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Preface

Get into a rut early: Do the same process the same way. Accumulate idioms.  
Standardize. The only difference(!) between Shakespeare and you was the  

size of his idiom list—not the size of his vocabulary. 

      — Alan Perlis [emphasis ours] 

The best thing about standards is that there are so many to choose from. 

      — Variously attributed 

We want to provide this book as a basis for your team’s coding standards for two 
principal reasons: 

A coding standard should reflect the community’s best tried-and-true experience: It 
should contain proven idioms based on experience and solid understanding of 
the language. In particular, a coding standard should be based firmly on the ex-
tensive and rich software development literature, bringing together rules, 
guidelines, and best practices that would otherwise be left scattered throughout 
many sources. 

Nature abhors a vacuum: If you don’t consciously set out reasonable rules, usually 
someone else will try to push their own set of pet rules instead. A coding stan-
dard made that way usually has all of the least desirable properties of a coding 
standard; for example, many such standards try to enforce a minimalistic C-
style use of C++. 

Many bad coding standards have been set by people who don’t understand the lan-
guage well, don’t understand software development well, or try to legislate too 
much. A bad coding standard quickly loses credibility and at best even its valid 
guidelines are liable to be ignored by disenchanted programmers who dislike or 
disagree with its poorer guidelines. That’s “at best”—at worst, a bad standard might 
actually be enforced. 
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How to Use This Book 

Think. Do follow good guidelines conscientiously; but don’t follow them blindly. In 
this book’s Items, note the Exceptions clarifying the less common situations where 
the guidance may not apply. No set of guidelines, however good (and we think 
these ones are), should try to be a substitute for thinking. 

Each development team is responsible for setting its own standards, and for setting 
them responsibly. That includes your team. If you are a team lead, involve your 
team members in setting the team’s standards; people are more likely to follow 
standards they view as their own than they are to follow a bunch of rules they feel 
are being thrust upon them. 

This book is designed to be used as a basis for, and to be included by reference in, 
your team’s coding standards. It is not intended to be the Last Word in coding stan-
dards, because your team will have additional guidelines appropriate to your par-
ticular group or task, and you should feel free to add those to these Items. But we 
hope that this book will save you some of the work of (re)developing your own, by 
documenting and referencing widely-accepted and authoritative practices that ap-
ply nearly universally (with Exceptions as noted), and so help increase the quality 
and consistency of the coding standards you use. 

Have your team read these guidelines with their rationales (i.e., the whole book, and 
selected Items’ References to other books and papers as needed), and decide if there 
are any that your team simply can’t live with (e.g., because of some situation unique 
to your project). Then commit to the rest. Once adopted, the team’s coding standards 
should not be violated except after consulting with the whole team. 

Finally, periodically review your guidelines as a team to include practical experience 
and feedback from real use. 

Coding Standards and You 

Good coding standards can offer many interrelated advantages: 

Improved code quality: Encouraging developers to do the right things in a consis-
tent way directly works to improve software quality and maintainability. 

Improved development speed: Developers don’t need to always make decisions 
starting from first principles. 

Better teamwork: They help reduce needless debates on inconsequential issues 
and make it easier for teammates to read and maintain each other’s code. 

Uniformity in the right dimension: This frees developers to be creative in directions 
that matter. 
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Under stress and time pressure, people do what they’ve been trained to do. They fall 
back on habit. That’s why ER units in hospitals employ experienced, trained per-
sonnel; even knowledgeable beginners would panic. 

As software developers, we routinely face enormous pressure to deliver tomorrow’s 
software yesterday. Under schedule pressure, we do what we are trained to do and 
are used to doing. Sloppy programmers who in normal times don’t know good prac-
tices of software engineering (or aren’t used to applying them) will write even slop-
pier and buggier code when pressure is on. Conversely, programmers who form 
good habits and practice them regularly will keep themselves organized and deliver 
quality code, fast. 

The coding standards introduced by this book are a collection of guidelines for writ-
ing high-quality C++ code. They are the distilled conclusions of a rich collective ex-
perience of the C++ community. Much of this body of knowledge has only been 
available in bits and pieces spread throughout books, or as word-of-mouth wisdom. 
This book’s intent is to collect that knowledge into a collection of rules that is terse, 
justified, and easy to understand and follow. 

Of course, one can write bad code even with the best coding standards. The same is 
true of any language, process, or methodology. A good set of coding standards fos-
ters good habits and discipline that transcend mere rules. That foundation, once ac-
quired, opens the door to higher levels. There’s no shortcut; you have to develop vo-
cabulary and grammar before writing poetry. We just hope to make that easier. 

