


The authors and publisher have taken care in the preparation of this book, but make no expressed or im-
plied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for 
incidental or consequential damages in connection with or arising out of the use of the information or pro-
grams contained herein. 

Publisher: John Wait 
Editor in Chief: Don O’Hagan 
Acquisitions Editor: Peter Gordon 
Editorial Assistant: Kim Boedigheimer 
Marketing Manager: Chanda Leary-Coutu 
Cover Designer: Chuti Prasertsith 
Managing Editor: John Fuller 
Project Editor: Lara Wysong 
Copy Editor: Kelli Brooks 
Manufacturing Buyer: Carol Melville 

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special 
sales, which may include electronic versions and/or custom covers and content particular to your business, 
training goals, marketing focus, and branding interests. For more information, please contact: 

U. S. Corporate and Government Sales 
(800) 382-3419 
corpsales@pearsontechgroup.com 

For sales outside the U. S., please contact: 

International Sales 
international@pearsoned.com 

Visit us on the Web: www.awprofessional.com 

Library of Congress Cataloging-in-Publication Data: 

Sutter, Herb. 
C++ coding standards : 101 rules, guidelines, and best practices / Herb Sutter, Andrei Alexandrescu. 
 p. cm. 
Includes bibliographical references and index. 
ISBN 0-321-11358-6 (pbk. : alk. paper) 
C++ (Computer program language) I. Alexandrescu, Andrei. II. Title. 

QA76.73.C153S85 2004 
005.13'3—dc22

2004022605

Copyright © 2005 Pearson Education, Inc. 

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and 
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval 
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or 
likewise. For information regarding permissions, write to: 

Pearson Education, Inc. 
Rights and Contracts Department 
One Lake Street 
Upper Saddle River, NJ 07458 

Printing9th August 2010
Text printed in the United States on recycled paper at Courier Stoughton in Stoughton, Massachusetts.
ISBN 0-321-11358-6

www.awprofessional.com


vii

Contents

Preface xi

Organizational and Policy Issues 1
0. Don’t sweat the small stuff. (Or: Know what not to standardize.) 2
1. Compile cleanly at high warning levels. 4
2. Use an automated build system. 7
3. Use a version control system. 8
4. Invest in code reviews. 9

Design Style 11
5. Give one entity one cohesive responsibility. 12
6. Correctness, simplicity, and clarity come first. 13
7. Know when and how to code for scalability. 14
8. Don’t optimize prematurely. 16
9. Don’t pessimize prematurely. 18
10. Minimize global and shared data. 19
11. Hide information. 20
12. Know when and how to code for concurrency. 21
13. Ensure resources are owned by objects. Use explicit RAII and smart pointers. 24

Coding Style 27
14. Prefer compile- and link-time errors to run-time errors. 28
15. Use const proactively. 30
16. Avoid macros. 32



viii Contents 

17. Avoid magic numbers. 34
18. Declare variables as locally as possible. 35
19. Always initialize variables. 36
20. Avoid long functions. Avoid deep nesting. 38
21. Avoid initialization dependencies across compilation units. 39
22. Minimize definitional dependencies. Avoid cyclic dependencies. 40
23. Make header files self-sufficient. 42
24. Always write internal #include guards. Never write external #include guards. 43

Functions and Operators 45
25. Take parameters appropriately by value, (smart) pointer, or reference. 46
26. Preserve natural semantics for overloaded operators. 47
27. Prefer the canonical forms of arithmetic and assignment operators. 48
28. Prefer the canonical form of ++ and --. Prefer calling the prefix forms. 50
29. Consider overloading to avoid implicit type conversions. 51
30. Avoid overloading &&, ||, or , (comma) . 52
31. Don’t write code that depends on the order of evaluation of function 

arguments. 54

Class Design and Inheritance 55
32. Be clear what kind of class you’re writing. 56
33. Prefer minimal classes to monolithic classes. 57
34. Prefer composition to inheritance. 58
35. Avoid inheriting from classes that were not designed to be base classes. 60
36. Prefer providing abstract interfaces. 62
37. Public inheritance is substitutability. Inherit, not to reuse, but to be reused. 64
38. Practice safe overriding. 66
39. Consider making virtual functions nonpublic, and public functions nonvirtual. 68
40. Avoid providing implicit conversions. 70
41. Make data members private, except in behaviorless aggregates (C-style 

structs). 72
42. Don’t give away your internals. 74
43. Pimpl judiciously. 76
44. Prefer writing nonmember nonfriend functions. 79
45. Always provide new and delete together. 80
46. If you provide any class-specific new, provide all of the standard forms (plain, 

in-place, and nothrow). 82



  Contents ix

Construction, Destruction, and Copying 85
47. Define and initialize member variables in the same order. 86
48. Prefer initialization to assignment in constructors. 87
49. Avoid calling virtual functions in constructors and destructors. 88
50. Make base class destructors public and virtual, or protected and nonvirtual. 90
51. Destructors, deallocation, and swap never fail. 92
52. Copy and destroy consistently. 94
53. Explicitly enable or disable copying. 95
54. Avoid slicing. Consider Clone instead of copying in base classes. 96
55. Prefer the canonical form of assignment. 99
56. Whenever it makes sense, provide a no-fail swap (and provide it correctly). 100

Namespaces and Modules 103
57. Keep a type and its nonmember function interface in the same namespace. 104
58. Keep types and functions in separate namespaces unless they’re specifically 

intended to work together. 106
59. Don’t write namespace usings in a header file or before an #include. 108
60. Avoid allocating and deallocating memory in different modules. 111
61. Don’t define entities with linkage in a header file. 112
62. Don’t allow exceptions to propagate across module boundaries. 114
63. Use sufficiently portable types in a module’s interface. 116

Templates and Genericity 119
64. Blend static and dynamic polymorphism judiciously. 120
65. Customize intentionally and explicitly. 122
66. Don’t specialize function templates. 126
67. Don’t write unintentionally nongeneric code. 128

Error Handling and Exceptions 129
68. Assert liberally to document internal assumptions and invariants. 130
69. Establish a rational error handling policy, and follow it strictly. 132
70. Distinguish between errors and non-errors. 134
71. Design and write error-safe code. 137
72. Prefer to use exceptions to report errors. 140
73. Throw by value, catch by reference. 144
74. Report, handle, and translate errors appropriately. 145
75. Avoid exception specifications. 146



x Contents 

STL: Containers 149
76. Use vector by default. Otherwise, choose an appropriate container. 150
77. Use vector and string instead of arrays. 152
78. Use vector (and string::c_str) to exchange data with non-C++ APIs. 153
79. Store only values and smart pointers in containers. 154
80. Prefer push_back to other ways of expanding a sequence. 155
81. Prefer range operations to single-element operations. 156
82. Use the accepted idioms to really shrink capacity and really erase elements. 157

STL: Algorithms 159
83. Use a checked STL implementation. 160
84. Prefer algorithm calls to handwritten loops. 162
85. Use the right STL search algorithm. 165
86. Use the right STL sort algorithm. 166
87. Make predicates pure functions. 168
88. Prefer function objects over functions as algorithm and comparer arguments. 170
89. Write function objects correctly. 172

Type Safety 173
90. Avoid type switching; prefer polymorphism. 174
91. Rely on types, not on representations. 176
92. Avoid using reinterpret_cast. 177
93. Avoid using static_cast on pointers. 178
94. Avoid casting away const. 179
95. Don’t use C-style casts. 180
96. Don’t memcpy or memcmp non-PODs. 182
97. Don’t use unions to reinterpret representation. 183
98. Don’t use varargs (ellipsis). 184
99. Don’t use invalid objects. Don’t use unsafe functions. 185
100.Don’t treat arrays polymorphically. 186

Bibliography 187

Summary of Summaries 195

Index 209



xi

Preface

Get into a rut early: Do the same process the same way. Accumulate idioms.  
Standardize. The only difference(!) between Shakespeare and you was the  

size of his idiom list—not the size of his vocabulary. 

      — Alan Perlis [emphasis ours] 

The best thing about standards is that there are so many to choose from. 

      — Variously attributed 

We want to provide this book as a basis for your team’s coding standards for two 
principal reasons: 

A coding standard should reflect the community’s best tried-and-true experience: It 
should contain proven idioms based on experience and solid understanding of 
the language. In particular, a coding standard should be based firmly on the ex-
tensive and rich software development literature, bringing together rules, 
guidelines, and best practices that would otherwise be left scattered throughout 
many sources. 

