447

allowed test-driver dependencies across 

packages, 451–454, 940

import of local component dependencies, 

447–451

minimization of test-driver dependencies 

on external environment, 454–456

directory location of, 445, 940

#include directives, 447, 449, 940

linear, 756

overview of, 48–49

summary of, 458–459, 491–492

uniform test-driver invocation interface, 

456–458, 941

“user experience,” 458, 941

white-box knowledge, 445

testcalendarloader component, 455

test-driven development (TDD), 738–739

testing. See also test drivers

hierarchical testability requirement, 437

allowed test-driver dependencies across 

packages, 451–454, 940

associations among components and test 

drivers, 441–445

black-box testing, 445

dependencies of test drivers, 445–447, 

940

directory location of test drivers, 445, 940

fine-grained unit testing, 438

import of local component dependencies, 

447–451

#include directives, 447, 449, 940

minimization of test-driver dependencies 

on external environment, 454–456

need for, 439–441, 940

summary of, 458–459, 491–492

uniform test-driver invocation interface, 

456–458, 941

“user experience,” 458, 941

white-box knowledge, 445

lateral versus layered architectures, 738

TDD (test-driven development), 738–739

TestPlayer class, 659

text segment (executables), 131

text-partitioning optimization problem, 57–86

brute-force recursive solution, 64–70

component-based decomposition, 60–64

dynamic programming solution, 70–76

exception-agnostic code, 62

exception-safe code, 62

greedy algorithm, 59

lookup speed, 79–83

nonlinear global cost function, 59

probability of reuse, 84–86

problem summary, 57–59

real-world constraints, 86

reuse in place, 76–79

summary of, 119–120

vocabulary types, 85

third-party libraries, 431–433, 490

thought processes, in physical design, 497

absolute position, 500

abstract interfaces, 498–499

colocation

component-private classes, 561–564

criteria for, 501, 522–527, 555–560, 591, 

941

day-count example, 566–576

mutual collaboration, 555–560

nonprimitive functionality, 541, 941

single-threaded reference-counted functors 

example, 576–591

subordinate components, 564–566

summary of, 591–592, 912–914

template specializations, 564
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colocation, criteria for, 522–527

