

INTENTION-

REVEALING

INTERFACES

page 246

make side effects

explicit with

SIDE-EFFECT-FREE

FUNCTIONS

page 250

CONCEPTUAL

CONTOURS

page 260

STANDALONE

CLASSES

page 265

make safe and simple
ASSERTIONS

page 255

make composition safe

reduce cost of

change with

simplify interpretation

with

MODEL-DRIVEN

DESIGN

page 47

UBIQUITOUS

LANGUAGE

page 24

draw from express model through

encapsulate with

isolate domain

with

encapsulate with

LAYERED

ARCHITECTURE

page 68

AGGREGATES

page 125

REPOSITORIES

page 147

FACTORIES

page 136

encapsulate with

encapsulate with

access with

maintain integrity with

access with

SERVICES

page 104

model out loud

express model as
names enter

MODULES

page 109

VALUE OBJECTS

page 97

ENTITIES

page 89

Supple Design
page 245

Building Blocks
page 65

Context
page 334

Large-Scale

Structure
page 443

Distillation
page 398

DOMAIN VISION

STATEMENT

page 415

SEGREGATED

CORE

page 428

GENERIC

SUBDOMAINS

page 406

Declarative

Style
page 426

emphasize in

model out loud

disambiguate

by reference

names

enter

structure

carried in

CORE DOMAIN

page 400

BOUNDED

CONTEXT

page 335

EVOLVING

ORDER

page 444

CONTEXT MAP

page 344

CONTINUOUS

INTEGRATION

page 341

unencumber

from

distill

to

structure

through

MODEL-DRIVEN

DESIGN

page 47 valid within
UBIQUITOUS

LANGUAGE

page 24

keep unified by

repackage

into

distill

to

structure through

concepts

enter

point the

 way with

relate disparate

parts with

Praise for Domain-Driven Design

“This book belongs on the shelf of every thoughtful software
developer.”

—Kent Beck

“Eric Evans has written a fantastic book on how you can make the
design of your software match your mental model of the problem
domain you are addressing.

“His book is very compatible with XP. It is not about drawing
pictures of a domain; it is about how you think of it, the language
you use to talk about it, and how you organize your software to
reflect your improving understanding of it. Eric thinks that learning
about your problem domain is as likely to happen at the end of
your project as at the beginning, and so refactoring is a big part of
his technique.

“The book is a fun read. Eric has lots of interesting stories, and
he has a way with words. I see this book as essential reading for
software developers—it is a future classic.”

—Ralph Johnson, author of Design Patterns

“If you don’t think you are getting value from your investment in
object-oriented programming, this book will tell you what you’ve
forgotten to do.”

—Ward Cunningham

“What Eric has managed to capture is a part of the design process
that experienced object designers have always used, but that we
have been singularly unsuccessful as a group in conveying to the
rest of the industry. We’ve given away bits and pieces of this
knowledge . . . but we’ve never organized and systematized the
principles of building domain logic. This book is important.”

—Kyle Brown, author of Enterprise Java Programming

with IBM WebSphere

“Eric Evans convincingly argues for the importance of domain
modeling as the central focus of development and provides a solid
framework and set of techniques for accomplishing it. This is
timeless wisdom, and will hold up long after the methodologies du
jour have gone out of fashion.”
—Dave Collins, author of Designing Object-Oriented User Interfaces

“Eric weaves real-world experience modeling—and building—
business applications into a practical, useful book. Written from
the perspective of a trusted practitioner, Eric’s descriptions of
ubiquitous language, the benefits of sharing models with users,
object life-cycle management, logical and physical application
structuring, and the process and results of deep refactoring are
major contributions to our field.”

—Luke Hohmann, author of Beyond Software Architecture

Domain-Driven Design

This page intentionally left blank

Domain-Driven
Design

T A C K L I N G C O M P L E X I T Y I N
T H E H E A R T O F S O F T WA R E

Eric Evans

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Addison-
Wesley was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

See page 517 for photo credits.

The publisher offers discounts on this book when ordered in quantity for bulk purchases
and special sales. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
international@pearsoned.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data
Evans, Eric, 1962–
Domain-driven design : tackling complexity in the heart of software / Eric
Evans.
p. cm.

Includes bibliographical references and index.
ISBN 0-321-12521-5
1. Computer software—Development. 2. Object-oriented programming
(Computer science) I. Title.

QA76.76.D47E82 2003
005.1—dc21

2003050331

Copyright © 2004 by Eric Evans

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior consent of the publisher. Printed in the
United States of America. Published simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit
a written request to:

Pearson Education, Inc.
Rights and Contracts Department
500 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN 0-321-12521-5
Text printed in the United States on recycled paper at Courier in Westford,

Massachusetts.
Seventeenth printing, June 2011

www.awprofessional.com

To Mom and Dad

This page intentionally left blank

ix

Foreword xvii
Preface xix
Acknowledgments xxix

Part I
Putting the Domain Model to Work 1

Chapter 1: Crunching Knowledge 7

Ingredients of Effective Modeling 12
Knowledge Crunching 13
Continuous Learning 15
Knowledge-Rich Design 17
Deep Models 20

Chapter 2: Communication and the Use of Language 23

UBIQUITOUS LANGUAGE 24
Modeling Out Loud 30
One Team, One Language 32
Documents and Diagrams 35

Written Design Documents 37
Executable Bedrock 40

Explanatory Models 41

Chapter 3: Binding Model and Implementation 45

MODEL-DRIVEN DESIGN 47
Modeling Paradigms and Tool Support 50
Letting the Bones Show: Why Models Matter to Users 57
HANDS-ON MODELERS 60

C O N T E N T S

Part II
The Building Blocks of a Model-Driven Design 63

Chapter 4: Isolating the Domain 67

LAYERED ARCHITECTURE 68
Relating the Layers 72
Architectural Frameworks 74

The Domain Layer Is Where the Model Lives 75
THE SMART UI “ANTI-PATTERN” 76
Other Kinds of Isolation 79

Chapter 5: A Model Expressed in Software 81

Associations 82
ENTITIES (A.K.A. REFERENCE OBJECTS) 89

Modeling ENTITIES 93
Designing the Identity Operation 94

VALUE OBJECTS 97
Designing VALUE OBJECTS 99
Designing Associations That Involve VALUE OBJECTS 102

SERVICES 104
SERVICES and the Isolated Domain Layer 106
Granularity 108
Access to SERVICES 108

MODULES (A.K.A. PACKAGES) 109
Agile MODULES 111
The Pitfalls of Infrastructure-Driven Packaging 112

Modeling Paradigms 116
Why the Object Paradigm Predominates 116
Nonobjects in an Object World 119
Sticking with MODEL-DRIVEN DESIGN When

Mixing Paradigms 120

Chapter 6: The Life Cycle of a Domain Object 123

AGGREGATES 125
FACTORIES 136

Choosing FACTORIES and Their Sites 139
When a Constructor Is All You Need 141
Designing the Interface 143

x C O N T E N T S

Where Does Invariant Logic Go? 144
ENTITY FACTORIES Versus VALUE OBJECT FACTORIES 144
Reconstituting Stored Objects 145

REPOSITORIES 147
Querying a REPOSITORY 152
Client Code Ignores REPOSITORY Implementation;

Developers Do Not 154
Implementing a REPOSITORY 155
Working Within Your Frameworks 156
The Relationship with FACTORIES 157

Designing Objects for Relational Databases 159

Chapter 7: Using the Language: An Extended Example 163

Introducing the Cargo Shipping System 163
Isolating the Domain: Introducing the Applications 166
Distinguishing ENTITIES and VALUE OBJECTS 167

Role and Other Attributes 168
Designing Associations in the Shipping Domain 169
AGGREGATE Boundaries 170
Selecting REPOSITORIES 172
Walking Through Scenarios 173

Sample Application Feature: Changing the Destination
of a Cargo 173

Sample Application Feature: Repeat Business 173
Object Creation 174

FACTORIES and Constructors for Cargo 174
Adding a Handling Event 175

Pause for Refactoring: An Alternative Design of the
Cargo AGGREGATE 177

MODULES in the Shipping Model 179
Introducing a New Feature: Allocation Checking 181

Connecting the Two Systems 182
Enhancing the Model: Segmenting the Business 183
Performance Tuning 185

A Final Look 186

xiC O N T E N T S

Part III
Refactoring Toward Deeper Insight 187

Chapter 8: Breakthrough 193

Story of a Breakthrough 194
A Decent Model, and Yet . . . 194
The Breakthrough 196
A Deeper Model 198
A Sobering Decision 199
The Payoff 200

Opportunities 201
Focus on Basics 201
Epilogue: A Cascade of New Insights 202

Chapter 9: Making Implicit Concepts Explicit 205

Digging Out Concepts 206
Listen to Language 206
Scrutinize Awkwardness 210
Contemplate Contradictions 216
Read the Book 217
Try, Try Again 219

How to Model Less Obvious Kinds of Concepts 219
Explicit Constraints 220
Processes as Domain Objects 222
SPECIFICATION 224
Applying and Implementing SPECIFICATION 227

Chapter 10: Supple Design 243

INTENTION-REVEALING INTERFACES 246
SIDE-EFFECT-FREE FUNCTIONS 250
ASSERTIONS 255
CONCEPTUAL CONTOURS 260
STANDALONE CLASSES 265
CLOSURE OF OPERATIONS 268
Declarative Design 270

Domain-Specific Languages 272
A Declarative Style of Design 273

Extending SPECIFICATIONS in a Declarative Style 273
Angles of Attack 282

xii C O N T E N T S

Carve Off Subdomains 283
Draw on Established Formalisms, When You Can 283

Chapter 11: Applying Analysis Patterns 293

Chapter 12: Relating Design Patterns to the Model 309

STRATEGY (A.K.A. POLICY) 311
COMPOSITE 315
Why Not FLYWEIGHT? 320

Chapter 13: Refactoring Toward Deeper Insight 321

Initiation 321
Exploration Teams 322
Prior Art 323
A Design for Developers 324
Timing 324
Crisis as Opportunity 325

Part IV
Strategic Design 327

Chapter 14: Maintaining Model Integrity 331

BOUNDED CONTEXT 335
Recognizing Splinters Within a BOUNDED CONTEXT 339

CONTINUOUS INTEGRATION 341
CONTEXT MAP 344

Testing at the CONTEXT Boundaries 351
Organizing and Documenting CONTEXT MAPS 351