Nature abhors a vacuum: If you don’t consciously set out reasonable rules, usually 
someone else will try to push their own set of pet rules instead. A coding stan-
dard made that way usually has all of the least desirable properties of a coding 
standard; for example, many such standards try to enforce a minimalistic C-
style use of C++. 

Many bad coding standards have been set by people who don’t understand the lan-
guage well, don’t understand software development well, or try to legislate too 
much. A bad coding standard quickly loses credibility and at best even its valid 
guidelines are liable to be ignored by disenchanted programmers who dislike or 
disagree with its poorer guidelines. That’s “at best”—at worst, a bad standard might 
actually be enforced. 



xii Preface 

How to Use This Book 

Think. Do follow good guidelines conscientiously; but don’t follow them blindly. In 
this book’s Items, note the Exceptions clarifying the less common situations where 
the guidance may not apply. No set of guidelines, however good (and we think 
these ones are), should try to be a substitute for thinking. 

Each development team is responsible for setting its own standards, and for setting 
them responsibly. That includes your team. If you are a team lead, involve your 
team members in setting the team’s standards; people are more likely to follow 
standards they view as their own than they are to follow a bunch of rules they feel 
are being thrust upon them. 

This book is designed to be used as a basis for, and to be included by reference in, 
your team’s coding standards. It is not intended to be the Last Word in coding stan-
dards, because your team will have additional guidelines appropriate to your par-
ticular group or task, and you should feel free to add those to these Items. But we 
hope that this book will save you some of the work of (re)developing your own, by 
documenting and referencing widely-accepted and authoritative practices that ap-
ply nearly universally (with Exceptions as noted), and so help increase the quality 
and consistency of the coding standards you use. 

Have your team read these guidelines with their rationales (i.e., the whole book, and 
selected Items’ References to other books and papers as needed), and decide if there 
are any that your team simply can’t live with (e.g., because of some situation unique 
to your project). Then commit to the rest. Once adopted, the team’s coding standards 
should not be violated except after consulting with the whole team. 

Finally, periodically review your guidelines as a team to include practical experience 
and feedback from real use. 

Coding Standards and You 

Good coding standards can offer many interrelated advantages: 

Improved code quality: Encouraging developers to do the right things in a consis-
tent way directly works to improve software quality and maintainability. 

Improved development speed: Developers don’t need to always make decisions 
starting from first principles. 

Better teamwork: They help reduce needless debates on inconsequential issues 
and make it easier for teammates to read and maintain each other’s code. 

Uniformity in the right dimension: This frees developers to be creative in directions 
that matter. 



  Preface xiii

Under stress and time pressure, people do what they’ve been trained to do. They fall 
back on habit. That’s why ER units in hospitals employ experienced, trained per-
sonnel; even knowledgeable beginners would panic. 

As software developers, we routinely face enormous pressure to deliver tomorrow’s 
software yesterday. Under schedule pressure, we do what we are trained to do and 
are used to doing. Sloppy programmers who in normal times don’t know good prac-
tices of software engineering (or aren’t used to applying them) will write even slop-
pier and buggier code when pressure is on. Conversely, programmers who form 
good habits and practice them regularly will keep themselves organized and deliver 
quality code, fast. 

The coding standards introduced by this book are a collection of guidelines for writ-
ing high-quality C++ code. They are the distilled conclusions of a rich collective ex-
perience of the C++ community. Much of this body of knowledge has only been 
available in bits and pieces spread throughout books, or as word-of-mouth wisdom. 
This book’s intent is to collect that knowledge into a collection of rules that is terse, 
justified, and easy to understand and follow. 

Of course, one can write bad code even with the best coding standards. The same is 
true of any language, process, or methodology. A good set of coding standards fos-
ters good habits and discipline that transcend mere rules. That foundation, once ac-
quired, opens the door to higher levels. There’s no shortcut; you have to develop vo-
cabulary and grammar before writing poetry. We just hope to make that easier. 

We address this book to C++ programmers of all levels: 

If you are an apprentice programmer, we hope you will find the rules and their ra-
tionale helpful in understanding what styles and idioms C++ supports most natu-
rally. We provide a concise rationale and discussion for each rule and guideline to 
encourage you to rely on understanding, not just rote memorization. 

For the intermediate or advanced programmer, we have worked hard to provide a 
detailed list of precise references for each rule. This way, you can do further research 
into the rule’s roots in C++’s type system, grammar, and object model. 

At any rate, it is very likely that you work in a team on a complex project. Here is 
where coding standards really pay off—you can use them to bring the team to a 
common level and provide a basis for code reviews. 

About This Book 
We have set out the following design goals for this book: 

Short is better than long: Huge coding standards tend to be ignored; short ones get 
read and used. Long Items tend to be skimmed; short ones get read and used. 



xiv Preface 

Each Item must be noncontroversial: This book exists to document widely agreed-
upon standards, not to invent them. If a guideline is not appropriate in all cases, 
it will be presented that way (e.g., “Consider X…” instead of “Do X…”) and we 
will note commonly accepted exceptions. 

Each Item must be authoritative: The guidelines in this book are backed up by ref-
erences to existing published works. This book is intended to also provide an 
index into the C++ literature. 

Each Item must need saying: We chose not to define new guidelines for things that 
you’ll do anyway, that are already enforced or detected by the compiler, or that 
are already covered under other Items. 

Example: “Don’t return a pointer/reference to an automatic variable” is a 
good guideline, but we chose not to include it in this book because all of the 
compilers we tried already emit a warning for this, and so the issue is al-
ready covered under the broader Item 1, “Compile cleanly at high warning 
levels.” 

Example: “Use an editor (or compiler, or debugger)” is a good guideline, but 
of course you’ll use those tools anyway without being told; instead, we 
spend two of our first four Items on “Use an automated build system” and 
“Use a version control system.” 

Example: “Don’t abuse goto” is a great Item, but in our experience pro-
grammers universally know this, and it doesn’t need saying any more. 

Each Item is laid out as follows: 

Item title: The simplest meaningful sound bite we could come up with as a mne-
monic for the rule. 

Summary: The most essential points, briefly stated. 

Discussion: An extended explanation of the guideline. This often includes brief 
rationale, but remember that the bulk of the rationale is intentionally left in the 
References. 

Examples (if applicable): Examples that demonstrate a rule or make it memorable. 

Exceptions (if applicable): Any (and usually rare) cases when a rule doesn’t apply. 
But beware the trap of being too quick to think: “Oh, I’m special; this doesn’t 
apply in my situation”—that rationalization is common, and commonly wrong. 

References: See these parts of the C++ literature for the full details and analysis. 

In each section, we chose to nominate a “most valuable Item.” Often, it’s the first 
Item in a section, because we tried to put important Items up front in each part; but 



  Preface xv

other times an important Item couldn’t be put up front, for flow or readability rea-
sons, and we felt the need to call it out for special attention in this way. 

Acknowledgments 
Many thanks to series editor Bjarne Stroustrup, to editors Peter Gordon and Debbie 
Lafferty, and to Tyrrell Albaugh, Kim Boedigheimer, John Fuller, Bernard Gaffney, 
Curt Johnson, Chanda Leary-Coutu, Charles Leddy, Heather Mullane, Chuti 
Prasertsith, Lara Wysong, and the rest of the Addison-Wesley team for their assis-
tance and persistence during this project. They are a real pleasure to work with. 

Inspiration for some of the “sound bites” came from many sources, including the 
playful style of [Cline99], the classic import this of [Peters99], and the legendary and 
eminently quotable Alan Perlis. 

We especially want to thank the people whose technical feedback has helped to 
make many parts of this book better than they would otherwise have been. Series 
editor Bjarne Stroustrup’s incisive comments from concept all the way through to 
the final draft were heavily influential and led to many improvements. We want to 
give special thanks to Dave Abrahams, Marshall Cline, Kevlin Henney, Howard 
Hinnant, Jim Hyslop, Nicolai Josuttis, Jon Kalb, Max Khesin, Stan Lippman, Scott 
Meyers, and Daveed Vandevoorde for their active participation in review cycles and 
detailed comments on several drafts of this material. Other valuable comments and 
feedback were contributed by Chuck Allison, Samir Bajaj, Marc Barbour, Travis 
Brown, Neal Coombes, Damian Dechev, Steve Dewhurst, Peter Dimov, Attila Feher, 
Alan Griffiths, Michi Henning, James Kanze, Mat Marcus, Petru Marginean, Robert 
C. “Uncle Bob” Martin, Bartosz Milewski, Balog Pal, Jeff Peil, Peter Pirkelbauer, 
Vladimir Prus, Dan Saks, Luke Wagner, Matthew Wilson, and Leor Zolman. 

