
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321967053
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321967053
https://plusone.google.com/share?url=http://www.informit.com/title/9780321967053
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321967053
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321967053/Free-Sample-Chapter

Praise for More Agile Testing
“I love this book. It will help to create really great testers. That’s a good thing, since
anyone who reads this will want to have one on their team.”

—Liz Keogh, agile coach, Lunivore Limited

“This book will change your thinking and move your focus from tests to testing. Yes,
it is not about the result, but about the activity!”

—Kenji Hiranabe, cofounder of Astah and CEO, Change Vision, Inc.

“To my mind, agile development is about learning—that one word captures the true
spirit of what agile is all about. When I had the chance to read through their new
book, I could only say, ‘Wow! Janet and Lisa have done themselves proud.’ This is
not a book about testing; this is a book about learning. Their clear explanations are
accompanied by great true stories and an impressive list of books, articles, and other
resources. Those of us who like learning, who love to dig for more information, can
rejoice! I know you’re always looking for something interesting and useful; I can
guarantee that you will find it here!”

—Linda Rising, coauthor of Fearless Change: Patterns for Introducing New Ideas

“Janet and Lisa’s first book, Agile Testing, drew some general principles that are
still important today but left me wondering, ‘how?’ In this second book, they adapt
those principles to today’s development landscape—with mobile, DevOps, and
cloud-based applications delivered in increasingly compressed release cycles. Read-
ers get specific testing tools for the mind along with new practices and commentary
to accelerate learning. Read it today.”

—Matt Heusser, Managing Principal, Excelon Development

“An excellent guide for your team’s agile journey, full of resources to help you with every
kind of testing challenge you might meet along the way. Janet and Lisa share a wealth of
experience with personal stories about how they helped agile teams figure out how to get
value from testing. I really like how the book is filled with techniques explained by lead-
ing industry practitioners who’ve pioneered them in their own organizations.”

—Rachel Davies, agile coach, unruly and coauthor of Agile Coaching

“Let me net this out for you: agile quality and testing is hard to get right. It’s nuanced,
context-based, and not for the faint of heart. In order to effectively balance it, you need
hard-earned, pragmatic, real-world advice. This book has it—not only from Janet and
Lisa, but also from forty additional expert agile practitioners. Get it and learn how to
effectively drive quality into your agile products and across your entire organization.”

—Bob Galen, Principal Consultant, R Galen Consulting Group, and Author of Agile
Reflections and Scrum Product Ownership

“Janet and Lisa have done it again. They’ve combined pragmatic life experience with
ample storytelling to help people take their agile testing to the next level.”

—Jonathan Rasmusson, author of Agile Samurai: How Masters Deliver Great Software

“In this sequel to their excellent first book, Janet and Lisa have embraced the matu-
rity of agile adoption and the variety of domains in which agile approaches are now
being applied. In More Agile Testing they have distilled the experiences of experts
working in different agile organizations and combined them with their own insights
into a set of invaluable lessons for agile practitioners. Structured around a range of
essential areas for software professionals to consider, the book examines what we
have learned about applying agile, as its popularity has grown, and about software
testing in the process. There is something for everyone here, not only software tes-
ters, but individuals in any business role or domain with an interest in delivering
quality in an agile context.”

—Adam Knight, Director of QA, RainStor

“This book has it all: practical advice and stories from the trenches. Whether you’ve
never heard of agile or you think you’re an expert, there is something here that will
help you out. Jump around in the book and try a few things; I promise you will be a
better tester and developer for it.”

—Samantha Laing, agile coach and trainer, Growing Agile

“More Agile Testing is a great collection of stories and ideas that can help you
improve not just how you test, but the products you build and the way you work.
What I love most about the book is how easy many of the ideas are to try. If one
message is clear, it is that regardless of your context and challenges, there are things
you can try to improve. Get started today with something small, and nothing will be
impossible.”

—Karen Greaves, agile coach and trainer, Growing Agile

“More Agile Testing is an extensive compilation of experiences, stories, and examples
from practitioners who work with testing in agile environments around the world.
It covers a broad spectrum, from organizational and hiring challenges, test tech-
niques and practices, to automation guidance. The diversity of the content makes
it a great cookbook for anyone in software development who is passionate about
improving their work and wants to produce quality software.”

—Sigurdur Birgisson, quality assistance engineer, Atlassian

More Agile Testing

The Addison-Wesley Signature Series provides readers with practical and authoritative

information on the latest trends in modern technology for computer professionals.

The series is based on one simple premise: Great books come from great authors.