Relationships Between BOUNDED CONTEXTS 352
SHARED KERNEL 354
CUSTOMER/SUPPLIER DEVELOPMENT TEAMS 356
CONFORMIST 361
ANTICORRUPTION LAYER 364

Designing the Interface of the ANTICORRUPTION LAYER 366
Implementing the ANTICORRUPTION LAYER 366
A Cautionary Tale 370

SEPARATE WAYS 371
OPEN HOST SERVICE 374
PUBLISHED LANGUAGE 375

xiiiC O N T E N T S

Unifying an Elephant 378
Choosing Your Model Context Strategy 381

Team Decision or Higher 382
Putting Ourselves in Context 382
Transforming Boundaries 382
Accepting That Which We Cannot Change: Delineating

the External Systems 383
Relationships with the External Systems 384
The System Under Design 385
Catering to Special Needs with Distinct Models 386
Deployment 387
The Trade-off 388
When Your Project Is Already Under Way 388

Transformations 389
Merging CONTEXTS: SEPARATE WAYS ➝ SHARED KERNEL 389
Merging CONTEXTS: SHARED KERNEL ➝ CONTINUOUS

INTEGRATION 391
Phasing Out a Legacy System 393
OPEN HOST SERVICE ➝ PUBLISHED LANGUAGE 394

Chapter 15: Distillation 397

CORE DOMAIN 400
Choosing the CORE 402
Who Does the Work? 403

An Escalation of Distillations 404
GENERIC SUBDOMAINS 406

Generic Doesn’t Mean Reusable 412
Project Risk Management 413

DOMAIN VISION STATEMENT 415
HIGHLIGHTED CORE 417

The Distillation Document 418
The Flagged CORE 419
The Distillation Document as Process Tool 420

COHESIVE MECHANISMS 422
GENERIC SUBDOMAIN Versus COHESIVE MECHANISM 424
When a MECHANISM Is Part of the CORE DOMAIN 425

Distilling to a Declarative Style 426
SEGREGATED CORE 428

xiv C O N T E N T S

The Costs of Creating a SEGREGATED CORE 429
Evolving Team Decision 430

ABSTRACT CORE 435
Deep Models Distill 436
Choosing Refactoring Targets 437

Chapter 16: Large-Scale Structure 439

EVOLVING ORDER 444
SYSTEM METAPHOR 447

The “Naive Metaphor” and Why We Don’t Need It 448
RESPONSIBILITY LAYERS 450

Choosing Appropriate Layers 460
KNOWLEDGE LEVEL 465
PLUGGABLE COMPONENT FRAMEWORK 475
How Restrictive Should a Structure Be? 480
Refactoring Toward a Fitting Structure 481

Minimalism 481
Communication and Self-Discipline 482
Restructuring Yields Supple Design 482
Distillation Lightens the Load 483

Chapter 17: Bringing the Strategy Together 485

Combining Large-Scale Structures and BOUNDED CONTEXTS 485
Combining Large-Scale Structures and Distillation 488
Assessment First 490
Who Sets the Strategy? 490

Emergent Structure from Application Development 491
A Customer-Focused Architecture Team 492

Six Essentials for Strategic Design Decision Making 492
The Same Goes for the Technical Frameworks 495
Beware the Master Plan 496

Conclusion 499

Appendix: The Use of Patterns in This Book 507
Glossary 511
References 515
Photo Credits 517
Index 519

xvC O N T E N T S

This page intentionally left blank

xvii

There are many things that make software development complex.
But the heart of this complexity is the essential intricacy of the prob-
lem domain itself. If you’re trying to add automation to complicated
human enterprise, then your software cannot dodge this complex-
ity—all it can do is control it.

The key to controlling complexity is a good domain model, a
model that goes beyond a surface vision of a domain by introducing
an underlying structure, which gives the software developers the
leverage they need. A good domain model can be incredibly valuable,
but it’s not something that’s easy to make. Few people can do it well,
and it’s very hard to teach.

Eric Evans is one of those few who can create domain models
well. I discovered this by working with him—one of those wonderful
times when you find a client who’s more skilled than you are. Our
collaboration was short but enormous fun. Since then we’ve stayed in
touch, and I’ve watched this book gestate slowly.

It’s been well worth the wait.
This book has evolved into one that satisfies a huge ambition: To

describe and build a vocabulary about the very art of domain model-
ing. To provide a frame of reference through which we can explain
this activity as well as teach this hard-to-learn skill. It’s a book that’s
given me many new ideas as it has taken shape, and I’d be astonished
if even old hands at conceptual modeling don’t get a raft of new ideas
from reading this book.

Eric also cements many of the things that we’ve learned over the
years. First, in domain modeling, you shouldn’t separate the con-
cepts from the implementation. An effective domain modeler can
not only use a whiteboard with an accountant, but also write Java
with a programmer. Partly this is true because you cannot build a

F O R E W O R D

useful conceptual model without considering implementation issues.
But the primary reason why concepts and implementation belong
together is this: The greatest value of a domain model is that it pro-
vides a ubiquitous language that ties domain experts and technolo-
gists together.

Another lesson you’ll learn from this book is that domain models
aren’t first modeled and then implemented. Like many people, I’ve
come to reject the phased thinking of “design, then build.” But the
lesson of Eric’s experience is that the really powerful domain models
evolve over time, and even the most experienced modelers find that
they gain their best ideas after the initial releases of a system.

I think, and hope, that this will be an enormously influential
book. One that will add structure and cohesion to a very slippery field
while it teaches a lot of people how to use a valuable tool. Domain
models can have big consequences in controlling software develop-
ment—in whatever language or environment they are implemented.

One final yet important thought. One of things I most respect
about this book is that Eric is not afraid to talk about the times when
he hasn’t been successful. Most authors like to maintain an air of dis-
interested omnipotence. Eric makes it clear that like most of us, he’s
tasted both success and disappointment. The important thing is that
he can learn from both—and more important for us is that he can
pass on his lessons.

Martin Fowler
April 2003

xviii F O R E W O R D

xix

Leading software designers have recognized domain modeling and
design as critical topics for at least 20 years, yet surprisingly little has
been written about what needs to be done or how to do it. Although
it has never been formulated clearly, a philosophy has emerged as an
undercurrent in the object community, a philosophy I call domain-
driven design.

I have spent the past decade developing complex systems in sev-
eral business and technical domains. In my work, I have tried best
practices in design and development process as they have emerged
from the leaders in object-oriented development. Some of my proj-
ects were very successful; a few failed. A feature common to the suc-
cesses was a rich domain model that evolved through iterations of
design and became part of the fabric of the project.

This book provides a framework for making design decisions and
a technical vocabulary for discussing domain design. It is a synthesis
of widely accepted best practices along with my own insights and ex-
periences. Software development teams facing complex domains can
use this framework to approach domain-driven design systematically.

Contrasting Three Projects
Three projects stand out in my memory as vivid examples of how dra-
matically domain design practice can affect development results. Al-
though all three projects delivered useful software, only one achieved
its ambitious objectives and produced complex software that contin-
ued to evolve to meet the ongoing needs of the organization.

I watched one project get out of the gate fast, by delivering a use-
ful, simple Web-based trading system. Developers were flying by the

P R E F A C E

seat of their pants, but this didn’t hinder them because simple soft-
ware can be written with little attention to design. As a result of this
initial success, expectations for future development were sky-high.
That is when I was asked to work on the second version. When I
took a close look, I saw that they lacked a domain model, or even a
common language on the project, and were saddled with an unstruc-
tured design. The project leaders did not agree with my assessment,
and I declined the job. A year later, the team found itself bogged
down and unable to deliver a second version. Although their use of
technology was not exemplary, it was the business logic that over-
came them. Their first release had ossified prematurely into a high-
maintenance legacy.

Lifting this ceiling on complexity calls for a more serious approach
to the design of domain logic. Early in my career, I was fortunate to
end up on a project that did emphasize domain design. This project, in
a domain at least as complex as the first one, also started with a modest
initial success, delivering a simple application for institutional traders.
But in this case, the initial delivery was followed up with successive ac-
celerations of development. Each iteration opened exciting new op-
tions for integrating and elaborating the functionality of the previous
release. The team was able to respond to the needs of the traders with
flexibility and expanding capability. This upward trajectory was di-
rectly attributable to an incisive domain model, repeatedly refined and
expressed in code. As the team gained new insight into the domain, the
model deepened. The quality of communication improved not only
among developers but also between developers and domain experts,
and the design—far from imposing an ever-heavier maintenance bur-
den—became easier to modify and extend.

Unfortunately, projects don’t arrive at such a virtuous cycle just
by taking models seriously. One project from my past started with
lofty aspirations to build a global enterprise system based on a do-
main model, but after years of disappointment, it lowered its sights
and settled into conventionality. The team had good tools and a good
understanding of the business, and it gave careful attention to model-
ing. But a poorly chosen separation of developer roles disconnected
modeling from implementation, so that the design did not reflect the
deep analysis that was going on. In any case, the design of detailed
business objects was not rigorous enough to support combining them

xx P R E FA C E

in elaborate applications. Repeated iteration produced no improve-
ment in the code, due to uneven skill levels among developers, who
had no awareness of the informal body of style and technique for cre-
ating model-based objects that also function as practical, running
software. As months rolled by, development work became mired in
complexity and the team lost its cohesive vision of the system. After
years of effort, the project did produce modest, useful software, but
the team had given up its early ambitions along with the model focus.

The Challenge of Complexity
Many things can put a project off course: bureaucracy, unclear objec-
tives, and lack of resources, to name a few. But it is the approach to
design that largely determines how complex software can become.
When complexity gets out of hand, developers can no longer under-
stand the software well enough to change or extend it easily and
safely. On the other hand, a good design can create opportunities to
exploit those complex features.

Some design factors are technological. A great deal of effort has
gone into the design of networks, databases, and other technical di-
mensions of software. Many books have been written about how to
solve these problems. Legions of developers have cultivated their
skills and followed each technical advancement.

Yet the most significant complexity of many applications is not
technical. It is in the domain itself, the activity or business of the user.
When this domain complexity is not handled in the design, it won’t
matter that the infrastructural technology is well conceived. A suc-
cessful design must systematically deal with this central aspect of the
software.