As usual, the remaining errors, omissions, and shameless puns are ours, not theirs. 

Herb Sutter 
Andrei Alexandrescu 

Seattle, September 2004 



This page intentionally left blank 



4 C++ Coding Standards 

1. Compile cleanly at high warning levels. 

Summary
Take warnings to heart: Use your compiler’s highest warning level. Require clean 
(warning-free) builds. Understand all warnings. Eliminate warnings by changing 
your code, not by reducing the warning level. 

Discussion 
Your compiler is your friend. If it issues a warning for a certain construct, often 
there’s a potential problem in your code. 

Successful builds should be silent (warning-free). If they aren’t, you’ll quickly get 
into the habit of skimming the output, and you will miss real problems. (See Item 2.) 

To get rid of a warning: a) understand it; and then b) rephrase your code to elimi-
nate the warning and make it clearer to both humans and compilers that the code 
does what you intended. 

Do this even when the program seemed to run correctly in the first place. Do this 
even when you are positive that the warning is benign. Even benign warnings can 
obscure later warnings pointing to real dangers. 

Examples
Example 1: A third-party header file. A library header file that you cannot change could 
contain a construct that causes (probably benign) warnings. Then wrap the file with 
your own version that #includes the original header and selectively turns off the 
noisy warnings for that scope only, and then #include your wrapper throughout the 
rest of your project. Example (note that the warning control syntax will vary from 
compiler to compiler): 

// File: myproj/my_lambda.h -- wraps Boost’s lambda.hpp 
//   Always include this file; don’t use lambda.hpp directly. 
//   NOTE: Our build now automatically checks “grep lambda.hpp <srcfile>“. 
// Boost.Lambda produces noisy compiler warnings that we know are innocuous. 
// When they fix it we’ll remove the pragmas below, but this header will still exist. 
//
#pragma warning(push) // disable for this header only
  #pragma warning(disable:4512) 
  #pragma warning(disable:4180) 
  #include <boost/lambda/lambda.hpp> 
#pragma warning(pop)   // restore original warning level



  Organizational and Policy Issues 5

Example 2: “Unused function parameter.” Check to make sure you really didn’t mean 
to use the function parameter (e.g., it might be a placeholder for future expansion, or 
a required part of a standardized signature that your code has no use for). If it’s not 
needed, simply delete the name of a function parameter: 

// … inside a user-defined allocator that has no use for the hint … 

// warning: “unused parameter ‘localityHint’” 
pointer allocate( size_type numObjects, const void *localityHint = 0 ) { 
  return static_cast<pointer>( mallocShared( numObjects * sizeof(T) ) ); 
}

// new version: eliminates warning 
pointer allocate( size_type numObjects, const void * /* localityHint */ = 0 ) { 
  return static_cast<pointer>( mallocShared( numObjects * sizeof(T) ) ); 
}

Example 3: “Variable defined but never used.” Check to make sure you really didn’t 
mean to reference the variable. (An RAII stack-based object often causes this warn-
ing spuriously; see Item 13.) If it’s not needed, often you can silence the compiler by 
inserting an evaluation of the variable itself as an expression (this evaluation won’t 
impact run-time speed): 

// warning: “variable ‘lock’ is defined but never used” 
void Fun() { 
  Lock lock; 

  // … 

}

// new version: probably eliminates warning 
void Fun() { 
  Lock lock; 
  lock; 

  // … 

}

Example 4: “Variable may be used without being initialized.” Initialize the variable (see 
Item 19). 

Example 5: “Missing return.” Sometimes the compiler asks for a return statement 
even though your control flow can never reach the end of the function (e.g., infinite 
loop, throw statements, other returns). This can be a good thing, because sometimes 
you only think that control can’t run off the end. For example, switch statements that 



6 C++ Coding Standards 

do not have a default are not resilient to change and should have a default case that 
does assert( false ) (see also Items 68 and 90): 

// warning: missing “return” 
int Fun( Color c ) { 
  switch( c ) { 
  case Red: return 2; 
  case Green: return 0; 
  case Blue: 
  case Black: return 1; 
  } 
}

// new version: eliminates warning 
int Fun( Color c ) { 
  switch( c ) { 
  case Red: return 2; 
  case Green: return 0; 
  case Blue: 
  case Black: return 1; 
  default: assert( !”should never get here!” ); // !”string” evaluates to false
 return -1; 
  } 
}

Example 6: “Signed/unsigned mismatch.” It is usually not necessary to compare or as-
sign integers with different signedness. Change the types of the variables being 
compared so that the types agree. In the worst case, insert an explicit cast. (The 
compiler inserts that cast for you anyway, and warns you about doing it, so you’re 
better off putting it out in the open.) 

Exceptions

Sometimes, a compiler may emit a tedious or even spurious warning (i.e., one that is 
mere noise) but offer no way to turn it off, and it might be infeasible or unproduc-
tive busywork to rephrase the code to silence the warning. In these rare cases, as a 
team decision, avoid tediously working around a warning that is merely tedious: 
Disable that specific warning only, disable it as locally as possible, and write a clear 
comment documenting why it was necessary. 

References 

[Meyers97] §48 • [Stroustrup94] §2.6.2 



46 C++ Coding Standards 

25. Take parameters appropriately by value, 
(smart) pointer, or reference. 

Summary
Parameterize well: Distinguish among input, output, and input/output parameters, 
and between value and reference parameters. Take them appropriately.

Discussion 
Choosing well among values, references, and pointers for parameters is good habit 
that maximizes both safety and efficiency. 

Although efficiency should not be our primary up-front concern (see Item 8), neither 
should we write needlessly inefficient code when all other things, including clarity, 
are equal (see Item 9). 

Prefer to follow these guidelines for choosing how to take parameters. For input-
only parameters: 

Always const-qualify all pointers or references to input-only parameters. 

Prefer taking inputs of primitive types (e.g., char, float) and value objects that 
are cheap to copy (e.g., Point, complex<float>) by value. 

Prefer taking inputs of other user-defined types by reference to const.

Consider pass-by-value instead of reference if the function requires a copy of its 
argument. This is conceptually identical to taking a reference to const plus do-
ing a copy, and it can help compiler to better optimize away temporaries. 

For output or input/output parameters: 

Prefer passing by (smart) pointer if the argument is optional (so callers can pass 
null as a “not available” or “don’t care” value) or if the function stores a copy of 
the pointer or otherwise manipulates ownership of the argument. 

Prefer passing by reference if the argument is required and the function won’t 
store a pointer to it or otherwise affect its ownership. This states that the argu-
ment is required and makes the caller responsible for providing a valid object. 

Don’t use C-style varargs (see Item 98).  

References 
[Alexandrescu03a] • [Cline99] §2.10-11, 14.02-12, 32.08 • [Dewhurst03] §57 • [Koenig97] 
§4 • [Lakos96] §9.1.11-12 • [McConnell93] §5.7 • [Meyers97] §21-22 • [Stroustrup94] 
§11.4.4 • [Stroustrup00] §5.5, §11.6, §16.3.4 • [Sutter00] §6, §46 



144 C++ Coding Standards 

73. Throw by value, catch by reference. 

Summary
Learn to catch properly: Throw exceptions by value (not pointer) and catch them by 
reference (usually to const). This is the combination that meshes best with exception 
semantics. When rethrowing the same exception, prefer just throw; to throw e;.

Discussion 
When throwing an exception, throw an object by value. Avoid throwing a pointer, 
because if you throw a pointer, you need to deal with memory management issues: 
You can’t throw a pointer to a stack-allocated value because the stack will be un-
wound before the pointer reaches the call site. You could throw a pointer to dynami-
cally allocated memory (if the error you’re reporting isn’t “out of memory” to begin 
with), but you’ve put the burden on the catch site to deallocate the memory. If you 
feel you really must throw a pointer, consider throwing a value-like smart pointer 
such as a shared_ptr<T> instead of a plain T*.

Throwing by value enjoys the best of all worlds because the compiler itself takes re-
sponsibility for the intricate process of managing memory for the exception object. 
All you need to take care of is ensuring that you implement a non-throwing copy 
constructor for your exception classes (see Item 32). 