We address this book to C++ programmers of all levels: 

If you are an apprentice programmer, we hope you will find the rules and their ra-
tionale helpful in understanding what styles and idioms C++ supports most natu-
rally. We provide a concise rationale and discussion for each rule and guideline to 
encourage you to rely on understanding, not just rote memorization. 

For the intermediate or advanced programmer, we have worked hard to provide a 
detailed list of precise references for each rule. This way, you can do further research 
into the rule’s roots in C++’s type system, grammar, and object model. 

At any rate, it is very likely that you work in a team on a complex project. Here is 
where coding standards really pay off—you can use them to bring the team to a 
common level and provide a basis for code reviews. 

About This Book 
We have set out the following design goals for this book: 

Short is better than long: Huge coding standards tend to be ignored; short ones get 
read and used. Long Items tend to be skimmed; short ones get read and used. 



xiv Preface 

Each Item must be noncontroversial: This book exists to document widely agreed-
upon standards, not to invent them. If a guideline is not appropriate in all cases, 
it will be presented that way (e.g., “Consider X…” instead of “Do X…”) and we 
will note commonly accepted exceptions. 

Each Item must be authoritative: The guidelines in this book are backed up by ref-
erences to existing published works. This book is intended to also provide an 
index into the C++ literature. 

Each Item must need saying: We chose not to define new guidelines for things that 
you’ll do anyway, that are already enforced or detected by the compiler, or that 
are already covered under other Items. 

Example: “Don’t return a pointer/reference to an automatic variable” is a 
good guideline, but we chose not to include it in this book because all of the 
compilers we tried already emit a warning for this, and so the issue is al-
ready covered under the broader Item 1, “Compile cleanly at high warning 
levels.” 

Example: “Use an editor (or compiler, or debugger)” is a good guideline, but 
of course you’ll use those tools anyway without being told; instead, we 
spend two of our first four Items on “Use an automated build system” and 
“Use a version control system.” 

Example: “Don’t abuse goto” is a great Item, but in our experience pro-
grammers universally know this, and it doesn’t need saying any more. 

Each Item is laid out as follows: 

Item title: The simplest meaningful sound bite we could come up with as a mne-
monic for the rule. 

Summary: The most essential points, briefly stated. 

Discussion: An extended explanation of the guideline. This often includes brief 
rationale, but remember that the bulk of the rationale is intentionally left in the 
References. 

Examples (if applicable): Examples that demonstrate a rule or make it memorable. 

Exceptions (if applicable): Any (and usually rare) cases when a rule doesn’t apply. 
But beware the trap of being too quick to think: “Oh, I’m special; this doesn’t 
apply in my situation”—that rationalization is common, and commonly wrong. 

References: See these parts of the C++ literature for the full details and analysis. 

In each section, we chose to nominate a “most valuable Item.” Often, it’s the first 
Item in a section, because we tried to put important Items up front in each part; but 
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other times an important Item couldn’t be put up front, for flow or readability rea-
sons, and we felt the need to call it out for special attention in this way. 
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4 C++ Coding Standards 

1. Compile cleanly at high warning levels. 

Summary
Take warnings to heart: Use your compiler’s highest warning level. Require clean 
(warning-free) builds. Understand all warnings. Eliminate warnings by changing 
your code, not by reducing the warning level. 

Discussion 
Your compiler is your friend. If it issues a warning for a certain construct, often 
there’s a potential problem in your code. 

Successful builds should be silent (warning-free). If they aren’t, you’ll quickly get 
into the habit of skimming the output, and you will miss real problems. (See Item 2.) 

To get rid of a warning: a) understand it; and then b) rephrase your code to elimi-
nate the warning and make it clearer to both humans and compilers that the code 
does what you intended. 

Do this even when the program seemed to run correctly in the first place. Do this 
even when you are positive that the warning is benign. Even benign warnings can 
obscure later warnings pointing to real dangers. 