The premise of this book is twofold:

1. For most software projects, the primary focus should be on the
domain and domain logic.

2. Complex domain designs should be based on a model.

Domain-driven design is both a way of thinking and a set of pri-
orities, aimed at accelerating software projects that have to deal with

xxiP R E FA C E

complicated domains. To accomplish that goal, this book presents an
extensive set of design practices, techniques, and principles.

Design Versus Development Process
Design books. Process books. They seldom even reference each
other. Each topic is complex in its own right. This is a design book,
but I believe that design and process are inextricable. Design con-
cepts must be implemented successfully or else they will dry up into
academic discussion.

When people learn design techniques, they feel excited by the
possibilities. Then the messy realities of a real project descend on
them. They can’t fit the new design ideas with the technology they
must use. Or they don’t know when to let go of a particular design
aspect in the interest of time and when to dig in their heels and find
a clean solution. Developers can and do talk with each other ab-
stractly about the application of design principles, but it is more nat-
ural to talk about how real things get done. So, although this is a
design book, I’m going to barge right across that artificial boundary
into process when I need to. This will help put design principles in
context.

This book is not tied to a particular methodology, but it is ori-
ented toward the new family of “Agile development processes.”
Specifically, it assumes that a couple of practices are in place on the
project. These two practices are prerequisites for applying the ap-
proach in this book.

1. Development is iterative. Iterative development has been advo-
cated and practiced for decades, and it is a cornerstone of Agile
development methods. There are many good discussions in the
literature of Agile development and Extreme Programming (or
XP), among them, Surviving Object-Oriented Projects (Cockburn
1998) and Extreme Programming Explained (Beck 1999).

2. Developers and domain experts have a close relationship. Domain-
driven design crunches a huge amount of knowledge into a
model that reflects deep insight into the domain and a focus on
the key concepts. This is a collaboration between those who
know the domain and those who know how to build software.

xxii P R E FA C E

Because development is iterative, this collaboration must con-
tinue throughout the project’s life.

Extreme Programming, conceived by Kent Beck, Ward Cun-
ningham, and others (see Extreme Programming Explained [Beck
2000]), is the most prominent of the Agile processes and the one I
have worked with most. Throughout this book, to make explanations
concrete, I will use XP as the basis for discussion of the interaction of
design and process. The principles illustrated are easily adapted to
other Agile processes.

In recent years there has been a rebellion against elaborate develop-
ment methodologies that burden projects with useless, static docu-
ments and obsessive upfront planning and design. Instead, the Agile
processes, such as XP, emphasize the ability to cope with change and
uncertainty.

Extreme Programming recognizes the importance of design deci-
sions, but it strongly resists upfront design. Instead, it puts an ad-
mirable effort into communication and improving the project’s
ability to change course rapidly. With that ability to react, developers
can use the “simplest thing that could work” at any stage of a project
and then continuously refactor, making many small design improve-
ments, ultimately arriving at a design that fits the customer’s true
needs.

This minimalism has been a much-needed antidote to some of
the excesses of design enthusiasts. Projects have been bogged down
by cumbersome documents that provided little value. They have suf-
fered from “analysis paralysis,” with team members so afraid of an
imperfect design that they made no progress at all. Something had to
change.

Unfortunately, some of these process ideas can be misinter-
preted. Each person has a different definition of “simplest.” Contin-
uous refactoring is a series of small redesigns; developers without
solid design principles will produce a code base that is hard to under-
stand or change—the opposite of agility. And although fear of unan-
ticipated requirements often leads to overengineering, the attempt to

xxiiiP R E FA C E

avoid overengineering can develop into another fear: a fear of doing
any deep design thinking at all.

In fact, XP works best for developers with a sharp design sense.
The XP process assumes that you can improve a design by refactor-
ing, and that you will do this often and rapidly. But past design
choices make refactoring itself either easier or harder. The XP
process attempts to increase team communication, but model and
design choices clarify or confuse communication.

This book intertwines design and development practice and il-
lustrates how domain-driven design and Agile development reinforce
each other. A sophisticated approach to domain modeling within the
context of an Agile development process will accelerate develop-
ment. The interrelationship of process with domain development
makes this approach more practical than any treatment of “pure” de-
sign in a vacuum.

The Structure of This Book
The book is divided into four major sections:

Part I: Putting the Domain Model to Work presents the basic
goals of domain-driven development; these goals motivate the
practices in later sections. Because there are so many approaches
to software development, Part I defines terms and gives an
overview of the implications of using the domain model to drive
communication and design.

Part II: The Building Blocks of a Model-Driven Design condenses
a core of best practices in object-oriented domain modeling into
a set of basic building blocks. This section focuses on bridging
the gap between models and practical, running software. Shar-
ing these standard patterns brings order to the design. Team
members more easily understand each other’s work. Using stan-
dard patterns also contributes terminology to a common lan-
guage, which all team members can use to discuss model and
design decisions.

But the main point of this section is to focus on the kinds of
decisions that keep the model and implementation aligned with
each other, each reinforcing the other’s effectiveness. This align-

xxiv P R E FA C E

ment requires attention to the detail of individual elements.
Careful crafting at this small scale gives developers a steady foun-
dation from which to apply the modeling approaches of Parts III
and IV.

Part III: Refactoring Toward Deeper Insight goes beyond the
building blocks to the challenge of assembling them into practi-
cal models that provide the payoff. Rather than jumping directly
into esoteric design principles, this section emphasizes the dis-
covery process. Valuable models do not emerge immediately;
they require a deep understanding of the domain. That under-
standing comes from diving in, implementing an initial design
based on a probably naive model, and then transforming it again
and again. Each time the team gains insight, the model is trans-
formed to reveal that richer knowledge, and the code is refac-
tored to reflect the deeper model and make its potential
available to the application. Then, once in a while, this onion
peeling leads to an opportunity to break through to a much
deeper model, attended by a rush of profound design changes.

Exploration is inherently open-ended, but it does not have to
be random. Part III delves into modeling principles that can
guide choices along the way, and techniques that help direct the
search.

Part IV: Strategic Design deals with situations that arise in com-
plex systems, larger organizations, and interactions with external
systems and legacy systems. This section explores a triad of prin-
ciples that apply to the system as a whole: context, distillation,
and large-scale structure. Strategic design decisions are made by
teams, or even among teams. Strategic design enables the goals of
Part I to be realized on a larger scale, for a big system or an ap-
plication that fits into a sprawling, enterprise-wide network.

Throughout the book, discussions are illustrated not with over-
simplified, “toy” problems, but with realistic examples adapted from
actual projects.

Much of the book is written as a set of “patterns.” Readers
should be able to understand the material without concern about this

xxvP R E FA C E

device, but those who are interested in the style and format of the
patterns may want to read the appendix.

Supplemental materials can be found at http://domaindrivendesign.org,
including additional example code and community discussion.

Who Should Read This Book
This book is written primarily for developers of object-oriented soft-
ware. Most members of a software project team can benefit from
some parts of the book. It will make the most sense to people who
are currently involved with a project, trying to do some of these
things as they go through, and to people who already have deep ex-
perience with such projects.

Some knowledge of object-oriented modeling is necessary to
benefit from this book. The examples include UML diagrams and
Java code, so the ability to read those languages at a basic level is im-
portant, but it is unnecessary to have mastered the details of either.
Knowledge of Extreme Programming will add perspective to the dis-
cussions of development process, but the material should be under-
standable to those without background knowledge.

For intermediate software developers—readers who already
know something of object-oriented design and may have read one or
two software design books—this book will fill in gaps and provide
perspective on how object modeling fits into real life on a software
project. The book will help intermediate developers learn to apply
sophisticated modeling and design skills to practical problems.

Advanced or expert software developers will be interested in the
book’s comprehensive framework for dealing with the domain. This
systematic approach to design will help technical leaders guide their
teams down this path. Also, the coherent terminology used through-
out the book will help advanced developers communicate with their
peers.

This book is a narrative, and it can be read from beginning to end,
or from the beginning of any chapter. Readers of various backgrounds
may wish to take different paths through the book, but I do recom-
mend that all readers start with the introduction to Part I, as well as

xxvi P R E FA C E

http://domaindrivendesign.org

Chapter 1. Beyond that, the core is probably Chapters 2, 3, 9, and 14.
A skimmer who already has some grasp of a topic should be able to
pick up the main points by reading headings and bold text. A very ad-
vanced reader may want to skim Parts I and II and will probably be
most interested in Parts III and IV.

In addition to this core readership, analysts and relatively techni-
cal project managers will also benefit from reading the book. Ana-
lysts can draw on the connection between model and design to make
more effective contributions in the context of an Agile project. Ana-
lysts may also use some of the principles of strategic design to better
focus and organize their work.

Project managers should be interested in the emphasis on mak-
ing a team more effective and more focused on designing software
meaningful to business experts and users. And because strategic de-
sign decisions are interrelated with team organization and work
styles, these design decisions necessarily involve the leadership of the
project and have a major impact on the project’s trajectory.

A Domain-Driven Team
Although an individual developer who understands domain-driven
design will gain valuable design techniques and perspective, the
biggest gains come when a team joins together to apply a domain-
driven design approach and to move the domain model to the pro-
ject’s center of discourse. By doing so, the team members will share a
language that enriches their communication and keeps it connected
to the software. They will produce a lucid implementation in step
with a model, giving leverage to application development. They will
share a map of how the design work of different teams relates, and
they will systematically focus attention on the features that are most
distinctive and valuable to the organization.

Domain-driven design is a difficult technical challenge that can
pay off big, opening opportunities just when most software projects
begin to ossify into legacy.

xxviiP R E FA C E

This page intentionally left blank

xxix

I have been working on this book, in one form or another, for more
than four years, and many people have helped and supported me
along the way.

I thank those people who have read manuscripts and com-
mented. This book would simply not have been possible without that
feedback. A few have given their reviews especially generous atten-
tion. The Silicon Valley Patterns Group, led by Russ Rufer and Tracy
Bialek, spent seven weeks scrutinizing the first complete draft of the
book. The University of Illinois reading group led by Ralph Johnson
also spent several weeks reviewing a later draft. Listening to the long,
lively discussions of these groups had a profound effect. Kyle Brown
and Martin Fowler contributed detailed feedback, valuable insights,
and invaluable moral support (while sitting on a fish). Ward Cun-
ningham’s comments helped me shore up some important weak
points. Alistair Cockburn encouraged me early on and helped me
find my way through the publication process, as did Hilary Evans.
David Siegel and Eugene Wallingford have helped me avoid embar-
rassing myself in the more technical parts. Vibhu Mohindra and
Vladimir Gitlevich painstakingly checked all the code examples.