Titles in the series are personally chosen by expert advisors, world-class authors in

their own right. These experts are proud to put their signatures on the covers, and

their signatures ensure that these thought leaders have worked closely with authors to

define topic coverage, book scope, critical content, and overall uniqueness. The expert

signatures also symbolize a promise to our readers: You are reading a future classic.

Visit informit.com/awss for a complete list of available products.

The Addison-Wesley Signature Series
Kent Beck, Mike Cohn, and Martin Fowler, Consulting Editors

More Agile Testing

Learning Journeys for the Whole Team

Janet Gregory
Lisa Crispin

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Gregory, Janet, 1953–
 More agile testing : learning journeys for the whole team / Janet Gregory, Lisa Crispin.
 pages  cm
 Includes bibliographical references and index.
 ISBN 978-0-321-96705-3 (pbk. : alk. paper)
 1. Computer software—Testing. 2. Agile software development. I. Crispin, Lisa. II. Title.
 QA76.76.T48G74 2015
 005.1—dc23
	 2014027150

Copyright © 2015 Janet Gregory and Lisa Crispin

Illustrations by Jennifer Sinclair

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain
permission to use material from this work, please submit a written request to Pearson Education, Inc., Permissions
Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-96705-3
ISBN-10: 0-321-96705-4
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, October 2014

To my grandchildren, Lauren, Brayden, and Joe, who kept
me laughing and playing throughout this past year.

—Janet

To my family, those still here and those sadly gone, and my dear friends
who are part of my chosen family.

—Lisa

This page intentionally left blank

	 ix

Contents

Foreword by Elisabeth Hendrickson	 xvii

Foreword by Johanna Rothman	 xix

Preface	 xxi

Acknowledgments	 xxix

About the Authors	 xxxiii

About the Contributors	 xxxv

Part I	 Introduction	 1

Chapter 1	 How Agile Testing Has Evolved	 3
Summary	 6

Chapter 2	 The Importance of Organizational Culture	 7
Investing Time	 8
The Importance of a Learning Culture	 12
Fostering a Learning Culture	 13
Transparency and Feedback Loops	 15
Educating the Organization	 17
Managing Testers	 19
Summary	 20

x	 Contents

Part II	 Learning for Better Testing	 21

Chapter 3	 Roles and Competencies	 23
Competencies versus Roles	 24
T-Shaped Skill Set	 28
Generalizing Specialists	 33
Hiring the Right People 	 36
Onboarding Testers 	 37
Summary	 39

Chapter 4	 Thinking Skills for Testing	 41
Facilitating	 42
Solving Problems	 43
Giving and Receiving Feedback	 45
Learning the Business Domain	 46
Coaching and Listening Skills	 48
Thinking Differently	 49
Organizing	 51
Collaborating	 52
Summary	 53

Chapter 5	 Technical Awareness	 55
Guiding Development with Examples	 55
Automation and Coding Skills	 56
General Technical Skills	 59
Development Environments	 59
Test Environments	 60
Continuous Integration and Source Code Control Systems	 62
Testing Quality Attributes	 65
Test Design Techniques	 67
Summary	 67

Chapter 6	 How to Learn	 69
Learning Styles	 69
Learning Resources	 72

Conferences, Courses, Meet-ups, and Collaborating	 72
Publications, Podcasts, and Online Communities	 75

Time for Learning	 77
Helping Others Learn	 79
Summary	 83

	 Contents	 xi

Part III	 Planning—So You Don’t Forget 	 85
the Big Picture

Chapter 7	 Levels of Precision for Planning	 87
Different Points of View	 87

Product Release Level	 89
Feature Level	 92
Story Level	 96
Task Level	 96

Planning for Regression Testing	 97
Visualize What You Are Testing	 98
Summary	 100

Chapter 8	 Using Models to Help Plan	 101
Agile Testing Quadrants	 101

Planning for Quadrant 1 Testing	 105
Planning for Quadrant 2 Testing	 105
Planning for Quadrant 3 Testing 	 106
Planning for Quadrant 4 Testing	 107

Challenging the Quadrants	 108
Using Other Influences for Planning	 113
Planning for Test Automation	 115
Summary	 116

Part IV	 Testing Business Value	 119

Chapter 9	 Are We Building the Right Thing?	 121
Start with “Why”	 121
Tools for Customer Engagement 	 123

Impact Mapping	 123
Story Mapping	 126
The 7 Product Dimensions 	 129

More Tools or Techniques for Exploring Early	 134
Invest to Build the Right Thing	 134
Summary	 135

xii	 Contents

Chapter 10	The Expanding Tester’s Mindset: Is This My Job?	 137
Whose Job Is This Anyway?	 137