components as fine-grained modules, 498

cyclic physical dependencies, avoidance of, 

505–507

direction, 498

friendship, constraints on, 508

multicomponent wrappers

escalating-encapsulation levelization 

technique, 516–517

problems with, 513–514

special access with, 515

wrapping interoperating components 

separately, 516

naivete of logical design, 497

nonprimitive, semantically related 

functionality, 501–502

open-closed principle, 511, 910

package charter, 502

package names, 502–505, 939

package prefixes, 502–504

package scope, 502

physical location, identifying, 501

private access within single component, 

511

private access within wrapper component, 

512–513

quick reference, 935–942

software reuse, 500

summary of, 517, 909–910

wrappers, 508–510

thread-safe reference counting, 589

throwing exceptions, 718–719

tight coupling, 741–742

time

multiplexing, 577

mythical man month, 4, 88

schedule/product/budget trade-offs, 3–5

TimeSeries class

component/class diagram, 508–509

hidden header files for logical encapsulation, 

763–765

wrappers, 509–510, 512–516

TimeSeriesIterator class, 508–510

toaster toothbrush metaphor, 14–20, 27–30, 

116–117

top-down design, 6–7

topologicalNumber function, 545

total insulation

defined, 793–794

fully insulating concrete wrapper component

example of, 805–807

performance impact of, 807

poor candidates for, 807–810

usage model, 804–807

overview of, 794–795

procedural interfaces, 804–807

architecture of, 812–813

defined, 810–811

DLLs (dynamically linked libraries), 833

example of, 816–819

exceptions, 831–833

functions in, 813–814, 823–824

inheritance, 828–829

mapping to lower-level components, 815

mitigating cost of, 830–831

naming conventions, 819–823

physical dependencies within, 813–814

properties of, 812–813, 825–826

return-by-value, 826–827

SOAs (service-oriented architectures), 833

supplemental functionality in, 814

templates, 829–830

vocabulary types, 824–825

when to use, 811–812

protocols

advantages of, 795–798

bridge pattern, 801

effectiveness of, 802

extracting, 799–800

implementation-specific interfaces, 802

runtime overhead, 803–804

static link-time dependencies, 802–803

summary of, 834–835, 920–921

transitive closure, 259

transitive includes, 227, 359–360, 486, 605–609, 

937
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translation phase, 132

translation units (.i), 130, 259–260, 262

transmitting values, 876–877

transport facility, 599–600

transport subsystem, logger-transport-email 

example

cyclic link-time dependencies, 592–601

protocol callbacks, 655–664

tree-like subsystems, 414–415

try/catch blocks, 832

turnUpTheHeat method, 795

typedef declarations, 168, 313

typename keyword, 173

typenames, 173

types, 10, 461, 509–510, 530

ADTs (abstract data types), 192

BitArray, 895–898

in Blackjack model, 657

Calendar, 855

conforming, 172

constraints, 234–236

covariant return types, 359

Date, 838–849

DatetimeTz, 849

defined, 27, 935

envelope components, 584

exporting, 772

flexible software deployment and, 492

incomplete, 168

in insulating wrapper component, 804–805

interface, 741–742

logical/physical name cohesion and, 323–324

naming conventions, 217

PackedIntArrayConstIterator, 901

in Polygon example, 530–531

in procedural interfaces, 824–825

purpose of, 705

redundancy with, 635

safety, 127–128

specification, 229

Stack, 34

standard-layout, 692

text-partitioning optimization problem, 85

typenames, 173

when to use, 935

U
u suffix, 552

UML, 217

unconstrained attribute classes, 610

undefined behavior, 692

undefined symbols, 133, 146

underscore (_)

in component names, 53, 304, 

381–383, 487, 938–939

conventional use of, 371–377

extra underscore convention, 372–377, 

561, 591, 771, 939

in package names, 425

subordinate components, 381–383, 487

two-consecutive underscores, 591

uniform test-driver invocation interface, 

456–458, 941

uniformity, physical, 46–57

developer mobility and, 47, 119. See also 

components

importance of, 46–47

summary of, 118–119

unique addresses, 163–166

unique names

enterprise-wide, 461

header (.h) files, 460, 937

object (.o) files, 460

overview of, 292, 937

packages, 422–427

units of release. See UORs (units of release)

universal time, 742

Unix

iovec (“scatter/gather”) buffer structure, 505

nm command, 133

unstructured programs, header (.h) files in, 

191–192
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UORs (units of release). See also package 

groups

architectural significance of, 278–280, 

290–291, 942

defined, 277, 936

inappropriate physical dependencies, 743, 

937

irregular, 432

in isolated packages, 289

mutual collaboration and, 565–566

upgrades

coerced, 32

extension without modification (open-closed 

principle), 31–40

Account report generator example, 37–40

design for stability, 43

HTTP parser example, 31–33

list component example, 33–36

malleable versus reusable software, 40–42, 

941

summary of, 117

UpperCamelCase, 217, 371–372, 819–820, 823

uppercase naming conventions

all-uppercase notation, 371–372, 938

UpperCamelCase, 217, 371–372, 819–820, 

823

use, encapsulation of, 792–793

use of implementation components, 

encapsulating, 683–684

“user experience” test drivers, 458, 941

Uses-In-Name-Only collaborative logical 

relationship, 226–227, 251, 618

Uses-In-The-Implementation logical relationship

implied dependency, 243–251

#include directives with, 360–361

overview of, 221–225

Uses-In-The-Interface logical relationship

implied dependency, 220, 243–251

#include directives with, 361–362

overview of, 219–220

using directives/declarations, 201, 328–333, 938

UTC (Coordinated Universal Time), 849

util suffix, 315, 553, 573

utility packages, 315, 501, 910

utility structs. See also classes

BitStringUtil, 898

BitUtil, 897–898

CalendarUtil, 883

CurrentTimeUtil, 849–853

DateConvertUtil, 889–894

DateParserUtil, 873–876

DayOfWeekUtil, 611–612

MonthOfYearSetUtil, 880

multiple copies of, 9

PackedIntArrayUtil, 901

ParserImpUtil, 876

V
value types. See types

values

access by value, 532, 539–540

additive, 839

in Date class, 887–895

return by value, 826–827

semantics, 530, 629

transmitting, 876–877

value semantics, 629

value types, 530

by-value use, 168

value-preserving integrals, 176

van Winkel, JC, 4, 27, 160, 208, 519

variables

declaring at package namespace scope, 313

inline, 162

runtime initialization of, 354–359

static, 161

variadic templates, 557–558, 581, 584

Verschell, Mike, 292

vigilance, need for, 110–114, 121–122

virtual functions, 797, 803

vocabulary types. See types

W
Wainwright, Peter, 469

weak dependencies, 472–473

weak symbols, 138–139, 151
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weekend days, date/calendar subsystem, 855

well-factored Date class that degrades over time, 

705–714

white-box knowledge, 445

Wilson, Clay, 906

wrappers. See also encapsulation; insulation

Basic Business Library Day Count package, 

573

cyclic physical dependencies, avoidance of, 

323–324

defined, 323, 512

fully insulating concrete wrapper component, 

687

example of, 805–807

performance impact of, 807

poor candidates for, 807–810

usage model, 804–807

insulation and, 687, 795

for irregular software, 432, 436

multicomponent, 687–691

escalating-encapsulation levelization 

technique, 516–517

problems with, 513–514

special access with, 515

wrapping interoperating components 

separately, 516

overhead due to, 687

physically monolithic wrapper module, 

717–722

private access within, 512–513

single-component, 685–686

TimeSeries example, 508–510

X-Y-Z
Xerces open-source library, 432

XP (extreme programming), 29

z_ prefix, 815, 819–823

Zarras, Dean, 89

zero initialization, 131–132

Zvector, 15
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