Rob Mee read some of my earliest explorations of the material,
and brainstormed ideas with me when I was groping for some way to
communicate this style of design. He then pored over a much later
draft with me.

Josh Kerievsky is responsible for one of the major turning points
in the book’s development: He persuaded me to try out the “Alexan-
drian” pattern format, which became so central to the book’s organi-
zation. He also helped me to bring together some of the material now
in Part II into a coherent form for the first time, during the intensive

A C K N O W L E D G M E N T S

“shepherding” process preceding the PLoP conference in 1999. This
became a seed around which much of the rest of the book formed.

Also I thank Awad Faddoul for the hundreds of hours I sat writ-
ing in his wonderful café. That retreat, along with a lot of windsurf-
ing, helped me keep going.

And I’m very grateful to Martine Jousset, Richard Paselk, and
Ross Venables for creating some beautiful photographs to illustrate a
few key concepts (see photo credits on page 517).

Before I could have conceived of this book, I had to form my view
and understanding of software development. That formation owed a
lot to the generosity of a few brilliant people who acted as informal
mentors to me, as well as friends. David Siegel, Eric Gold, and Iseult
White, each in a different way, helped me develop my way of think-
ing about software design. Meanwhile, Bruce Gordon, Richard Frey-
berg, and Dr. Judith Segal, also in very different ways, helped me find
my way in the world of successful project work.

My own notions naturally grew out of a body of ideas in the air at
that time. Some of those contributions will be clear in the main text
and referenced where possible. Others are so fundamental that I
don’t even realize their influence on me.

My master’s thesis advisor, Dr. Bala Subramanium, turned me on
to mathematical modeling, which we applied to chemical reaction ki-
netics. Modeling is modeling, and that work was part of the path that
led to this book.

Even before that, my way of thinking was shaped by my parents,
Carol and Gary Evans. And a few special teachers awakened my in-
terest or helped me lay foundations, especially Dale Currier (a high
school math teacher), Mary Brown (a high school English composi-
tion teacher), and Josephine McGlamery (a sixth-grade science
teacher).

Finally, I thank my friends and family, and Fernando De Leon,
for their encouragement all along the way.

xxx A C K N O W L E D G M E N T S

7

A few years ago, I set out to design a specialized software tool
for printed-circuit board (PCB) design. One catch: I didn’t know
anything about electronic hardware. I had access to some PCB de-
signers, of course, but they typically got my head spinning in three
minutes. How was I going to understand enough to write this soft-
ware? I certainly wasn’t going to become an electrical engineer before
the delivery deadline!

We tried having the PCB designers tell me exactly what the soft-
ware should do. Bad idea. They were great circuit designers, but their
software ideas usually involved reading in an ASCII file, sorting it,
writing it back out with some annotation, and producing a report.
This was clearly not going to lead to the leap forward in productivity
that they were looking for.

The first few meetings were discouraging, but there was a glim-
mer of hope in the reports they asked for. They always involved
“nets” and various details about them. A net, in this domain, is essen-
tially a wire conductor that can connect any number of components
on a PCB and carry an electrical signal to everything it is connected
to. We had the first element of the domain model.

Net ** Chip

O N E

Crunching
Knowledge

Figure 1.1

I started drawing diagrams for them as we discussed the things
they wanted the software to do. I used an informal variant of object
interaction diagrams to walk through scenarios.

PCB Expert 1: The components wouldn’t have to be chips.

Developer (Me): So I should just call them “components”?

Expert 1: We call them “component instances.” There could be many
of the same component.

Expert 2: The “net” box looks just like a component instance.

Expert 1: He’s not using our notation. Everything is a box for them, I
guess.

Developer: Sorry to say, yes. I guess I’d better explain this notation a
little more.

They constantly corrected me, and as they did I started to learn.
We ironed out collisions and ambiguities in their terminology and
differences between their technical opinions, and they learned. They
began to explain things more precisely and consistently, and we
started to develop a model together.

Expert 1: It isn’t enough to say a signal arrives at a ref-des, we have to
know the pin.

Developer: Ref-des?

Expert 2: Same thing as a component instance. Ref-des is what it’s
called in a particular tool we use.

Expert 1: Anyhow, a net connects a particular pin of one instance to a
particular pin of another.

Developer: Are you saying that a pin belongs to only one component
instance and connects to only one net?

chip B

chip A net
chip C

signal()
signal()

signal()

8 C H A P T E R 1 : C R U N C H I N G K N O W L E D G E

Figure 1.2

Expert 1: Yes, that’s right.

Expert 2: Also, every net has a topology, an arrangement that deter-
mines the way the elements of the net connect.

Developer: OK, how about this?

To focus our exploration, we limited ourselves, for a while, to
studying one particular feature. A “probe simulation” would trace
the propagation of a signal to detect likely sites of certain kinds of
problems in the design.

Developer: I understand how the signal gets carried by the Net to all
the Pins attached, but how does it go any further than that?
Does the Topology have something to do with it?

Expert 2: No. The component pushes the signal through.

Developer: We certainly can’t model the internal behavior of a chip.
That’s way too complicated.

Expert 2: We don’t have to. We can use a simplification. Just a list of
pushes through the component from certain Pins to certain others.

Developer: Something like this?

[With considerable trial-and-error, together we
sketched out a scenario.]

NetPin

Topology

**Component
 Instance

1

push()

pin B.4

comp
inst B

pin A.1 net
pin C.2

signal()

signal()

signal()

pin B.1

pin B.2

pin B.3

signal() signal()

signal()comp
inst A

pushes:
B.1 -> B.2
B.1 -> B.3

9C H A P T E R 1 : C R U N C H I N G K N O W L E D G E

Figure 1.3

Figure 1.4

Developer: But what exactly do you need to know from this computation?

Expert 2: We’d be looking for long signal delays—say, any signal path
that was more than two or three hops. It’s a rule of thumb. If the
path is too long, the signal may not arrive during the clock cycle.

Developer: More than three hops. . . . So we need to calculate the path
lengths. And what counts as a hop?

Expert 2: Each time the signal goes over a Net, that’s one hop.

Developer: So we could pass the number of hops along, and a Net
could increment it, like this.

Developer: The only part that isn’t clear to me is where the “pushes”
come from. Do we store that data for every Component Instance?

Expert 2: The pushes would be the same for all the instances of a com-
ponent.

Developer: So the type of component determines the pushes. They’ll
be the same for every instance?

getPushesFromPinNumber(1)

Map of pushes:
 1 -> 2, 3
 2 -> 4

comp
type B'

comp
inst B

get(1)

(2, 3)

10 C H A P T E R 1 : C R U N C H I N G K N O W L E D G E

pin B.4

comp
inst B

pin A.1 net X
pin C.2

signal(0)
signal(1)

signal(1)

pin B.1

pin B.2

pin B.3

signal(1)

signal(1)

signal(1)
net Y pin D.1

signal(1) signal(2)
push()

pushes:
B.1 -> B.2
B.1 -> B.3

Figure 1.5

Figure 1.6

Expert 2: I’m not sure exactly what some of this means, but I would
imagine storing push-throughs for each component would look
something like that.

Developer: Sorry, I got a little too detailed there. I was just thinking it
through. . . . So, now, where does the Topology come into it?

Expert 1: That’s not used for the probe simulation.

Developer: Then I’m going to drop it out for now, OK? We can bring
it back when we get to those features.

And so it went (with much more stumbling than is shown here).
Brainstorming and refining; questioning and explaining. The model
developed along with my understanding of the domain and their un-
derstanding of how the model would play into the solution. A class di-
agram representing that early model looks something like this.

After a couple more part-time days of this, I felt I understood
enough to attempt some code. I wrote a very simple prototype,
driven by an automated test framework. I avoided all infrastructure.
There was no persistence, and no user interface (UI). This allowed
me to concentrate on the behavior. I was able to demonstrate a sim-
ple probe simulation in just a few more days. Although it used
dummy data and wrote raw text to the console, it was nonetheless
doing the actual computation of path lengths using Java objects.
Those Java objects reflected a model shared by the domain experts
and myself.

The concreteness of this prototype made clearer to the domain ex-
perts what the model meant and how it related to the functioning soft-
ware. From that point, our model discussions became more interactive,

*
signal(int)

Net

signal(int)

Pin

1

signal(int)

Component

Instance
*

getPushesFromPinNumber(int)

Component Type

11C H A P T E R 1 : C R U N C H I N G K N O W L E D G E

Figure 1.7

as they could see how I incorporated my newly acquired knowledge
into the model and then into the software. And they had concrete feed-
back from the prototype to evaluate their own thoughts.

Embedded in that model, which naturally became much more
complicated than the one shown here, was knowledge about the do-
main of PCB relevant to the problems we were solving. It consoli-
dated many synonyms and slight variations in descriptions. It
excluded hundreds of facts that the engineers understood but that
were not directly relevant, such as the actual digital features of the
components. A software specialist like me could look at the diagrams
and in minutes start to get a grip on what the software was about. He
or she would have a framework to organize new information and
learn faster, to make better guesses about what was important and
what was not, and to communicate better with the PCB engineers.

As the engineers described new features they needed, I made
them walk me through scenarios of how the objects interacted.
When the model objects couldn’t carry us through an important sce-
nario, we brainstormed new ones or changed old ones, crunching
their knowledge. We refined the model; the code coevolved. A few
months later the PCB engineers had a rich tool that exceeded their
expectations.

Ingredients of Effective Modeling
Certain things we did led to the success I just described.

1. Binding the model and the implementation. That crude prototype
forged the essential link early, and it was maintained through all
subsequent iterations.

2. Cultivating a language based on the model. At first, the engineers
had to explain elementary PCB issues to me, and I had to explain
what a class diagram meant. But as the project proceeded, any of
us could take terms straight out of the model, organize them into
sentences consistent with the structure of the model, and be un-
ambiguously understood without translation.