Unless you are throwing a smart pointer, which already adds an indirection that 
preserves polymorphism, catching by reference is the only good way to go. Catching 
a plain value by value results in slicing at the catch site (see Item 54), which violently 
strips away the normally-vital polymorphic qualities of the exception object. Catch-
ing by reference preserves the polymorphism of the exception object. 

When rethrowing an exception e, prefer writing just throw; instead of throw e; be-
cause the first form always preserves polymorphism of the rethrown object. 

Examples
Example: Rethrowing a modified exception. Prefer to rethrow using throw;:

catch( MyException& e ) {   // catch by reference to non-const 
  e.AppendContext(“Passed through here”); // modify 
throw;       // rethrow modified object

}

References 
[Dewhurst03] §64-65 • [Meyers96] §13 • [Stroustrup00] §14.3 • [Vandevoorde03] §20 



  Error Handling and Exceptions 145

74. Report, handle, and translate errors 
appropriately. 

Summary
Know when to say when: Report errors at the point they are detected and identified 
as errors. Handle or translate each error at the nearest level that can do it correctly. 

Discussion 
Report an error (e.g., write throw) wherever a function detects an error that it cannot 
resolve itself and that makes it impossible for the function to continue execution. 
(See Item 70.) 

Handle an error (e.g., write a catch that doesn’t rethrow the same or another excep-
tion or emit another kind of error code) in the places that have sufficient knowledge 
to handle the error, including to enforce boundaries defined in the error policy (e.g., 
on main and thread mainlines; see Item 62) and to absorb errors in the bodies of de-
structors and deallocation operations. 

Translate an error (e.g., write a catch that does rethrow a different exception or emits 
another kind of error code) in these circumstances: 

To add higher-level semantic meaning: For example, in a word processing applica-
tion, Document::Open could accept a low-level unexpected-end-of-file error and 
translate it to a document-invalid-or-corrupt error, adding semantic information. 

To change the error handling mechanism: For example, in a module that uses excep-
tions internally but whose C API public boundary reports error codes, a bound-
ary API would catch an exception and emit a corresponding error code that ful-
fills the module’s contract and that the caller can understand. 

Code should not accept an error if it doesn’t have the context to do something useful 
about that error. If a function isn’t going to handle (or translate, or deliberately ab-
sorb) an error itself, it should allow or enable the error to propagate up to a caller 
who can handle it. 

Exceptions
It can occasionally be useful to accept and re-emit (e.g., catch and rethrow) the same 
error in order to add instrumentation, even though the error is not actually being 
handled.

References 
[Stroustrup00] §3.7.2, §14.7, §14.9  • [Sutter00] §8 • [Sutter04] §11 • [Sutter04b] 



160 C++ Coding Standards 

83. Use a checked STL implementation. 

Summary
Safety first (see Item 6): Use a checked STL implementation, even if it’s only available 
for one of your compiler platforms, and even if it’s only used during pre-release testing. 

Discussion 
Just like pointer mistakes, iterator mistakes are far too easy to make and will usually 
silently compile but then crash (at best) or appear to work (at worst). Even though 
your compiler doesn’t catch the mistakes, you don’t have to rely on “correction by 
visual inspection,” and shouldn’t: Tools exist. Use them. 

Some STL mistakes are distressingly common even for experienced programmers: 

Using an invalidated or uninitialized iterator: The former in particular is easy to do. 

Passing an out-of-bounds index: For example, accessing element 113 of a 100-
element container. 

Using an iterator “range” that isn’t really a range: Passing two iterators where the 
first doesn’t precede the second, or that don’t both refer into the same container. 

Passing an invalid iterator position: Calling a container member function that takes 
an iterator position, such as the position passed to insert, but passing an iterator 
that refers into a different container. 

Using an invalid ordering: Providing an invalid ordering rule for ordering an as-
sociative container or as a comparison criterion with the sorting algorithms. (See 
[Meyers01] §21 for examples.) Without a checked STL, these would typically 
manifest at run time as erratic behavior or infinite loops, not as hard errors. 

Most checked STL implementations detect these errors automatically, by adding ex-
tra debugging and housekeeping information to containers and iterators. For exam-
ple, an iterator can remember the container it refers into, and a container can re-
member all outstanding iterators into itself so that it can mark the appropriate itera-
tors as invalid as they become invalidated. Of course, this makes for fatter iterators, 
containers with extra state, and some extra work every time you modify the con-
tainer. But it’s worth it—at least during testing, and perhaps even during release 
(remember Item 8; don’t disable valuable checks for performance reasons unless and 
until you know performance is an issue in the affected cases). 

Even if you don’t ship with checking turned on, and even if you only have a 
checked STL on one of your target platforms, at minimum ensure that you routinely 
run your full complement of tests against a version of your application built with a 
checked STL. You’ll be glad you did. 



  STL: Algorithms 161

Examples
Example 1: Using an invalid iterator. It’s easy to forget when iterators are invalidated 
and use an invalid iterator (see Item 99). Consider this example adapted from 
[Meyers01] that inserts elements at the front of a deque:

deque<double>::iterator current = d.begin(); 

for( size_t i = 0; i < max; ++i ) 
  d.insert( current++, data[i] + 41 );  // do you see the bug?

Quick: Do you see the bug? You have three seconds.—Ding! If you didn’t get it in 
time, don’t worry; it’s a subtle and understandable mistake. A checked STL imple-
mentation will detect this error for you on the second loop iteration so that you 
don’t need to rely on your unaided visual acuity. (For a fixed version of this code, 
and superior alternatives to such a naked loop, see Item 84.) 

Example 2: Using an iterator range that isn’t really a range. An iterator range is a pair of 
iterators first and last that refer to the first element and the one-past-the-end-th ele-
ment of the range, respectively. It is required that last be reachable from first by re-
peated increments of first. There are two common ways to accidentally try to use an 
iterator range that isn’t actually a range: The first way arises when the two iterators 
that delimit the range point into the same container, but the first iterator doesn’t ac-
tually precede the second: 

for_each( c.end(), c.begin(), Something ); // not always this obvious

On each iteration of its internal loop, for_each will compare the first iterator with the 
second for equality, and as long as they are not equal it will continue to increment the 
first iterator. Of course, no matter how many times you increment the first iterator, it 
will never equal the second, so the loop is essentially endless. In practice, this will, at 
best, fall off the end of the container c and crash immediately with a memory protec-
tion fault. At worst, it will just fall off the end into uncharted memory and possibly 
read or change values that aren’t part of the container. It’s not that much different in 
principle from our infamous and eminently attackable friend the buffer overrun. 

The second common case arises when the iterators point into different containers: 

for_each( c.begin(), d.end(), Something ); // not always this obvious

The results are similar. Because checked STL iterators remember the containers that 
they refer into, they can detect such run-time errors. 

References 
[Dinkumware-Safe] • [Horstmann95] • [Josuttis99] §5.11.1 • [Metrowerks] • [Meyers01] 
§21, §50 • [STLport-Debug] • [Stroustrup00] §18.3.1, §19.3.1 



This page intentionally left blank 



209

Index

#include 
and using, 108 
vs. forward declaration, 40 

#include guards, 27, 33 
internal vs. external, 43 

#undef 
as soon as possible, 33 

&&
preferable to nested ifs, 38 

?:, 36 
[]. See operators, [] 
++C, 50 

A
Abelson, Harold, 13 
Abrahams, Dave, xv 
abstraction, 20 

and dependency 
management, 11 

and get/set, 20, 72, 73 
and interfaces, 62 

abstractions 
build higher-level from 

lower-level, 12 
depending upon instead of 

details, 41 
vs. details, 128 

accumulate, 125 
Acyclic Visitor, 41 
ADL, 104, 105, 106, 107, 122 

and template customization, 
122 

disabling unwanted, 124 

aggregates, 20 
Albaugh, Tyrrell, xv 
algorithmic complexity, 14 

and STL, 14 
exponential, 15 
linear-looking that is really 

quadratic, 15, 156 
algorithms 

and design patterns, 162 
are loops, 159 
binary_search, 165 
count, 165 
count_if, 165 
equal_range, 165 
find, 165 
find_if, 165 
lower_bound, 165 
nth_element, 166 
partial_sort, 166 
partial_sort_copy, 166 
partition, 166 
searching, 165 
sort, 166 
sorting, 166 
stable_partition, 166 
stable_sort, 166 
upper_bound, 165 
vs. loops, 38, 162 