Business Analysis Skills	 137
UX Design Skills	 140
Documentation Skills	 141

Take the Initiative	 142
Summary	 144

Chapter 11	Getting Examples	 145
The Power of Using Examples	 145
Guiding Development with Examples	 148

ATDD	 149
BDD	 152
SBE	 153

Where to Get Examples	 155
Benefits of Using Examples	 157
Potential Pitfalls of Using Examples	 159

Getting Bogged Down in the Details	 159
Lacking Buy-in	 160
Too Many Regression Tests	 161
Not Enough Is Known Yet	 161

The Mechanics of Using Examples to Guide Coding	 162
Summary	 162

Part V	 Investigative Testing	 163

Chapter 12	Exploratory Testing	 165
Creating Test Charters	 168
Generating Test Charter Ideas	 171

Exploring with Personas	 171
Exploring with Tours	 174
Other Ideas	 175

Managing Test Charters	 176
Session-Based Test Management	 176
Thread-Based Test Management	 178

Exploring in Groups	 183
Recording Results for Exploratory Test Sessions	 185
Where Exploratory Testing Fits into Agile Testing	 188
Summary	 190

	 Contents	 xiii

Chapter 13	Other Types of Testing	 191
So Many Testing Needs	 192
Concurrency Testing	 194
Internationalization and Localization	 195
Regression Testing Challenges	 200
User Acceptance Testing	 201
A/B Testing	 203
User Experience Testing	 205
Summary	 207

Part VI	 Test Automation	 209

Chapter 14	Technical Debt in Testing	 211
Make It Visible	 212
Work on the Biggest Problem—and Get the Whole 	 217

Team Involved
Summary	 220

Chapter 15	Pyramids of Automation	 223
The Original Pyramid	 223
Alternate Forms of the Pyramid	 224
The Dangers of Putting Off Test Automation	 227
Using the Pyramid to Show Different Dimensions	 231
Summary	 235

Chapter 16	Test Automation Design Patterns 	 237
and Approaches

Involve the Whole Team	 238
Starting Off Right	 239
Design Principles and Patterns	 240

Testing through the API (at the Service Level)	 241
Testing through the UI	 243

Test Maintenance	 248
Summary	 251

Chapter 17	Selecting Test Automation Solutions	 253
Solutions for Teams in Transition	 253
Meeting New Automation Challenges with the Whole Team	 258
Achieving Team Consensus for Automation Solutions	 260

xiv	 Contents

How Much Automation Is Enough?	 262
Collaborative Solutions for Choosing Tools	 264
Scaling Automation to Large Organizations	 264
Other Automation Considerations	 268
Summary	 269

Part VII	 What Is Your Context?	 271

Chapter 18	Agile Testing in the Enterprise	 275
What Do We Mean by “Enterprise”?	 275
“Scaling” Agile Testing	 276

Dealing with Organizational Controls	 278
Coordinating Multiple Teams	 283

A System Test Team and Environment	 284
Consistent Tooling	 289

Coordination through CI	 289
Version Control Approaches	 290
Test Coverage	 291

Managing Dependencies	 292
Working with Third Parties	 292
Involving Customers in Large Organizations	 294

Advantages of Reaching Out beyond the Delivery Team	 296
Summary	 297

Chapter 19	Agile Testing on Distributed Teams	 299
Why Not Colocate?	 301
Common Challenges	 302

Cultural Issues	 302
Language	 303
Time Zones	 304
Dependencies	 305
Planning	 305

Strategies for Coping	 308
Integrating Teams	 308
Communication and Collaboration	 309
Collaborating through Tests	 311

Offshore Testing	 312

	 Contents	 xv

Tool Ideas for Distributed Teams	 319
Communication Tools	 319
Collaboration Tools	 319

Summary	 322

Chapter 20	Agile Testing for Mobile and Embedded Systems	 325
Similar, Yet Different	 326
Testing Is Critical	 328
Agile Approaches	 329
Summary	 337

Chapter 21	Agile Testing in Regulated Environments	 339
The “Lack of Documentation” Myth	 339
Agile and Compliance	 340
Summary	 346

Chapter 22	Agile Testing for Data Warehouses and Business
Intelligence Systems	 347

What Is Unique about Testing BI/DW?	 348
Using Agile Principles	 351
Data—the Critical Asset	 352
Big Data	 357
Summary	 360

Chapter 23	Testing and DevOps	 361
A Short Introduction to DevOps	 361
DevOps and Quality	 363
How Testers Add DevOps Value	 371
Summary	 376