3. Developing a knowledge-rich model. The objects had behavior
and enforced rules. The model wasn’t just a data schema; it was

12 C H A P T E R 1 : C R U N C H I N G K N O W L E D G E

integral to solving a complex problem. It captured knowledge of
various kinds.

4. Distilling the model. Important concepts were added to the
model as it became more complete, but equally important, con-
cepts were dropped when they didn’t prove useful or central.
When an unneeded concept was tied to one that was needed, a
new model was found that distinguished the essential concept so
that the other could be dropped.

5. Brainstorming and experimenting. The language, combined with
sketches and a brainstorming attitude, turned our discussions
into laboratories of the model, in which hundreds of experimen-
tal variations could be exercised, tried, and judged. As the team
went through scenarios, the spoken expressions themselves pro-
vided a quick viability test of a proposed model, as the ear could
quickly detect either the clarity and ease or the awkwardness of
expression.

It is the creativity of brainstorming and massive experimenta-
tion, leveraged through a model-based language and disciplined by
the feedback loop through implementation, that makes it possible to
find a knowledge-rich model and distill it. This kind of knowledge
crunching turns the knowledge of the team into valuable models.

Knowledge Crunching
Financial analysts crunch numbers. They sift through reams of de-
tailed figures, combining and recombining them looking for the un-
derlying meaning, searching for a simple presentation that brings out
what is really important—an understanding that can be the basis of a
financial decision.

Effective domain modelers are knowledge crunchers. They take a
torrent of information and probe for the relevant trickle. They try one
organizing idea after another, searching for the simple view that makes
sense of the mass. Many models are tried and rejected or transformed.
Success comes in an emerging set of abstract concepts that makes
sense of all the detail. This distillation is a rigorous expression of the
particular knowledge that has been found most relevant.

13K N O W L E D G E C R U N C H I N G

Knowledge crunching is not a solitary activity. A team of devel-
opers and domain experts collaborate, typically led by developers.
Together they draw in information and crunch it into a useful form.
The raw material comes from the minds of domain experts, from
users of existing systems, from the prior experience of the technical
team with a related legacy system or another project in the same do-
main. It comes in the form of documents written for the project or
used in the business, and lots and lots of talk. Early versions or proto-
types feed experience back into the team and change interpretations.

In the old waterfall method, the business experts talk to the analysts,
and analysts digest and abstract and pass the result along to the pro-
grammers, who code the software. This approach fails because it
completely lacks feedback. The analysts have full responsibility for
creating the model, based only on input from the business experts.
They have no opportunity to learn from the programmers or gain ex-
perience with early versions of software. Knowledge trickles in one
direction, but does not accumulate.

Other projects use an iterative process, but they fail to build up
knowledge because they don’t abstract. Developers get the experts to
describe a desired feature and then they go build it. They show the
experts the result and ask what to do next. If the programmers prac-
tice refactoring, they can keep the software clean enough to continue
extending it, but if programmers are not interested in the domain,
they learn only what the application should do, not the principles be-
hind it. Useful software can be built that way, but the project will
never arrive at a point where powerful new features unfold as corol-
laries to older features.

Good programmers will naturally start to abstract and develop a
model that can do more work. But when this happens only in a tech-
nical setting, without collaboration with domain experts, the con-
cepts are naive. That shallowness of knowledge produces software
that does a basic job but lacks a deep connection to the domain ex-
pert’s way of thinking.

14 C H A P T E R 1 : C R U N C H I N G K N O W L E D G E

The interaction between team members changes as all members
crunch the model together. The constant refinement of the domain
model forces the developers to learn the important principles of the
business they are assisting, rather than to produce functions mechan-
ically. The domain experts often refine their own understanding by
being forced to distill what they know to essentials, and they come to
understand the conceptual rigor that software projects require.

All this makes the team members more competent knowledge
crunchers. They winnow out the extraneous. They recast the model
into an ever more useful form. Because analysts and programmers are
feeding into it, it is cleanly organized and abstracted, so it can provide
leverage for the implementation. Because the domain experts are
feeding into it, the model reflects deep knowledge of the business.
The abstractions are true business principles.

As the model improves, it becomes a tool for organizing the in-
formation that continues to flow through the project. The model fo-
cuses requirements analysis. It intimately interacts with programming
and design. And in a virtuous cycle, it deepens team members’ in-
sight into the domain, letting them see more clearly and leading to
further refinement of the model. These models are never perfect;
they evolve. They must be practical and useful in making sense of the
domain. They must be rigorous enough to make the application sim-
ple to implement and understand.

Continuous Learning
When we set out to write software, we never know enough. Knowledge
on the project is fragmented, scattered among many people and docu-
ments, and it’s mixed with other information so that we don’t even
know which bits of knowledge we really need. Domains that seem less
technically daunting can be deceiving: we don’t realize how much we
don’t know. This ignorance leads us to make false assumptions.

Meanwhile, all projects leak knowledge. People who have
learned something move on. Reorganization scatters the team, and
the knowledge is fragmented again. Crucial subsystems are out-
sourced in such a way that code is delivered but knowledge isn’t.
And with typical design approaches, the code and documents don’t

15C O N T I N U O U S L E A R N I N G

express this hard-earned knowledge in a usable form, so when the
oral tradition is interrupted for any reason, the knowledge is lost.

Highly productive teams grow their knowledge consciously,
practicing continuous learning (Kerievsky 2003). For developers, this
means improving technical knowledge, along with general domain-
modeling skills (such as those in this book). But it also includes seri-
ous learning about the specific domain they are working in.

These self-educated team members form a stable core of people
to focus on the development tasks that involve the most critical areas.
(For more on this, see Chapter 15.) The accumulated knowledge in
the minds of this core team makes them more effective knowledge
crunchers.

At this point, stop and ask yourself a question. Did you learn some-
thing about the PCB design process? Although this example has
been a superficial treatment of that domain, there should be some
learning when a domain model is discussed. I learned an enormous
amount. I did not learn how to be a PCB engineer. That was not the
goal. I learned to talk to PCB experts, understand the major concepts
relevant to the application, and sanity-check what we were building.

In fact, our team eventually discovered that the probe simulation
was a low priority for development, and the feature was eventually
dropped altogether. With it went the parts of the model that cap-
tured understanding of pushing signals through components and
counting hops. The core of the application turned out to lie else-
where, and the model changed to bring those aspects onto center
stage. The domain experts had learned more and had clarified the
goal of the application. (Chapter 15 discusses these issues in depth.)

Even so, the early work was essential. Key model elements were
retained, but more important, that work set in motion the process of
knowledge crunching that made all subsequent work effective: the
knowledge gained by team members, developers, and domain ex-
perts alike; the beginnings of a shared language; and the closing of a
feedback loop through implementation. A voyage of discovery has to
start somewhere.

16 C H A P T E R 1 : C R U N C H I N G K N O W L E D G E

Knowledge-Rich Design
The kind of knowledge captured in a model such as the PCB exam-
ple goes beyond “find the nouns.” Business activities and rules are as
central to a domain as are the entities involved; any domain will have
various categories of concepts. Knowledge crunching yields models
that reflect this kind of insight. In parallel with model changes, devel-
opers refactor the implementation to express the model, giving the
application use of that knowledge.

It is with this move beyond entities and values that knowledge
crunching can get intense, because there may be actual inconsistency
among business rules. Domain experts are usually not aware of how
complex their mental processes are as, in the course of their work,
they navigate all these rules, reconcile contradictions, and fill in gaps
with common sense. Software can’t do this. It is through knowledge
crunching in close collaboration with software experts that the rules
are clarified, fleshed out, reconciled, or placed out of scope.

Example

Extracting a Hidden Concept
Let’s start with a very simple domain model that could be the basis of
an application for booking cargos onto a voyage of a ship.

We can state that the booking application’s responsibility is to as-
sociate each Cargo with a Voyage, recording and tracking that rela-
tionship. So far so good. Somewhere in the application code there
could be a method like this:

public int makeBooking(Cargo cargo, Voyage voyage) {

int confirmation = orderConfirmationSequence.next();

voyage.addCargo(cargo, confirmation);

return confirmation;

}

Because there are always last-minute cancellations, standard
practice in the shipping industry is to accept more cargo than a par-
ticular vessel can carry on a voyage. This is called “overbooking.”

*Voyage Cargo

17K N O W L E D G E - R I C H D E S I G N

Figure 1.8

Sometimes a simple percentage of capacity is used, such as booking
110 percent of capacity. In other cases complex rules are applied, fa-
voring major customers or certain kinds of cargo.

This is a basic strategy in the shipping domain that would be
known to any businessperson in the shipping industry, but it might
not be understood by all technical people on a software team.

The requirements document contains this line:

Allow 10% overbooking.

The class diagram and code now look like this:

public int makeBooking(Cargo cargo, Voyage voyage) {

double maxBooking = voyage.capacity() * 1.1;

if ((voyage.bookedCargoSize() + cargo.size()) > maxBooking)

return –1;

int confirmation = orderConfirmationSequence.next();

voyage.addCargo(cargo, confirmation);

return confirmation;

}

Now an important business rule is hidden as a guard clause in an
application method. Later, in Chapter 4, we’ll look at the principle of
LAYERED ARCHITECTURE, which would guide us to move the over-
booking rule into a domain object, but for now let’s concentrate on
how we could make this knowledge more explicit and accessible to
everyone on the project. This will bring us to a similar solution.

1. As written, it is unlikely that any business expert could read this
code to verify the rule, even with the guidance of a developer.

2. It would be difficult for a technical, non-businessperson to con-
nect the requirement text with the code.

If the rule were more complex, that much more would be at
stake.

We can change the design to better capture this knowledge. The
overbooking rule is a policy. Policy is another name for the design
pattern known as STRATEGY (Gamma et al. 1995). It is usually moti-

*
capacity

Voyage

size

Cargo

18 C H A P T E R 1 : C R U N C H I N G K N O W L E D G E

Figure 1.9

vated by the need to substitute different rules, which is not needed
here, as far as we know. But the concept we are trying to capture does
fit the meaning of a policy, which is an equally important motivation
in domain-driven design. (See Chapter 12, “Relating Design Patterns
to the Model.”)