alignment, 176 
Allison, Chuck, xv 
allocation, 111 

never allocate more than 
once per statement, 25 

allocator 

example use of, 5 
ambiguities, 77 
ambiguities, 

avoiding declaration, 13 
amortized constant time, 155 
append, 135 
arithmetic operators. See

operators, arithmetic 
arrays 

fixed-size, 15 
inferior to containers, 152 

assert, 33, 130, 135 
example of, 5, 98, 175 
macro needed for, 33 
only for internal 

programming errors, 132, 
134 

prefer instead of logic_error, 
131 

assertions. See assert 
assignment 

copy. See copy assignment 
self, 99, 138 

assignment operators. See
operators, assignment 

asymptotic complexity. See
algorithmic complexity 

at
vs. [], 136 

atomic operations, 21 
auto_ptr, 94, 154 



210 Index 

B
Bajaj, Samir, xv 
BankAccount, 72 
Barbour, Marc, xv 
base classes. See classes, base 
base two, 176 
basic_string, 12, See also

containers 
append, 135 
find_first_of, 136 
insert, 135 
monolithic, 79 

behavior 
undefined. See undefined 

behavior 
Bell, Gordon, 13 
Bentley, Jon, 13, 16 
BetweenValues, 164 
Big Four, 55, 85, 94, See also

default constructor; copy 
construction; copy 
assignment; destructor 

Big-Oh. See algorithmic 
complexity 

binary compatibility, 116, 120 
binary_function, 172 
binary_search, 165 
bind2nd, 162, 163 

example use of, 163, 164 
Bird, 67 
bloat, 112 
Boedigheimer, Kim, xv 
Boost, 3, 147, See also

shared_ptr 
discriminated unions library, 

121 
format library, 184 
Lambda library, 4, 162, 163, 

164 
Lambda library, example use 

of, 163 
preprocessor library, 33 

bounds checking, 29, 152 
brace placement, 2 
braces. See brace placement 

matching, 38 
branch prediction, 16 

Bridge, 162 
Brown, Travis, xv 
buffer overruns. See security 
bugs. See insects 
build

breaking, 8 
unit tests, 8 

build system 
automated, 7 

build times, 76 

C
C, 36, See also C, obsolete uses 

of 
C, obsolete uses of, xi 

arrays, 37, 152, 186 
casts, 180, 181 
global namespace, 108 
Hungarian notation, 3 
implicit cast from const 

char[] to (non-const) char* 
hole in the type system, 
179 

macros, 32, 33 
manual memory 

management, 24, 152 
manual resource 

management, 24, 152 
memcpy/memcmp (except 

for PODs), 182 
null-terminated character 

array strings, 37, 152 
pointer arithmetic, 152 
printf, 184 
realloc, 12 
sprintf, 184 
switching on a type flag, 174, 

175 
unions to reinterpret 

representation, 183 
unsafe functions 

(strcpy/strncpy, strcmp, 
sprintf, gets, etc.), 185 

varargs, 46, 184 
variable definition at 

beginning of scope, 35, 36 
C++ 

vs. ++C, 50 
caching, 16 
caffeine 

lack of, 96 
callback functions, 133 

and exceptions, 114 
instead of locking, 23 

Carlson, Richard 
reference to, 2, 144, 155 

casts, 180 
and not const, 179 
explicit preferred, 6 

catch 
..., 81, 93, 114, 115, 133, 140 

Catch-22, 127 
cerr, 19, 113 
char_traits, 125 
check in. See version control 

system 
check out. See version control 

system 
checked STL implementation, 

160 
checked_cast, 178 
cin, 19, 113 
clarity

prime importance of, 13 
class templates. See also

templates 
specialization, 127 

classes 
and namespaces, 104 
and nonmember functions, 

104 
and portability, 116 
base, 56, 69, 90, 91, 96, 101 
composition vs. inheritance, 

58, 61 
concrete, 60, 91 
data members, 72 
derived. See polymorphism 

and substitutability 
exception, 56 
kinds of, 56 
minimal vs. monolithic, 57 
mixin, 65 
policy, 56, 65, 91 
traits, 56 



  Index 211

unions, 183 
value, 56, 101, 154 

clean compiles. See compiler 
warnings 

clear 
better than cute, 13 

cliff, 85 
Cline, Marshall, xv 
clog, 113 
Clone, 96, 97 

vs. copy construction, 97 
Cobol, 36 
code reviews, 9 

this book's table of contents 
as checklist, 9 

coding style 
vs. design style, 11 

cohesion, 12, 38 
COM, 7, 63, 91, 115, 133 
Command, 41, 121 
comments, 2 
CompareThings, 171 
compatibility 

source vs. binary, 73 
compile 

cleanly. See compiler 
warnings 

compile time 
and errors, 28 

compiler firewall. See Pimpl 
compiler warnings, 4 
compiler-generated functions, 

85, See copy construction; 
copy assignment; destructor 

compile-time 
conditions, 29 
errors, 27 
polymorphism, 29 

complex 
simple better than, 13 

complexity 
algorithmic. See algorithmic 

complexity 
asymptotic. See algorithmic 

complexity 
compose, 163 
compose2 

example use of, 164 

composition 
vs. inheritance, 58, 61 

concurrency, 19, 21, See also
locking 
vast majority of objects not 

shared, 22 
conditional compilation, 33 
conditions 

compile-time, 29 
const, 27, 30 

and pointers, 30 
avoid on pass-by-value 

parameters, 31 
instead of magic numbers, 

34
not deep, 30 
simplifies code, 30 
viral, 30 

const_cast, 179 
const-correctness, 31, 128, 179 
construction 

copy. See copy construction 
construction order 

of member variables, 86 
ConstructionWasOK 

not recommended, 141 
constructor parameters 

prefer named variables 
instead of temporaries, 13 

constructors 
and virtual functions, 88 
copy. See copy construction 
default. See default 

constructor 
initialization list, 87 
initialization list ordering 

not significant, definition 
order significant, 86 

post-constructors, 88 
prefer initializer list instead 

of assignment, 18 
reporting errors from, 141, 

142 
virtual constructors, 88 

containers 
and copy 

construction/assignment, 
95

and smart pointers, 95 
and thread safety, 21 
choosing, 150 
default, 150 
hash-based, 15, 150, 181 
heterogeneous, 154 
index, 154 
map, and optional values, 

154 
of non-value types, 154 
range vs. single-element 

functions, 155, 156 
shrink-to-fit, 157 
store values, 154 
string, 152 
vector, 150, 152, 153 
vector vs. list, 151 
vector, advantages of, 150 

conversion sequences, 70 
conversions 

implicit, 70, See implicit type 
conversions 

named functions, 70 
Coombes, Neal, xv 
copy, 107 
copy assignment, 25, 55, 85, 87, 

99
and containers, 95 
and copy construction, 94, 95 
and destructor, 94 
and swap, 101 
not virtual, 99 

copy construction, 25, 55, 85 
copy constructors 

and containers, 95 
and copy assignment, 94, 95 
and destructor, 94 
vs. Clone, 97 

copy-on-write, 23 
CORBA, 7, 63, 91, 115, 133 
correct 

better than fast, 13 
correctness 

prime importance of, 13 
corruption, 21 
count, 165 
count_if, 165 
coupling, 19 



212 Index 

cout, 19, 113 
covariance, 69 
COW. See copy-on-write  
CPU-bound, 17 
Create, 89 
curly braces. See brace 

placement 
CustomAllocator, 80 
customization 

and C++ standard library, 
125 

of templates, 122 
CustomString, 117 
cute

clear better than, 13 
cvs, 8 
cyclic dependencies, 40 

breaking, 41 

D
dangling pointers, 185 
data 

exposing, 20 
global. See global variables 

data validation, 29 
data volumes 

growth of, 14 
database-bound, 17 
Date, 72 
deadlock, 21 
deallocation, 111 
deallocation functions 

never fail, 92 
Dechev, Damian, xv 
declaration 

vs. definition, 40 
declaration ambiguities 

avoiding, 13 
default, 175 
default arguments 

and virtual functions, 66 
default constructor, 55, 85, 87, 

156 
default container 

vector, 150 
definition 

of member variables, 86 

vs. declaration, 40 
delete. See also operators, delete 

and polymorphism, 91 
with new, 80 

dependencies, 103 
and templates, 42 
compile-time, 58 
cyclic. See cyclic 

dependencies 
managing, 20 
upon abstractions instead of 

details, 41 
dependency cycles 

across modules, 41 
Dependency Inversion 

Principle, 41, 62 
dependency management, 74, 

See also encapsulation and
information hiding 
broad importance of, 11 
member vs. nonmember 