Part VIII	 Agile Testing in Practice	 379

Chapter 24	Visualize Your Testing	 381
Communicating the Importance of Testing	 381
Visualize for Continuous Improvement	 386
Visibility into Tests and Test Results	 390
Summary	 392

xvi	 Contents

Chapter 25	Putting It All Together	 393
Confidence-Building Practices	 394

Use Examples	 394
Exploratory Testing	 395
Feature Testing	 396
Continual Learning	 397
Context Sensitivity	 399
Keep It Real	 401

Create a Shared Vision	 402
Summary	 405

Appendix A	 Page Objects in Practice: Examples	 407
An Example with Selenium 2—WebDriver	 407
Using the PageFactory Class	 410

Appendix B	 Provocation Starters	 413

Glossary	 415

References	 423

Bibliography	 435

Index	 459

	 xvii

Foreword

By Elisabeth Hendrickson

Just ten years ago, agile was still considered radical. Fringe. Weird. The
standard approach to delivering software involved phases: analyze, then
design, then code, then test. Integration and testing happened only at
the end of the cycle. The full development cycle took months or years.

If you have never worked in an organization with long cycles and dis-
crete phases, the idea may seem a little weird now, but it was the stan-
dard a decade ago.

Back when phases were the norm and agile was still new, the agile com-
munity was mostly programmer-centric. Janet and Lisa and a few others
from quality and testing were there. However, many in the agile com-
munity felt that QA had become irrelevant. They were wrong, of course.
QA changed, reshaped to fit the new context, but it did not go away.

It took people like Janet and Lisa to show how QA could be integrated
into agile teams instead of bypassed. Their first book together, Agile
Testing, carefully explained the whole-team approach to quality. They
covered the cultural changes needed to fully integrate testing with devel-
opment. They explained how to overcome barriers. It’s a fantastic book, 
and I highly recommend it.

However, questions remained. How could the practices be adapted to
various contexts? How do you start? What should testers learn in order
to be more effective?

This book picks up where Agile Testing left off and answers those ques-
tions and more.

Even if that were all this book did, it would be an excellent sequel.

xviii	 Foreword

It’s more than that, though. Within these pages you will find a theme—
one that Janet and Lisa have woven so deftly throughout the text you
might not even realize it as you are reading. So I am going to call your
attention to it: this is a book about adapting.

Reflect-and-adapt is the one simple trick that can enable your organiza-
tion to find its way to agile. Experiment, try something different, distill
lessons learned, repeat. The next thing you know, your organization will
be nimble and flexible, able to shift with market demands and deliver
incrementally.

This book teaches you about adapting even as it is teaching you about
agile testing.

Part II, “Learning for Better Testing,” isn’t just about how you learn as
an individual but also about building a learning culture. Part VII, “What
Is Your Context?,” isn’t just about variations in agile tailored to different
situations; it’s also a field guide to various types of adaptations.

The world is changing so very quickly. Just a decade ago agile was weird;
now it is mainstream. Just five years ago, tablets like iPads weren’t even
on the market; now they’re everywhere. Practices, tools, technology, and
markets are all changing so fast it’s hard to keep up. It’s not enough to
learn one way of doing things; you need to know how to discover new
ways. You need to adapt.

This book is a fantastic resource for agile testing. It will also help you
learn to adapt and be comfortable with change.

I hope you enjoy it as much as I did.

	 xix

Foreword

By Johanna Rothman

What do testers do? They provide information about the product under
test, to expose risks for the team.

That’s exactly what Janet Gregory and Lisa Crispin have done in their
new book, More Agile Testing: Learning Journeys for the Whole Team.
Do you have risks in your agility? There are plenty of ideas to help you
understand the value of sustainable pace, creating a learning organiza-
tion, and your role in testing.

Not sure how to test for a given product, on a single team, or in a pro-
gram? There’s an answer for that, too.

How do you work with people in the next cube, down the hall, and
across the world? Janet and Lisa have been there and done that. Their
focus on roles and not titles is particularly helpful.

There are plenty of images in this book, so you won’t have to wonder,
“What do they mean?” They show you, not just tell you.

More Agile Testing: Learning Journeys for the Whole Team is much more
than a book about testing. It’s a book about how to use testing to help
your entire team, and by extension, your organization, and transition to
agile in a healthy way.

Isn’t that what providing information about the organization under
test, exposing risks in the organization, is all about?

If you are a tester or a test manager, you need to read this book. If you
integrate testing into your organization, you need to read this book.
How else will you know what the testers could be doing?