Examples
Example 1: A third-party header file. A library header file that you cannot change could 
contain a construct that causes (probably benign) warnings. Then wrap the file with 
your own version that #includes the original header and selectively turns off the 
noisy warnings for that scope only, and then #include your wrapper throughout the 
rest of your project. Example (note that the warning control syntax will vary from 
compiler to compiler): 

// File: myproj/my_lambda.h -- wraps Boost’s lambda.hpp 
//   Always include this file; don’t use lambda.hpp directly. 
//   NOTE: Our build now automatically checks “grep lambda.hpp <srcfile>“. 
// Boost.Lambda produces noisy compiler warnings that we know are innocuous. 
// When they fix it we’ll remove the pragmas below, but this header will still exist. 
//
#pragma warning(push) // disable for this header only
  #pragma warning(disable:4512) 
  #pragma warning(disable:4180) 
  #include <boost/lambda/lambda.hpp> 
#pragma warning(pop)   // restore original warning level
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Example 2: “Unused function parameter.” Check to make sure you really didn’t mean 
to use the function parameter (e.g., it might be a placeholder for future expansion, or 
a required part of a standardized signature that your code has no use for). If it’s not 
needed, simply delete the name of a function parameter: 

// … inside a user-defined allocator that has no use for the hint … 

// warning: “unused parameter ‘localityHint’” 
pointer allocate( size_type numObjects, const void *localityHint = 0 ) { 
  return static_cast<pointer>( mallocShared( numObjects * sizeof(T) ) ); 
}

// new version: eliminates warning 
pointer allocate( size_type numObjects, const void * /* localityHint */ = 0 ) { 
  return static_cast<pointer>( mallocShared( numObjects * sizeof(T) ) ); 
}

Example 3: “Variable defined but never used.” Check to make sure you really didn’t 
mean to reference the variable. (An RAII stack-based object often causes this warn-
ing spuriously; see Item 13.) If it’s not needed, often you can silence the compiler by 
inserting an evaluation of the variable itself as an expression (this evaluation won’t 
impact run-time speed): 

// warning: “variable ‘lock’ is defined but never used” 
void Fun() { 
  Lock lock; 

  // … 

}

// new version: probably eliminates warning 
void Fun() { 
  Lock lock; 
  lock; 

  // … 

}

Example 4: “Variable may be used without being initialized.” Initialize the variable (see 
Item 19). 

Example 5: “Missing return.” Sometimes the compiler asks for a return statement 
even though your control flow can never reach the end of the function (e.g., infinite 
loop, throw statements, other returns). This can be a good thing, because sometimes 
you only think that control can’t run off the end. For example, switch statements that 
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do not have a default are not resilient to change and should have a default case that 
does assert( false ) (see also Items 68 and 90): 

// warning: missing “return” 
int Fun( Color c ) { 
  switch( c ) { 
  case Red: return 2; 
  case Green: return 0; 
  case Blue: 
  case Black: return 1; 
  } 
}

// new version: eliminates warning 
int Fun( Color c ) { 
  switch( c ) { 
  case Red: return 2; 
  case Green: return 0; 
  case Blue: 
  case Black: return 1; 
  default: assert( !”should never get here!” ); // !”string” evaluates to false
 return -1; 
  } 
}

Example 6: “Signed/unsigned mismatch.” It is usually not necessary to compare or as-
sign integers with different signedness. Change the types of the variables being 
compared so that the types agree. In the worst case, insert an explicit cast. (The 
compiler inserts that cast for you anyway, and warns you about doing it, so you’re 
better off putting it out in the open.) 

Exceptions

Sometimes, a compiler may emit a tedious or even spurious warning (i.e., one that is 
mere noise) but offer no way to turn it off, and it might be infeasible or unproduc-
tive busywork to rephrase the code to silence the warning. In these rare cases, as a 
team decision, avoid tediously working around a warning that is merely tedious: 
Disable that specific warning only, disable it as locally as possible, and write a clear 
comment documenting why it was necessary. 

References 

[Meyers97] §48 • [Stroustrup94] §2.6.2 
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25. Take parameters appropriately by value, 
(smart) pointer, or reference. 

Summary
Parameterize well: Distinguish among input, output, and input/output parameters, 
and between value and reference parameters. Take them appropriately.

Discussion 
Choosing well among values, references, and pointers for parameters is good habit 
that maximizes both safety and efficiency. 

Although efficiency should not be our primary up-front concern (see Item 8), neither 
should we write needlessly inefficient code when all other things, including clarity, 
are equal (see Item 9). 

Prefer to follow these guidelines for choosing how to take parameters. For input-
only parameters: 

Always const-qualify all pointers or references to input-only parameters. 

Prefer taking inputs of primitive types (e.g., char, float) and value objects that 
are cheap to copy (e.g., Point, complex<float>) by value. 

Prefer taking inputs of other user-defined types by reference to const.

Consider pass-by-value instead of reference if the function requires a copy of its 
argument. This is conceptually identical to taking a reference to const plus do-
ing a copy, and it can help compiler to better optimize away temporaries. 