functions, 79 
dependent names, 125 
deployment 

ease of, 57 
design patters 

and algorithms, 162 
design style 

design vs. coding style, 11 
destructor, 55, 85 

and copy assignment, 94 
and copy construction, 94 
nonvirtual, 61, See also

slicing 
public and virtual, 63 

destructors, 68, See also RAII 
and exceptions, 115 
and virtual functions, 88 
in base classes, 90 
never fail, 92 

details 
vs. abstractions, 128 

Dewhurst, Steve, xv 
Diamond, Norman, 85 
Dimov, Peter, xv 
dint

gratuitous use of odd word, 
162 

disabling warnings. See
warnings 

disk capacity 
growth of, 14 

disk-bound, 17 
distance, 107, 156, 165 
divide and conquer. See

minimal vs. monolithic 
DLLs, 103 
DoClone, 98 
downcasts, 29 
Draw, 175 
dusty corners, 13 
dynamic_cast, 69, 178 

downcasting with, 29 
dynamically checked errors. See

errors, dynamic checking 

E
EBO. See empty base class 

optimization 
ECO. See empty base class 

optimization 
efficiency. See performance 
empty base class optimization, 

59, 63 
empty() 

vs. size() == 0, 128 
encapsulation, 20, 57, 72, 74, 76 

member vs. nonmember 
functions, 79 

enums, 29, 175 
instead of magic numbers, 

34
equal_range, 165 
ER units 

comparison with, xiii 
errno, 140, See also error codes 
error code 

overuse, 142 
error codes 

translating to/from 
exceptions, 115 

vs. exceptions, 140 
error handling policy. See

errors, policy for handling 
error messages 



  Index 213

and macros, 33 
error safety, 57, 59, 77 

and RAII, 24 
errors 

and modules, 133 
and operators, 141 
assert, 130 
categorizing, 133 
compile-time, 28 
constructors, 141 
detection, 133 
dynamic checking, 28 
handling, 133, 145 
identifying, 132 
ignoring, dangers of, 140 
internal assumptions, 130 
invariants to test for. See

invariants 
link-time, 28 
policy for handling, 132 
prefer compile- and link-

time to run-time, 27, 28 
propagating, 140 
propagation, 133 
reporting, 133, 145 
retrying, 138 
run-time, 132 
severity, 133 
static checking, 28 
translating, 144, 145 
vs. non-errors, 134 

error-safety, 150 
basic guarantee, 137 
copy construction, 99 
no-fail guarantee, 137 
not penalizing code that 

doesn't need stronger 
guarantees, 137 

strong guarantee, 137 
evil

root of all, 11 
exception 

what, 147 
exception classes. See classes, 

exception 
exception handling. See also

errors; error-safety 
catch by reference, 144 

overuse, 142 
throw by value, 144 
warning against disabling, 

143 
exception safety. See error 

safety 
exception specifications, 93, 146 

avoid, 146 
static vs. dynamic checking, 

147 
exceptions 

and callback functions, 114 
and destructors, 115 
and main, 114 
and modules, 114 
and slicing, 144 
and threads, 114 
not across module 

boundaries, 114 
translating to/from error 

codes, 115 
vs. error codes, 140 

explicit, 70, 97 
explicit loops 

fewer in STL-using 
programs, 162 

explicit qualification, 77, 110 
expression templates, 50, 53 
external locking, 22 

F
facets 

mistakes of, 121 
factory 

example use of, 89 
Factory, 162 
factory functions, 19 
fast 

correct better than, 13 
Feher, Attila, xv 
File, 72, 136 
find, 18, 165 
find_first_of, 136, 142 
find_if, 165, 169 
FlagNth, 169 
Fly, 67 
fools, 11 

for_each, 15, 162 
example use of, 161 

formatting, 2 
Fortran, 36 
forward declaration 

vs. #include, 40 
French 

grauitous use of, 51 
friend, 55 
fudgeFactor, 112 
full build, 7, See also build 

system 
Fuller, John, xv 
function 

to avoid uninitialized 
variables, 37 

unit of work, 134 
function arguments 

order of evaluation, 54 
function objects, 162, See also

predicates 
example use of, 164 
vs. functions, 170 
writing correctly, 172 

function parameters, 45 
and binders, 162 
and compile-time 

dependencies, 76 
and const, 31, 46 
and conversions, 48 
and copying, 46 
and null, 46 
and preconditions, 134 
and primitive types, 46 
and smart pointers, 46 
and 

unary_function/binary_fu
nction, 170 

and user-defined types, 46 
and varargs, 46 
in constructors, 89 
input, 46 
output, 46 
pass by value vs. pass by 

reference, 46 
unary and binary operators, 

48
function templates, 113 



214 Index 

and not specialization, 126 
and overload resolution, 126 

functions 
compiler-generated, 85 
deallocation, 92 
length, 38 
member vs. nonmember, 48, 

79
nesting, 38 
vs. function objects, 170 

functions,compiler-generated. 
See default constructor; copy 
construction; copy 
assignment; destructor 

G
Gaffney, Bernard, xv 
generic programming. See

templates 
geniuses, 11 
get/set, 73 

and abstraction, 20, 72, 73 
GetBuffer, 75 
GetBuilding, 66 
GetLastError, 140 
getstr, 53 
global data. See global variables 
global state. See global 

variables 
global variables, 19, 39 

and dependency 
management, 11 

initialization of, 19 
limit parallelism, 19 

Gordon, Peter, xv 
greater 

example use of, 164 
grep, 181 
Griffiths, Alan, xv 
guarantees 

for error safety. See error-
safety 

H
handles 

to internal data, 74 

hash-based containers. See
containers, hash-based 

Haskell, 28 
header files 

self-sufficient, 42 
wrapping third-party 

headers, 4 
header guards. See #include 

guards 
headers 

and linkage, 112 
and not unnamed 

namespaces, 113 
and static, 113 
precompiled, 42 

Henney, Kevlin, xv 
Henning, Michi, xv 
heterogeneous containers, 154 
hide information. See

information hiding 
hiding 

names, 66, 82 
hijacking 

and macros, 32 
Hinnant, Howard, xv 
Hoare, C.A., 16 
Hungarian notation, 3 
hygiene 

and not macros, 32 
Hyslop, Jim, xv 

I
implicit conversions, 70 

benefits of, 71 
dangers of, 71 

implicit interface, 122 
and customization, 122 

implicit type conversions 
avoided by overloading, 51 

import this, xv 
incremental build, 7, See also

build system 
indentation, 2 
index containers, 154 
indexing 

vs. iterators, 128 
information hiding, 72 

and dependency 
management, 11 

inheritance 
and dependency 

management, 11 
and reuse, 64 
misuse of, 64 
not from concrete base 

classes, 60 
public, 64 
vs. composition, 58, 61 

initialization 
and constructors, 87 
default, 87 
of global variables, 19 
of member variables, 86 
of variables, 35, 36 
static vs. dynamic, 39 
variables. See variable, not 

initialized 
zero, 39 

initialization dependencies, 39 
inline, 17, 113 

and profiler, 17 
in- XE "new" \t "See also

operators, new"  XE "delete" 
\t "See also operators, delete" 
place new. See new 

insects, 9, 12, 28, 30, 35, 36, 39, 
52, 81, 137 

insert, 135, 139, 156 
at a specific location, 150 

inserter 
example use of, 163 

interface 
implicit. See implicit 

interface 
Interface Principle, 104 
interfaces 

abstract, 62 
intermittent crashes, 36 
internal locking, 22 
internals 

exposing, 20 
invalid iterators, 185 
invariants, 18, 20, 28, 64, 72, 73, 

74, 130, 131, 132, 134, 135, 
136, 137, 138, 140, 141, 142 



  Index 215

iostreams, 113 
is_in_klingon, 61 
is-a. See substitutability, See

substitutability 
IsHeavy, 170 
iterator ranges, 161 
iterator_traits, 125 
iterators, 151 

comparing with != instead of 
<, 128 

invalid, 161, 185 
ranges, 161 
vs. indexing, 128 

J
Java, 28, 147 
Johnson, Curt, xv 
Josuttis, Nicolai, xv 
juggling, 152 

K
K&R style. See brace placement 
Kalb, Jon, xv 
Kanze, James, xv 
Kernighan, Brian, 173 
Khesin, Max, xv 
KISS, 13 
Knuth, Donald, 11, 16 
Koenig lookup. See ADL 

L
Lafferty, Debbie, xv 
Lambda library. See Boost, 

Lambda library 
land mines, 27 
Last Word 

not this book, xii 
Latin 

gratuitous use of, 59, 141 
LaunchSatellite, 139 
Law of Second Chances, 63 
leak 

memory, 81 
leaks, 137 
Leary-Coutu, Chanda, xv 

Leddy, Charles, xv 
length 

of lines, 2 
less 

example use of, 164 
libraries 

shared, 103 
lifetime. See object lifetime 
line length, 2 
link time 

and errors, 27, 28 
linkage

and headers, 112 
external, 19 

Lippman, Stan, xv 
Liskov Substitution Principle. 