The code is now:

public int makeBooking(Cargo cargo, Voyage voyage) {

if (!overbookingPolicy.isAllowed(cargo, voyage)) return –1;

int confirmation = orderConfirmationSequence.next();

voyage.addCargo(cargo, confirmation);

return confirmation;

}

The new Overbooking Policy class contains this method:

public boolean isAllowed(Cargo cargo, Voyage voyage) {

return (cargo.size() + voyage.bookedCargoSize()) <=

(voyage.capacity() * 1.1);

}

It will be clear to all that overbooking is a distinct policy, and the
implementation of that rule is explicit and separate.

Now, I am not recommending that such an elaborate design be ap-
plied to every detail of the domain. Chapter 15, “Distillation,” goes
into depth on how to focus on the important and minimize or sepa-
rate everything else. This example is meant to show that a domain
model and corresponding design can be used to secure and share
knowledge. The more explicit design has these advantages:

1. In order to bring the design to this stage, the programmers and
everyone else involved will have come to understand the nature

*
capacity

Voyage

size

Cargo

Overbooking

Policy

{sum(cargo.size) < voyage.capacity * 1.1}

19K N O W L E D G E - R I C H D E S I G N

Figure 1.10

of overbooking as a distinct and important business rule, not just
an obscure calculation.

2. Programmers can show business experts technical artifacts, even
code, that should be intelligible to domain experts (with guid-
ance), thereby closing the feedback loop.

Deep Models
Useful models seldom lie on the surface. As we come to understand
the domain and the needs of the application, we usually discard su-
perficial model elements that seemed important in the beginning, or
we shift their perspective. Subtle abstractions emerge that would not
have occurred to us at the outset but that pierce to the heart of the
matter.

The preceding example is loosely based on one of the projects
that I’ll be drawing on for several examples throughout the book: a
container shipping system. The examples in this book will be kept ac-
cessible to non-shipping experts. But on a real project, where contin-
uous learning prepares the team members, models of utility and
clarity often call for sophistication both in the domain and in model-
ing technique.

On that project, because a shipment begins with the act of book-
ing cargo, we developed a model that allowed us to describe the
cargo, its itinerary, and so on. This was all necessary and useful, yet
the domain experts felt dissatisfied. There was a way they looked at
their business that we were missing.

Eventually, after months of knowledge crunching, we realized
that the handling of cargo, the physical loading and unloading, the
movements from place to place, was largely carried out by subcon-
tractors or by operational people in the company. In the view of our
shipping experts, there was a series of transfers of responsibility be-
tween parties. A process governed that transfer of legal and practical
responsibility, from the shipper to some local carrier, from one carrier
to another, and finally to the consignee. Often, the cargo would sit in
a warehouse while important steps were being taken. At other times,
the cargo would move through complex physical steps that were not
relevant to the shipping company’s business decisions. Rather than

20 C H A P T E R 1 : C R U N C H I N G K N O W L E D G E

the logistics of the itinerary, what came to the fore were legal docu-
ments such as the bill of lading, and processes leading to the release
of payments.

This deeper view of the shipping business did not lead to the re-
moval of the Itinerary object, but the model changed profoundly.
Our view of shipping changed from moving containers from place to
place, to transferring responsibility for cargo from entity to entity.
Features for handling these transfers of responsibility were no longer
awkwardly attached to loading operations, but were supported by a
model that came out of an understanding of the significant relation-
ship between those operations and those responsibilities.

Knowledge crunching is an exploration, and you can’t know
where you will end up.

21D E E P M O D E L S

This page intentionally left blank

519

A
ABSTRACT CORE, 435–437
ADAPTERS, 367
AGGREGATES

definition, 126–127
examples, 130–135, 170–171,

177–179
invariants, 128–129
local vs. global identity, 127
overview, 125–129
ownership relationships, 126

Agile design
distillation, 483
MODULES, 111
reducing dependencies, 265,

435–437, 463
supple design, 243–244, 260–264

AIDS Memorial Quilt Project, 479
Analysis models, 47–49
Analysis patterns. See also design

patterns.
concept integrity, 306–307
definition, 293
example, 295–306
overview, 294
UBIQUITOUS LANGUAGE, 306–307

ANTICORRUPTION LAYER

ADAPTERS, 367
considerations, 368–369
example, 369–370
FACADES, 366–367
interface design, 366–369
overview, 364–366
relationships with external systems,

384–385
Application layer, 70, 76–79

Architectural frameworks, 70, 74,
156–157, 271–272, 495–496

ASSERTIONS, 255–259
Associations

bidirectional, 102–103
example, 169–170
for practical design, 82–88
VALUE OBJECTS, 102–103

Astrolabe, 47
Awkwardness, concept analysis,

210–216

B
Bidirectional associations, 102–103
Blind men and the elephant, 378–381
Bookmark anecdote, 57–59
BOUNDED CONTEXT. See also

CONTEXT MAP.
code reuse, 344
CONTINUOUS INTEGRATION,

341–343
defining, 382
duplicate concepts, 339–340
example, 337–340
false cognates, 339–340
large-scale structure, 485–488
overview, 335–337
relationships, 352–353
splinters, 339–340
testing boundaries, 351
translation layers, 374. See also ANTI-

CORRUPTION LAYER; PUBLISHED

LANGUAGE.
vs. MODULES, 335

Brainstorming, 7–13, 207–216, 219
Breakthroughs, 193–200, 202–203

I N D E X

Business logic, in user interface layer,
77

Business rules, 17, 225

C
Callbacks, 73
Cargo shipping examples. See exam-

ples, cargo shipping.
Changing the design. See refactoring.
Chemical warehouse packer example,

235–241
Chemistry example, 377
Cleese, John, 5
CLOSURE OF OPERATIONS, 268–270
Code as documentation, 40
Code reuse

BOUNDED CONTEXT, 344
GENERIC SUBDOMAINS, 412–413
reusing prior art, 323–324

Cohesion, MODULES, 109–110, 113
COHESIVE MECHANISMS

and declarative style, 426–427
example, 425–427
overview, 422–425
vs. GENERIC SUBDOMAINS, 425

Common language. See PUBLISHED

LANGUAGE; UBIQUITOUS

LANGUAGE.
Communication, speech. See UBIQUI-

TOUS LANGUAGE.
Communication, written. See docu-

ments; UML (Unified Modeling
Language); UBIQUITOUS LAN-
GUAGE.

Complexity, reducing. See distillation;
large-scale structure; LAYERED

ARCHITECTURE; supple design.
COMPOSITE pattern, 315–320
Composite SPECIFICATION, 273–282
Concept analysis. See also analysis pat-

terns; examples, concept analysis.
awkwardness, 210–216
contradictions, 216–217
explicit constraints, 220–222
language of the domain experts,

206–207
missing concepts, 207–210

processes as domain objects, 222–223
researching existing resources,

217–219
SPECIFICATION, 223
trial and error, 219

CONCEPTUAL CONTOURS, 260–264
Conceptual layers, See LAYERED

ARCHITECTURE; RESPONSIBILITY

LAYERS

Configuring SPECIFICATION, 226–227
CONFORMIST, 361–363, 384–385
Constructors, 141–142, 174–175. See

also FACTORIES.
CONTEXT MAP. See also BOUNDED

CONTEXT.
example, 346–351
organizing and documenting,

351–352
overview, 344–346
vs. large-scale structure, 446,

485–488
CONTEXT MAP, choosing a strategy

ANTICORRUPTION LAYER, 384–385
CONFORMIST, 384–385
CUSTOMER/SUPPLIER DEVELOPMENT

TEAMS, 356–360
defining BOUNDED CONTEXT, 382
deployment, 387
external systems, 383–385
integration, 384–385
merging OPEN HOST SERVICE and

PUBLISHED LANGUAGE, 394–396
merging SEPARATE WAYS and

SHARED KERNEL, 389–391
merging SHARED KERNEL and CON-

TINUOUS INTEGRATION, 391–393
packaging, 387
phasing out legacy systems, 393–394
for a project in progress, 388–389
SEPARATE WAYS, 384–385
SHARED KERNEL, 354–355
specialized terminologies, 386–387
system under design, 385–386
team context, 382
trade-offs, 387
transformations, 389
transforming boundaries, 382–383

520 I N D E X

Context principle, 328–329. See also
BOUNDED CONTEXT; CONTEXT

MAP.
CONTINUOUS INTEGRATION, 341–343,

391–393. See also integration.
Continuous learning, 15–16
Contradictions, concept analysis,

216–217
CORE DOMAIN

DOMAIN VISION STATEMENT,
415–416

flagging key elements, 419–420
MECHANISMS, 425
overview, 400–405

Costs of architecture dictated
MODULES, 114–115

Coupling MODULES, 109–110
Customer-focused teams, 492
CUSTOMER/SUPPLIER, 356–360

D
Database tuning, example, 102
Declarative design, 270–272
Declarative style of design, 273–282,

426–427
Decoupling from the client, 156
Deep models

distillation, 436–437
overview, 20–21
refactoring, 189–191

Deployment, 387. See also MODULES.
Design changes. See refactoring.
Design patterns. See also analysis

patterns.
COMPOSITE, 315–320
FLYWEIGHT, 320
overview, 309–310
STRATEGY, 311–314
vs. domain patterns, 309

Development teams. See teams.
Diagrams. See documents; UML

(Unified Modeling Language).
Discovery, 191–192
Distillation. See also examples,

distillation.
ABSTRACT CORE, 435–437
deep models, 436–437

DOMAIN VISION STATEMENT,
415–416

encapsulation, 422–427
HIGHLIGHTED CORE, 417–421
INTENTION-REVEALING INTERFACES,

422–427
large-scale structure, 483, 488–489
overview, 397–399
PCB design anecdote, 7–13
polymorphism, 435–437
refactoring targets, 437
role in design, 329
SEGREGATED CORE, 428–434
separating CORE concepts, 428–434

Distillation, COHESIVE MECHANISMS

and declarative style, 426–427
overview, 422–425
vs. GENERIC SUBDOMAINS, 425

Distillation, CORE DOMAIN

DOMAIN VISION STATEMENT,
415–416

flagging key elements, 419–420
MECHANISMS, 425
overview, 400–405

Distillation, GENERIC SUBDOMAINS

adapting a published design, 408
in-house solution, 409–410
off-the-shelf solutions, 407
outsourcing, 408–409
overview, 406
reusability, 412–413
risk management, 413–414
vs. COHESIVE MECHANISMS, 425

Distillation document, 418–419,
420–421

Documents
code as documentation, 40
distillation document, 418–419,

420–421
DOMAIN VISION STATEMENT,

415–416
explanatory models, 41–43
keeping current, 38–40
in project activities, 39–40
purpose of, 37–40
validity of, 38–40
UBIQUITOUS LANGUAGE, 39–40

521I N D E X

Domain experts
gathering requirements from. See

concept analysis; knowledge
crunching.

language of, 206–207. See also
UBIQUITOUS LANGUAGE.