For output or input/output parameters: 

Prefer passing by (smart) pointer if the argument is optional (so callers can pass 
null as a “not available” or “don’t care” value) or if the function stores a copy of 
the pointer or otherwise manipulates ownership of the argument. 

Prefer passing by reference if the argument is required and the function won’t 
store a pointer to it or otherwise affect its ownership. This states that the argu-
ment is required and makes the caller responsible for providing a valid object. 

Don’t use C-style varargs (see Item 98).  

References 
[Alexandrescu03a] • [Cline99] §2.10-11, 14.02-12, 32.08 • [Dewhurst03] §57 • [Koenig97] 
§4 • [Lakos96] §9.1.11-12 • [McConnell93] §5.7 • [Meyers97] §21-22 • [Stroustrup94] 
§11.4.4 • [Stroustrup00] §5.5, §11.6, §16.3.4 • [Sutter00] §6, §46 
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73. Throw by value, catch by reference. 

Summary
Learn to catch properly: Throw exceptions by value (not pointer) and catch them by 
reference (usually to const). This is the combination that meshes best with exception 
semantics. When rethrowing the same exception, prefer just throw; to throw e;.

Discussion 
When throwing an exception, throw an object by value. Avoid throwing a pointer, 
because if you throw a pointer, you need to deal with memory management issues: 
You can’t throw a pointer to a stack-allocated value because the stack will be un-
wound before the pointer reaches the call site. You could throw a pointer to dynami-
cally allocated memory (if the error you’re reporting isn’t “out of memory” to begin 
with), but you’ve put the burden on the catch site to deallocate the memory. If you 
feel you really must throw a pointer, consider throwing a value-like smart pointer 
such as a shared_ptr<T> instead of a plain T*.

Throwing by value enjoys the best of all worlds because the compiler itself takes re-
sponsibility for the intricate process of managing memory for the exception object. 
All you need to take care of is ensuring that you implement a non-throwing copy 
constructor for your exception classes (see Item 32). 

Unless you are throwing a smart pointer, which already adds an indirection that 
preserves polymorphism, catching by reference is the only good way to go. Catching 
a plain value by value results in slicing at the catch site (see Item 54), which violently 
strips away the normally-vital polymorphic qualities of the exception object. Catch-
ing by reference preserves the polymorphism of the exception object. 

When rethrowing an exception e, prefer writing just throw; instead of throw e; be-
cause the first form always preserves polymorphism of the rethrown object. 

Examples
Example: Rethrowing a modified exception. Prefer to rethrow using throw;:

catch( MyException& e ) {   // catch by reference to non-const 
  e.AppendContext(“Passed through here”); // modify 
throw;       // rethrow modified object

}

References 
[Dewhurst03] §64-65 • [Meyers96] §13 • [Stroustrup00] §14.3 • [Vandevoorde03] §20 
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74. Report, handle, and translate errors 
appropriately. 

Summary
Know when to say when: Report errors at the point they are detected and identified 
as errors. Handle or translate each error at the nearest level that can do it correctly. 

Discussion 
Report an error (e.g., write throw) wherever a function detects an error that it cannot 
resolve itself and that makes it impossible for the function to continue execution. 
(See Item 70.) 

Handle an error (e.g., write a catch that doesn’t rethrow the same or another excep-
tion or emit another kind of error code) in the places that have sufficient knowledge 
to handle the error, including to enforce boundaries defined in the error policy (e.g., 
on main and thread mainlines; see Item 62) and to absorb errors in the bodies of de-
structors and deallocation operations. 

Translate an error (e.g., write a catch that does rethrow a different exception or emits 
another kind of error code) in these circumstances: 

To add higher-level semantic meaning: For example, in a word processing applica-
tion, Document::Open could accept a low-level unexpected-end-of-file error and 
translate it to a document-invalid-or-corrupt error, adding semantic information. 

To change the error handling mechanism: For example, in a module that uses excep-
tions internally but whose C API public boundary reports error codes, a bound-
ary API would catch an exception and emit a corresponding error code that ful-
fills the module’s contract and that the caller can understand. 

Code should not accept an error if it doesn’t have the context to do something useful 
about that error. If a function isn’t going to handle (or translate, or deliberately ab-
sorb) an error itself, it should allow or enable the error to propagate up to a caller 
who can handle it. 

Exceptions
It can occasionally be useful to accept and re-emit (e.g., catch and rethrow) the same 
error in order to add instrumentation, even though the error is not actually being 
handled.