See substitutability 
Lisp, 28 
list. See also containers 

vs. vector, 151 
literals 

and magic numbers. See
magic numbers 

livelock, 21 
locality of reference, 151 
localized_string, 61 
locking 

external, 22 
in increasing address order, 

23
internal, 22 
lock-free designs, 23 
not needed for immutable 

objects, 23 
using callback functions 

instead of, 23 
logic_error 

example of, 5 
prefer assertions instead of, 

131 
lookup

two-phase, 125 
loops 

fewer explicit loops in STL-
using programs, 162 

vs. algorithms, 162 
lower_bound, 165 

M
macros, 27, 32 

and conditional compilation, 
33

interfering with template 
instantiations, 33 

to enable/disable threading 
support, 23 

magic numbers, 34 
main 

and exceptions, 114 
make, 7, See also build system 
malloc, 131 
managing dependencies, 103, 

See dependency 
management 

Marcus, Matt, xv 
Marginean, Petru, xv 
Martin, Robert C., xv 
Matrix, 57, 72 
MAX_PATH, 37 
McConnell, Steve, 13, 130 
mem_fun, 170 
mem_fun_ref, 170 
member variables 

public vs. private, 72 
member vs. nonmember 

functions, 79 
memcmp, 182 
memcpy, 182 
memory leaks, 81 
memory management 

and containers, 152 
memory-bound, 17 
MemoryPool, 82 
Meyers, Scott, xv 
Milewski, Bartosz, xv 
Ming vases, 152 
minimal vs. monolithic, 55, 57 
missing return. See return, 

missing 
mixin classes. See classes, mixin 
ML, 28 
modules 

allocating and deallocating 
memory in same, 111 

and error handling, 133 



216 Index 

and exceptions, 114 
and not exceptions, 114 
defined, 103 
interdependence between, 40 
interfaces use only 

sufficiently portable types, 
116 

monolithic classes, 79 
monolithic vs. minimal, 55, 57 
Moore's Law, 14 
Mullane, Heather, xv 
mutable, 30 

N
name hiding, 66, 82 
name lookup, 77 

two-phase, 125 
named variables 

prefer as constructor 
parameters, 13 

names 
dependent, 125 
symbolic vs. magic numbers, 

34
namespaces, 103 

and using, 108 
pollution of, 19, 108, 109, 110 
type and its nonmember 

functions in same, 104 
type and unrelated functions 

in separate, 106 
unnamed. See unnamed 

namespace 
using, 108 

naming 
and macros, 33 
variables. See Hungarian 

notation 
naming convention, 2 
NDEBUG, 111, 130 
Nefarious, 92, 93 
nesting, 38 
network-bound, 17 
new, 141, See also operators, 

new 
immediately giving result to 

an owning object, 25 

in-place, 82 
never allocate more than 

once per statement, 25 
nothrow, 82 
with delete, 80 

nifty counters, 113 
Node, 73 
nongeneric code 

unintentionally, 128 
Nonvirtual Interface pattern, 

68, 69, 90, 98 
not1, 170 
nothrow new. See new 
nth_element, 166 

example use of, 167 
NVI. See Nonvirtual Interface 

pattern

O
object lifetime 

minimizing, 35 
objects 

temporary. See temporary 
objects 

Observer, 162 
obsolete practices, 2, See C, 

obsolete uses of 
external #include guards, 43 
Hungarian notation, 3 
SESE. See single entry single 

exit
Occam, William of, 51 
ODR. See one definition rule 
offsetof, 176 
ointment 

fly in the, 81 
one definition rule, 110 
operator delete 

never fails, 92 
operator overloading 

gratuitous, 13 
preserve natural semantics, 

47
operators, 45 

&&, 52 
(), 168 
,, 52 

[], 135, 136 
[] vs. iterators, 128 
||, 52 
++, 17, 18, 50 
and ADL, 105 
and namespaces, 104, 105 
arithmetic, 48 
assignment, 48, 78, 93 
binary, 48 
const char* (on strings), 71 
copy assignment. See copy 

assignment 
decrement, 50 
delete, 80, 82, 93, 111 
increment, 50 
member vs. nonmember, 48 
new, 80, 82, 111, 141 
overloaded, 47 
preserve natural semantics, 

47, 48, 50 
reporting errors from, 141 

optimization. See also
temporary objects, See also
temporary objects, See also
temporary objects, See also
temporary objects 
and exception specifications, 

146 
and inline, 17 
and libraries, 17 
by using STL, 18 
compile-time evaluation, 121 
copy-on-write outdated, 157 
empty base class, 63 
enabling compiler’s, 49, 99 
encapsulate where possible, 

17
in STL implementations, 94 
indexing vs. iteration, 128 
must be based on 

measurement, 16 
prefer improving 

algorithmic complexity 
over micro-optimizations, 
17

premature, 13, 14, 15, 16, 17, 
18, 50, 51, 59, 87, 171 



  Index 217

range vs. single-element 
functions, 156 

self-assignment check, 138 
static binding, 121 

optional values 
and map, 154 

order dependencies, 19, 23, 25, 
39, 52, 53, 54, 69, 86, 109, 110, 
124, 169, 176 

Ostrich, 67 
out_of_range, 136 
overload resolution, 77 
overloading 

and conversions, 70 
and function templates, 126 
of operators, 13 
to avoid implicit type 

conversions, 51 
overriding, 66 

P
pair, 56 
Pal, Balog, xv 
parameters 

pass by value vs. pass by 
reference, 18 

unused. See unused 
parameters 

partial specialization. See
specialization, partial 

partial_sort, 166 
example use of, 167 

partial_sort_copy, 166 
partition, 162, 166 

example use of, 166 
Pascal, 36 
Peil, Jeff, xv 
pejorative language 

and macros, 32 
performance, 28, 141 
Perlis, Alan, xi, xv, 11, 27, 45, 60, 

103, 129, 173 
personal taste 

matters of, 2 
pessimization, 18 
Pimpl, 30, 58, 69, 72, 76, 78, 101, 

172, See also encapsulation 

and dependency 
management 
and shared_ptr, 78 

pipelining, 16 
Pirkelbauer, Peter, xv 
placement 

of braces. See brace 
placement 

plain old data. See POD 
platform-dependent operations 

wrapping, 21 
Plauger, P.J., 173 
plus, 162, 163 

example use of, 163 
POD, 176, 183 
pointer_to_unary_function, 170 
pointers

and const, 30 
and not static_cast, 178 
dangling, 185 

points of customization. See
customization 

policy classes. See classes, 
policy

policy-based design, 63 
pollution (of names and 

namespaces), 19, 35, 108, 109, 
110 

polymorphism, 66 
ad-hoc, 120 
and delete, 91 
and destruction, 90 
and not arrays, 186 
and slicing, 96 
compile-time vs. run-time, 

29
controlled, 59 
dynamic, 128 
dynamic, 64, 120 
inclusion, 120 
static, 63, 120 
static and dynamic, 120, 175 
static vs. dynamic, 65 
vs. slicing, 144 
vs. switch on type tag, 38 
vs. switching on type, 174 

Port, 24 
portable types 

and module interfaces, 116 
postconditions, 66, 69, 124, 130, 

131, 134, 135, 136, 138, 140, 
142 
and virtual functions, 66 

post-constructors, 88 
PostInitialize, 89 
pragmatists, 11 
Prasertsith, Chuti, xv 
precompiled headers, 42 
preconditions, 66, 69, 132, 134, 

135, 136, 142 
and virtual functions, 66 

predicates. See also function 
objects 
pure functions, 168 

premature optimization. See
optimization, premature 

pressure 
schedule pressure, xiii 

priority_queue, 166 
processes 

multiple, 21 
profiler 

and inline, 17 
using. See optimization 

proverbs 
Chinese, 8 
German, 177 
Latin, 16, 156 
level of indirection, 126 
Romanian, 177 