Domain layer, 70, 75–79
Domain objects, life cycle, 123–124.

See also AGGREGATES;
FACTORIES; REPOSITORIES.

Domain patterns vs. design pattern,
309

DOMAIN VISION STATEMENT, 415–416
Domain-specific language, 272–273
Duplicate concepts, 339–340

E
Elephant and the blind men, 378–381
Encapsulation. See also FACTORIES.

COHESIVE MECHANISMS, 422–427
INTENTION-REVEALING INTERFACES,

246
REPOSITORIES, 154

ENTITIES. See also associations;
SERVICES; VALUE OBJECTS.

automatic IDs, 95–96
clustering. See AGGREGATES.
establishing identity, 90–93
example, 167–168
ID uniqueness, 96
identifying attributes, 94–96
identity tracking, 94–96
modeling, 93–94
referencing with VALUE OBJECTS,

98–99
vs. Java entity beans, 91

Evant, 504–505
EVOLVING ORDER, 444–446, 491
Examples

AGGREGATES, 130–135
analysis patterns, 295–306
ASSERTIONS, 256–259
breakthroughs, 202–203
chemical warehouse packer,

235–241
chemistry, PUBLISHED LANGUAGE,

377
CLOSURE OF OPERATIONS, 269–270

COHESIVE MECHANISMS, 425–427
composite SPECIFICATION, 278–282
CONCEPTUAL CONTOURS, 260–264
constructors, 174–175
Evant, 504–505
explanatory models, 41–43
extracting hidden concepts, 17–20
insurance project, 372–373
integration with other systems,

372–373
INTENTION-REVEALING INTERFACES,

423–424
introducing new features, 181–185
inventory management, 504–505
investment banking, 211–215
KNOWLEDGE LEVEL, 466–474
LAYERED ARCHITECTURE, 71–72
MODEL-DRIVEN DESIGN, 52–57
MODULES, 111–112
multiple teams, 358–360
online banking, 71–72
organization chart, 423–427
package coding in Java, 111–112
paint-mixing application, 247–249,

252–254, 256–259
payroll and pension, 466–474
PLUGGABLE COMPONENT FRAME-

WORK, 475–479
procedural languages, 52–57
prototypes, 238–241
PUBLISHED LANGUAGE, 377
purchase order integrity, 130–135
refactoring, 247–249
RESPONSIBILITY LAYERS, 452–460
selecting from Collections, 269–270
SEMATECH CIM framework,

476–479
SIDE-EFFECT-FREE FUNCTIONS,

252–254, 285–286
SPECIFICATION, 235–241
supple design, 247–249
time zones, 410–412
tuning a database, 102
VALUE OBJECTS, 102

Examples, cargo shipping
AGGREGATES, 170–171, 177–179
allocation checking, 181–185
ANTICORRUPTION LAYER, 369–370

522 I N D E X

associations, 169–170
automatic routing, 346–351
booking

BOUNDED CONTEXT, 337–340
extracting hidden concepts, 17–20
legacy application, 369–370
overbooking, 18–19, 222
vs. yield analysis, 358–360

cargo routing, 27–30
cargo tracking, 41–43
COMPOSITE pattern, 316–320
composite routes, 316–320
concept analysis, 222
conclusion, 502–504
constructors, 174–175
CONTEXT MAP, 346–351
ENTITIES, 167–168
extracting hidden concepts, 17–20
FACTORIES, 174–175
identifying missing concepts,

207–210
isolating the domain, 166–167
large-scale structure, 452–460
MODULES, 179–181
multiple development teams,

358–360
performance tuning, 185–186
refactoring, 177–179
REPOSITORIES, 172–173
RESPONSIBILITY LAYERS, 452–460
route-finding, 312–314
scenarios, 173–177
SEGREGATED CORE, 430–434
shipping operations and routes,

41–43
STRATEGY, 312–314
system overview, 163–166
UBIQUITOUS LANGUAGE, 27–30
VALUE OBJECTS, 167–168

Examples, concept analysis
extracting hidden concepts, 17–20
identifying missing concepts,

207–210
implicit concepts, 286–288
researching existing resources,

217–219
resolving awkwardness, 211–215

Examples, distillation
COHESIVE MECHANISMS, 423–424,

425–427
GENERIC SUBDOMAINS, 410–412
organization chart, 423–424,

425–427
SEGREGATED CORE, 428–434
time zones, 410–412

Examples, integration
ANTICORRUPTION LAYER, 369–370
translator, 346–351
unifying an elephant, 378–381

Examples, large-scale structure
KNOWLEDGE LEVEL, 466–474
PLUGGABLE COMPONENT FRAME-

WORK, 475–479
RESPONSIBILITY LAYERS, 452–460

Examples, LAYERED ARCHITECTURE

partitioning applications, 71–72
RESPONSIBILITY LAYERS, 452–460

Examples, loan management
analysis patterns, 295–306
breakthroughs, 194–200
concept analysis, 211–215, 217–219
CONCEPTUAL CONTOURS, 262–264
conclusion, 501–502
interest calculator, 211–215,

217–219, 295–306
investment banking, 194–200
refactoring, 194–200, 284–292

Explanatory models, 41–43
Explicit constraints, concept analysis,

220–222
External systems, 383–385. See also

integration.
Extracting hidden concepts, 17–20.

See also implicit concepts.

F
FACADES, 366–367
Facilities, 194
FACTORIES

configuring SPECIFICATION, 226–227
creating, 139–141
creating objects, 137–139
designing the interface, 143
ENTITY vs. VALUE OBJECT, 144–145

523I N D E X

FACTORIES (continued)
example, 174–175
invariant logic, 143
overview, 136–139
placing, 139–141
reconstitution, 145–146
and REPOSITORIES, 157–159
requirements, 139

FACTORY METHOD, 139–141
False cognates, 339–340
Film editing anecdote, 5
Flexibility. See supple design.
FLYWEIGHT pattern, 320
Functions, SIDE-EFFECT-FREE,

250–254, 285–286

G
GENERIC SUBDOMAINS

adapting a published design, 408
example, 410–412
in-house solution, 409–410
off-the-shelf solutions, 407
outsourcing, 408–409
overview, 406
reusability, 412–413
risk management, 413–414
vs. COHESIVE MECHANISMS, 425

Granularity, 108

H
Hidden concepts, extracting,

17–20
HIGHLIGHTED CORE, 417–421
Holy Grail anecdote, 5

I
Identity

establishing, 90–93
local vs. global, 127
tracking, 94–96

Immutability of VALUE OBJECTS,
100–101

Implicit concepts
categories of, 219–223
recognizing, 206–219

Infrastructure layer, 70
Infrastructure-driven packaging,

112–116

In-house solution, GENERIC SUB-
DOMAINS, 409–410

Insurance project example,
372–373

Integration
ANTICORRUPTION LAYER, 364–370
CONTINUOUS INTEGRATION,

341–343, 391–393
cost/benefit analysis, 371–373
elephant and the blind men,

378–381
example, 372–373
external systems, 384–385
OPEN HOST SERVICE, 374
SEPARATE WAYS, 371–373
translation layers, 374. See also

PUBLISHED LANGUAGE.
Integrity. See model integrity.
INTENTION-REVEALING INTERFACES,

246–249, 422–427
Interest calculator examples, 211–215,

217–219, 295–306
Internet Explorer bookmark anec-

dote, 57–59
Invariant logic, 128–129, 143
Inventory management example,

504–505
Investment banking example,

194–200, 211–215, 501
Isolated domain layer, 106–107
Isolating the domain. See ANTI-

CORRUPTION LAYER; distillation;
LAYERED ARCHITECTURE.

Iterative design process, 14, 188, 445

J
Jargon. See PUBLISHED LANGUAGE;

UBIQUITOUS LANGUAGE.
Java entity beans vs. ENTITIES, 91

K
Knowledge crunching, 13–15
Knowledge crunching, example, 7–12
KNOWLEDGE LEVEL, 465–474

L
Language of the domain experts,

206–207

524 I N D E X

Large-scale structure. See also distilla-
tion; examples, large-scale struc-
ture; LAYERED ARCHITECTURE;
strategic design.

CONTEXT MAP, 446
definition, 442
development constraints, 445–446
EVOLVING ORDER, 444–446
flexibility, 480–481
KNOWLEDGE LEVEL, 465–474
minimalism, 481
naive metaphor, 448–449
overview, 439–443
PLUGGABLE COMPONENT FRAME-

WORK, 475–479
refactoring, 481
role in design, 329
supple design, 482–483
SYSTEM METAPHOR, 447–449
team communication, 482

Large-scale structure, RESPONSIBILITY

LAYERS

choosing layers, 460–464
overview, 450–452
useful characteristics, 461

LAYERED ARCHITECTURE. See also
distillation; examples, LAYERED

ARCHITECTURE; large-scale
structure.

application layer, 70, 76–79
callbacks, 73
conceptual layers, 70
connecting layers, 72–74
design dependencies, 72–74
diagram, 68
domain layer, 70, 75–79
frameworks, 74–75
infrastructure layer, 70
isolated domain layer, 106–107
MVC (MODEL-VIEW-CONTROLLER),

73
OBSERVERS, 73
partitioning complex programs, 70
separating user interface, applica-

tion, and domain, 76–79
SERVICES, 73–74
SMART UI, 73
TRANSACTION SCRIPT, 79

user interface layer, 70, 76–79
value of, 69

LAYERED ARCHITECTURE, ANTI-
CORRUPTION LAYER

ADAPTERS, 367
considerations, 368–369
FACADES, 366–367
interface design, 366–369
overview, 364–366
relationships with external systems,

384–385
LAYERED ARCHITECTURE, RESPONSI-

BILITY LAYERS

choosing layers, 460–464
overview, 450–452
useful characteristics, 461

Legacy systems, phasing out,
393–394

Life cycle of domain objects, 123–124.
See also AGGREGATES;
FACTORIES; REPOSITORIES.