References 
[Stroustrup00] §3.7.2, §14.7, §14.9  • [Sutter00] §8 • [Sutter04] §11 • [Sutter04b] 
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83. Use a checked STL implementation. 

Summary
Safety first (see Item 6): Use a checked STL implementation, even if it’s only available 
for one of your compiler platforms, and even if it’s only used during pre-release testing. 

Discussion 
Just like pointer mistakes, iterator mistakes are far too easy to make and will usually 
silently compile but then crash (at best) or appear to work (at worst). Even though 
your compiler doesn’t catch the mistakes, you don’t have to rely on “correction by 
visual inspection,” and shouldn’t: Tools exist. Use them. 

Some STL mistakes are distressingly common even for experienced programmers: 

Using an invalidated or uninitialized iterator: The former in particular is easy to do. 

Passing an out-of-bounds index: For example, accessing element 113 of a 100-
element container. 

Using an iterator “range” that isn’t really a range: Passing two iterators where the 
first doesn’t precede the second, or that don’t both refer into the same container. 

Passing an invalid iterator position: Calling a container member function that takes 
an iterator position, such as the position passed to insert, but passing an iterator 
that refers into a different container. 

Using an invalid ordering: Providing an invalid ordering rule for ordering an as-
sociative container or as a comparison criterion with the sorting algorithms. (See 
[Meyers01] §21 for examples.) Without a checked STL, these would typically 
manifest at run time as erratic behavior or infinite loops, not as hard errors. 

Most checked STL implementations detect these errors automatically, by adding ex-
tra debugging and housekeeping information to containers and iterators. For exam-
ple, an iterator can remember the container it refers into, and a container can re-
member all outstanding iterators into itself so that it can mark the appropriate itera-
tors as invalid as they become invalidated. Of course, this makes for fatter iterators, 
containers with extra state, and some extra work every time you modify the con-
tainer. But it’s worth it—at least during testing, and perhaps even during release 
(remember Item 8; don’t disable valuable checks for performance reasons unless and 
until you know performance is an issue in the affected cases). 

Even if you don’t ship with checking turned on, and even if you only have a 
checked STL on one of your target platforms, at minimum ensure that you routinely 
run your full complement of tests against a version of your application built with a 
checked STL. You’ll be glad you did. 
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Examples
Example 1: Using an invalid iterator. It’s easy to forget when iterators are invalidated 
and use an invalid iterator (see Item 99). Consider this example adapted from 
[Meyers01] that inserts elements at the front of a deque:

deque<double>::iterator current = d.begin(); 

for( size_t i = 0; i < max; ++i ) 
  d.insert( current++, data[i] + 41 );  // do you see the bug?

Quick: Do you see the bug? You have three seconds.—Ding! If you didn’t get it in 
time, don’t worry; it’s a subtle and understandable mistake. A checked STL imple-
mentation will detect this error for you on the second loop iteration so that you 
don’t need to rely on your unaided visual acuity. (For a fixed version of this code, 
and superior alternatives to such a naked loop, see Item 84.) 

Example 2: Using an iterator range that isn’t really a range. An iterator range is a pair of 
iterators first and last that refer to the first element and the one-past-the-end-th ele-
ment of the range, respectively. It is required that last be reachable from first by re-
peated increments of first. There are two common ways to accidentally try to use an 
iterator range that isn’t actually a range: The first way arises when the two iterators 
that delimit the range point into the same container, but the first iterator doesn’t ac-
tually precede the second: 

for_each( c.end(), c.begin(), Something ); // not always this obvious

On each iteration of its internal loop, for_each will compare the first iterator with the 
second for equality, and as long as they are not equal it will continue to increment the 
first iterator. Of course, no matter how many times you increment the first iterator, it 
will never equal the second, so the loop is essentially endless. In practice, this will, at 
best, fall off the end of the container c and crash immediately with a memory protec-
tion fault. At worst, it will just fall off the end into uncharted memory and possibly 
read or change values that aren’t part of the container. It’s not that much different in 
principle from our infamous and eminently attackable friend the buffer overrun. 

The second common case arises when the iterators point into different containers: 

for_each( c.begin(), d.end(), Something ); // not always this obvious

The results are similar. Because checked STL iterators remember the containers that 
they refer into, they can detect such run-time errors. 

References 
[Dinkumware-Safe] • [Horstmann95] • [Josuttis99] §5.11.1 • [Metrowerks] • [Meyers01] 
§21, §50 • [STLport-Debug] • [Stroustrup00] §18.3.1, §19.3.1 
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