Prus, Vladimir, xv 
ptr_fun, 170 
public data, 20 
push_back, 15, 155 
Python, 28 

Q
qualification 

explicit, 77 
qualification, explicit, 110 
qualified 

vs. unqualified, 123 



218 Index 

R
race conditions, 21 
RAII, 5, 24, 38, 56, 94, 95 

and copy assignment, 25 
and copy construction, 25 

range checking, 135 
ranges 

of iterators, 161 
realloc, 12 
Rectangle, 64 
recursive search 

not reporting result using 
exception, 142 

reference counting, 157 
registry 

factory and, 19 
reinterpret_cast, 177, 180, 181, 

183, 184, 185 
release 

unit of. See module 
reliability, 27 
remove_copy_if, 169 
remove_if, 169 
replace_if, 162 
resource acquisition is 

initialization. See RAII 
resource management, 94, See

also RAII 
and constructors, 87 
and RAII, 24 
and smart pointers, 24 
never allocate more than 

once per statement, 25 
resources should be owned 

by objects, 25 
resources. See resource 

management 
responsibility 

growth, 12 
of an entity, 12 

restricted values 
of integers, 29 

return 
missing, 5 

reuse 
and inheritance, 64 

reviews 

of code. See code reviews 
ripple effect, 20 
root of all evil, 11 
Ruby, 28 
run time 

and errors, 27, 28 

S
safety, 27 
Saks, Dan, xv 
scalability 

coding for, 14 
schedule pressure, xiii 
Schwarz counters, 113 
Schwarz, Jerry, 113 
Second Chances 

Law of, 63 
security, 15 

and checked STL 
implementation, 160 

and exception handling 
performance, 142 

arrays and, 15 
buffers, 152 
pointers, 152 
printf, 184 
ssh, 8 
strcpy, 185 

Security, 72 
self-assignment, 99, 138 
self-sufficient header files, 42 
serialization 

of access to shared objects, 
21

SESE. See single entry single 
exit

shallow const, 30 
Shape, 175 
shared libraries, 103 
shared state 

and dependency 
management, 11 

shared_ptr, 111, 121, 149 
and arrays, 186 
and containers, 154 
and modules, 111 

and optional values in maps, 
154 

and overuse, 25 
and Pimpl, 78 
example use of, 24, 25, 76, 78, 

89, 182 
throwing, 144 

shared_ptr, 149 
shared_ptr, 172 
sheep's clothing, 39 
shrink-to-fit, 157 
signed/unsigned mismatch, 6 
simple 

better than complex, 13 
simplicity 

prime importance of, 13 
single entry single exit, 3 
Singleton, 39 
skins, 139 
slicing, 61, 96 

and polymorphism, 96 
of exceptions, 144 

Smalltalk, 28 
smart pointers, 98 

and containers, 95 
and function parameters, 46 
and overuse, 25 
for resource management, 24 

Socket, 74 
sort, 18, 125, 166 
spaces 

vs. tabs, 3 
spaghetti, 17 
special member functions. See

default constructor; copy 
construction; copy 
assignment; destructor 

specialization 
and not function templates, 

126 
of class templates, not 

function templates, 127 
partial, 126 

speculative execution, 16 
Spencer, Henry, 173, 177 
Square, 64 
ssh, 8 
stable_partition, 166 



  Index 219

stable_sort, 166 
stack unwinding, 92 
standards, xi 

advantages of, xii 
what not to include, 2 

Star Trek 
gratuitous reference to, 61 

state 
global. See global variables 

static 
misuse of, 112 

static type checking, 120 
static_cast, 181 

and not pointers, 178 
downcasting with, 29 

statically checked errors. See
errors, static checking 

STL
algorithms. See algorithms 
checked implementation 

valuable, 160 
containers. See containers 
iterators. See iterators 
searching, 165 
sorting, 166 
use leads to fewer explicit 

loops, 162 
using, 18 

STL containers 
and thread safety, 21 

string. See basic_string, See
basic_string 

String, 75 
Stroustrup, Bjarne, xv, 32, 55, 

119, 129, 149, 159 
strtok, 54 
style 

design vs. coding, 11 
substitutability, 59, 64, 66 
subsumption, 120 
SummarizeFile, 116 
super_string, 60 
surprises 

programmers hate, 53 
Sussman, Gerald Jay, 13 
swap, 93, 100, 125, 126, 127 

never fails, 92 
swap trick, 157 

switch 
default case, 5 

T
tabs 

vs. spaces, 3 
taste 

matters of personal, 2 
tautologies 

perfect for assertions, 131 
template customization. See

customization 
Template Method, 68, 90 
templates 

and implicit interface. See
implicit interface 

and source-level 
dependencies, 42 

function. See function 
templates 

function templates not in 
same namespace as a 
type, 106 

macros interfering with, 33 
unintentionally nongeneric 

code, 128 
temporaries 

avoid as constructor 
parameters, 13 

temporary objects, 18, 51, 70, 98 
Tensor, 47 
terminate, 146 
testing, 20 
tests 

unit tests, 8 
TeX 

The Errors of TeX, 11 
this

import, xv 
thread safely, 21 
thread safety, 21 

"just enough", 23 
and STL containers, 21 

threads, 133 
and exceptions, 114 
multiple, 21 

vast majority of objects not 
shared across, 22 

thrill sports, 152 
time pressure, xiii 
traits classes. See classes, traits 
transform, 162 

example use of, 163 
Translate, 117 
Transmogrify, 54, 96 
Transmogrify2, 97 
Transubstantiate, 96 
Tree, 25 
TreeNode, 73 
try, 38 
two-phase lookup, 125 
two's complement, 176 
type checking 

static, 120 
type safety, 28, 173, 176 
type switching 

vs. polymorphism, 174 
type system 

and not macros, 32 
and not memcpy/memcmp, 

182 
hole in, 179 
making use of, 28, 29, 30, 

131, 146, 173 
type systems 

static vs. dynamic, 28 
typename 

example use of, 122, 123, 125 
types

vs. representations, 176 

U
unary_function, 91, 170, 172 
Uncle Bob, xv 
undefined behavior, 19, 25, 27, 

36, 39, 61, 71, 88, 90, 91, 93, 
173, 179, 181, 182, 183, 184, 
185 

unexpected_handler, 146 
uninitialized variables, 36 
unintentionally nongeneric 

code, 128 
unions, 183 



220 Index 

unit of work. See function 
unit tests, 8 
UnknownException, 146 
unnamed namespace 

and not headers, 113 
unqualified 

vs. qualified, 123 
unsigned 

mismatch with signed. See
signed/unsigned 
mismatch 

unused parameters, 5 
unwinding 

stack, 92 
upper_bound, 15, 165 
using, 83 

avoiding need for, 105 
is good, 108 
not before an #include, 108 

V
validation 

of input data, 29 
value-like types. See classes, 

value 
Vandevoorde, Daveed, xv 
varargs, 184 
variable 

defined but not used, 5 
not initialized, 5 

variable naming. See
Hungarian notation 

variables 
declaring, 35 
global. See global variables 
initialization of, 35 
initializing, 36 
uninitialized, 27 

VCS. See version control system 
vector. See also containers 

by default, 150 
insert, 139 
vs. list, 151 

version control system, 8 
versioning, 103, 138 

and get/set, 72 
viral const, 30 
virtual constructors, 88 
virtual functions, 66 

and constructors and 
destructors, 88 

destructors, 90 
nonpublic preferred, 68 

Visitor, 41, 121, 162, See also
Acyclic Visitor 

volatile, 37 

W
Wagner, Luke, xv 
warnings 

compiler. See compiler 
warnings 

disabling, 6 
none on successful build, 7 
spurious, dealing with, 6 

Weinberg, Gerald, 1 
what, 147 
Wilson, Matthew, xv 
works-like-a. See

substitutability , See
substitutability  

wrapping
header files. See header files, 

wrapping third-party 
headers 

platform-dependent 
operations, 21 

Wysong, Lara, xv 

Z
zero initialization, 39 
Zolman, Leor, xv 


	Contents
	Preface
	1. Compile cleanly at high warning levels.
	25. Take parameters appropriately by value, (smart) pointer, or reference.
	73. Throw by value, catch by reference.
	74. Report, handle, and translate errors appropriately.
	83. Use a checked STL implementation.
	Index