Loan management examples. See ex-
amples, loan management.

Local vs. global identity, 127

M
Merging

OPEN HOST SERVICE and PUBLISHED

LANGUAGE, 394–396
SEPARATE WAYS to SHARED KERNEL,

389–391
SHARED KERNEL to CONTINUOUS

INTEGRATION, 391–393
METADATA MAPPING LAYERS, 149
Missing concepts, 207–210
Mistaken identity anecdote, 89
Model integrity. See also BOUNDED

CONTEXT; CONTEXT MAP;
multiple models.

establishing boundaries, 333–334
multiple models, 333
overview, 331–334
recognizing relationships, 333–334
unification, 332. See also CON-

TINUOUS INTEGRATION.
Model layer. See domain layer.
Model-based language. See UBIQUI-

TOUS LANGUAGE.

525I N D E X

MODEL-DRIVEN DESIGN

correspondence to design, 50–51
modeling paradigms, 50–52
overview, 49
procedural languages, 51–54
relevance of model, 49
tool support, 50–52

Modeling
associations, 82–88
ENTITIES, 93–94
HANDS-ON MODELERS, 60–62
integrating with programming,

60–62
non-object, 119–122

Models
binding to implementation. See

MODEL-DRIVEN DESIGN.
and user understanding, 57–59

MODEL-VIEW-CONTROLLER (MVC),
73

Modularity, 115–116
MODULES

agile, 111
cohesion, 109–110, 113
costs of, 114–115
coupling, 109–110
determining meaning of, 110
examples, 111–112, 179–181
infrastructure-driven packaging,

112–116
mixing paradigms, 119–122
modeling paradigms, 116–119
modularity, 115–116
naming, 110
non-object models, 119–122
object paradigm, 116–119
overview, 109
packaging domain objects, 115
refactoring, 110, 111
vs. BOUNDED CONTEXT, 335

Monty Python anecdote, 5
Multiple models, 333, 335–340
MVC (MODEL-VIEW-CONTROLLER),

73

N
Naive metaphor, 448–449

Naming
BOUNDED CONTEXTS, 345
conventions for supple design, 247
INTENTION-REVEALING INTERFACES,

247
MODULES, 110
SERVICES, 105

Non-object models, 119–122

O
Object references. See REPOSITORIES.
Objects. See also ENTITIES; VALUE

OBJECTS.
associations, 82–88
creating, 234–235. See also construc-

tors; FACTORIES.
defining, 81–82
designing for relational databases,

159–161
made up of objects. See AGGRE-

GATES; COMPOSITE.
persistent, 150–151

OBSERVERS, 73
Off-the-shelf solutions, 407
Online banking example, 71–72
OPEN HOST SERVICE, converting to

PUBLISHED LANGUAGE, 394–396
Outsourcing, 408–409
Overbooking examples, 18–19, 222

P
Packaging. See deployment;

MODULES.
Paint-mixing application, examples,

247–249, 252–254, 256–259
Partitioning

complex programs. See large-scale
structure; LAYERED ARCHITEC-
TURE.

SERVICES into layers, 107
Patterns, 507–510. See also analysis

patterns; design patterns; large-
scale structure.

PCB design anecdote, 7–13, 501
Performance tuning, example,

185–186
Persistent objects, 150–151

526 I N D E X

PLUGGABLE COMPONENT FRAME-
WORK, 475–479

POLICY pattern. See STRATEGY

pattern.
Polymorphism, 435–437
Presentation layer. See user interface

layer.
Procedural languages, and MODEL-

DRIVEN DESIGN, 51–54
Processes as domain objects,

222–223
Prototypes, 238–241
PUBLISHED LANGUAGE

elephant and the blind men,
378–381

example, 377
merging with OPEN HOST SERVICE,

394–396
overview, 375–377

Q
Quilt project, 479

R
Reconstitution, 145–146, 148
Refactoring

breakthroughs, 193–200
during a crisis, 325–326
deep models, 189–191
definition, 188
designing for developers, 324
discovery, 191–192
distillation, 437
examples, 177–179, 181–185,

194–200, 247–249
exploration teams, 322–323
initiation, 321–322
large-scale structure, 481
levels of, 188–189
MODULES, 110, 111
to patterns, 188–189
reusing prior art, 323–324
supple design, 191
timing, 324–325

Refactoring targets, 437
Reference objects. See ENTITIES.
REPOSITORIES

advantages, 152

architectural frameworks, 156–157
decoupling from the client, 156
designing objects for relational data-

bases, 159–161
encapsulation, 154
example, 172–173
and FACTORIES, 157–159
global searches, 150–151
implementing, 155–156
METADATA MAPPING LAYERS, 149
object access, 149–151
overview, 147–152
persistent objects, 150–151
querying, 152–154
references to preexisting domain

objects, 149
transaction control, 156
transient objects, 149
type abstraction, 155–156

Requirements gathering. See concept
analysis; knowledge crunching;
UBIQUITOUS LANGUAGE.

RESPONSIBILITY LAYERS

choosing layers, 460–464
example, 452–460
overview, 450–452
useful characteristics, 461

Reusing code
BOUNDED CONTEXT, 344
GENERIC SUBDOMAINS, 412–413
reusing prior art, 323–324

Risk management, 413–414

S
Scenarios, examples, 173–177
SEGREGATED CORE, 428–434
Selecting objects, 229–234, 269–270
SEPARATE WAYS, 384–385, 389–391
SERVICES. See also ENTITIES; VALUE

OBJECTS.
access to, 108
characteristics of, 105–106
granularity, 108
and the isolated domain layer,

106–107
naming, 105
overview, 104–105
partitioning into layers, 107

527I N D E X

SHARED KERNEL

example, 359
merging with CONTINUOUS

INTEGRATION, 391–393
merging with SEPARATE WAYS,

389–391
overview, 354–355

Sharing VALUE OBJECTS, 100–101
Shipping examples. See examples,

cargo shipping.
Side effects, 250. See also ASSERTIONS.
SIDE-EFFECT-FREE FUNCTIONS,

250–254, 285–286
Simplifying your design. See distilla-

tion; large-scale structure; LAY-
ERED ARCHITECTURE.

SMART UI, 73
SPECIFICATION. See also analysis pat-

terns; design patterns.
applying, 227
business rules, 225
combining. See composite SPECIFI-

CATION.
composite, 273–281
configuring, 226–227
definition, 225–226
example, 29, 235–241, 279–282
generating objects, 234–235
implementing, 227
overview, 224–227
purpose, 227
selecting objects, 229–234
validating objects, 227, 228–229

Speech, common language. See
UBIQUITOUS LANGUAGE.

Speech, modeling through, 30–32
STANDALONE CLASSES, 265–267
Strategic design. See also large-scale

structure.
assessing the situation, 490
customer-focused architecture

teams, 492
developers, role of, 494
essential requirements, 492–495
evolution, 493
EVOLVING ORDER, 491
feedback process, 493
minimalism, 494–495

multiple development teams, 491
objects, role of, 494
setting a strategy, 490–492
team communication, 492
team makeup, 494
technical frameworks, 495–497

STRATEGY pattern, 19, 311–314
Supple design

approaches to, 282–292
ASSERTIONS, 255–259
CLOSURE OF OPERATIONS, 268–270
composite SPECIFICATION, 273–282
CONCEPTUAL CONTOURS, 260–264
declarative design, 270–272
declarative style of design, 273–282
domain-specific language, 272–273
example, 247–249
INTENTION-REVEALING INTERFACES,

246–249
interdependencies, 265–267
large-scale structure, 480–483
naming conventions, 247
overview, 243–245
SIDE-EFFECT-FREE FUNCTIONS,

250–254, 285–286
STANDALONE CLASSES, 265–267

SYSTEM METAPHOR, 447–449
System under design, 385–386

T
Team context, 382
Teams

choosing a strategy, 382
communication, large-scale struc-

ture, 482
customer-focused, 492
defining BOUNDED CONTEXT, 382
developer community, maturity of,

117–119
exploration, 322–323

Teams, and strategic design
communication, 492
customer-focused, 492
developers, role of, 494
makeup of, 494
multiple teams, 491

Teams, multiple
ANTICORRUPTION LAYER, 364–370

528 I N D E X

CONFORMIST, 361–363
CUSTOMER/SUPPLIER, 356–360
example, 358–360
SHARED KERNEL, 354–355, 359
strategic design, 491

Terminology. See BOUNDED CONTEXT;
PUBLISHED LANGUAGE; UBIQUI-
TOUS LANGUAGE.

Testing boundaries, 351
Transaction control, 156
TRANSACTION SCRIPT, 79
Transformations, 389
Transforming boundaries, 382–383
Transient objects, 149
Translation layers, 374
Tuning a database, example, 102

U
UBIQUITOUS LANGUAGE. See also

PUBLISHED LANGUAGE.
analysis patterns, 306–307
cargo router example, 27–30
consistent use of, 32–35
designing objects for relational data-

bases, 160–161
domain-specific language,

272–273
language of the domain experts,

206–207
overview, 24–27
refining the model, 30–32
specialized terminologies, 386–387
requirements analysis, 25
speech, role of, 30–32

UML (Unified Modeling Language),
35–37

Unification, 332. See also CONTINU-
OUS INTEGRATION.

Unified Modeling Language (UML),
35–37

Updating the design. See refactoring.
User interface layer

business logic, 77
definition, 70
separating from application and

domain, 76–79

V
Validating objects, 227, 228–229
VALUE OBJECTS. See also ENTITIES;

SERVICES.
associations, 102–103
bidirectional associations, 102–103
change management, 101
clustering. See AGGREGATES.
designing, 99–102
example, 167–168
immutability, 100–101
object assemblages, 98–99
overview, 97–99
passing as parameters, 99
referencing ENTITIES, 98–99
sharing, 100–101
tuning a database, example, 102

Vision statement. See DOMAIN VISION

STATEMENT.
Vocabulary. See PUBLISHED LAN-

GUAGE; UBIQUITOUS LANGUAGE.

W
Waterfall design method, 14
Web site bookmark anecdote, 57–59

529I N D E X

	Contents
	Foreword
	Preface
	Acknowledgments
	Chapter 1: Crunching Knowledge
	Ingredients of Effective Modeling
	Knowledge Crunching
	Continuous Learning
	Knowledge-Rich Design
	Deep Models

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