This page intentionally left blank

	 xxi

Preface

This book carries on where our first book, Agile Testing: A Practical
Guide for Testers and Agile Teams, left off. We avoid repeating what we
covered in our first book but give enough context so it stands alone if
you have not read Agile Testing. We refer to the first book as Agile Testing
when we think it might be helpful for the reader to explore basic con-
cepts in more detail.

Who Is This Book For?
We assume that you, the reader, are not a beginner in the world of agile
testing, that you have some agile and testing experience and now you’re
looking for help in the areas beyond where Agile Testing goes. If you feel
that you would like an introduction to agile development that includes
some basics of testing in agile before you read this book, The Agile Sam-
urai (Rasmussen, 2010) is an excellent place to start.

This book is aimed at anyone who is interested in testing activities
on an agile team. In our experience, this includes not only testers and
test managers, but programmers, product owners, business analysts,
DevOps practitioners, line managers—pretty much everyone.

Acceptance Tests

In addition to sharing what we’ve learned over the past several years, we
wanted to make this book as useful to our readers as the first one. We
wanted to know what readers of the first book still needed to know after

Who Is This Book For?

Acceptance Tests

How to Read This Book

Experiment!

Preface

xxii	 Preface

reading it, so we asked practitioners from the Agile Testing mailing list to
send us their “acceptance tests” for this second book. We distilled those
responses to this list of acceptance tests for More Agile Testing and did
our best to satisfy these as we wrote the book.

You’ll note that we’ve used a style used in behavior-driven development
(BDD), which we’ll talk more about in Chapter 11, “Getting Examples”:

Given <precondition>,

When <trigger, action>,

Then <the expected result>.

■■ Given that I am an agile tester or manager, when I hire new tes-
ters with no agile experience, then I’ll learn how to bring them
up to speed and avoid throwing them into the deep end without
a life jacket.

■■ Given that I am a team member on an agile team, when I finish
this book, then I expect to know how to fit exploratory testing in
with automated tests and to get a picture of the overall test cov-
erage, without resorting to heavyweight tools.

■■ Given that I am an experienced agile test manager, when I finish
this book, then I will understand how to approach agile test-
ing techniques with multiple teams to allow my successful agile
organization to grow.

■■ Given that I am an experienced agile test manager, when I finish
reading this book, then I should have ideas about how to coordi-
nate test automation activities across iterations and teams, with
ideas on how to improve.

■■ Given that I am an experienced agile manager, when I’ve read
this book, then I will understand how other teams have adapted
agile testing practices to suit their own context and will have
ideas about how to apply them to mine.

■■ Given that I am an agile team member who is interested in test-
ing, when I finish this book, then I expect to have examples of
what tests should and should not look like and how I can design
tests effectively.

	 Preface	 xxiii

■■ Given that I am an experienced agile tester, when I find an inter-
esting topic in this book about which I’d like to learn more, then
I can easily find references to web resources or other books.

■■ Given that I am an experienced agile coach or manager who is
reading the book, when I see a concept that would help my team,
then I have enough information to be able to devise a strategy to
get the team to try an experiment.

■■ Given that I am an agile team member who is concerned about
testing and keeping the customers informed, when I have read
this book, then I’ll understand good ways to communicate with
customer team members about testing activities.

■■ Given that I am an experienced agile test manager, when I have
read this book, then I will know how mainstream adoption of
agile is being done, and I will understand the working context of
testers from other organizations when they apply for jobs on my
team. (Note: This acceptance test is not part of this release, but
we think some of the examples and stories in the book will help
to achieve it.)

How to Read This Book

Though we’ve organized this book in a way that we feel flows best, you
don’t have to start with Chapter 1 and keep going. As with Agile Testing,
you can begin with whatever topics are most useful to you. We try to
cover each topic in detail only once, but because so many of these con-
cepts, practices, and principles are interrelated, you’ll find that we refer
to some ideas in more than one chapter.

Part I: Introduction

Read this part to understand where testing started in agile teams and
how it has evolved to become the cornerstone of agile development and
continuous delivery of products. Part of successful agile development
is an organization’s ability to learn what’s most critical for long-range
success with agile testing.

■■ Chapter 1, “How Agile Testing Has Evolved”
■■ Chapter 2, “The Importance of Organizational Culture”

xxiv	 Preface

Part II: Learning for Better Testing

Both technology and the craft of testing are continually evolving, and
lines between different disciplines are becoming more blurred. Even
experienced practitioners have to keep growing their skills. This part
includes examples of what testers and other disciplines such as business
analysis and coding need to know to meet more difficult testing chal-
lenges. We explain the benefits of generalizing specialists and list some
of the intangible thinking skills and specific technical testing skills that
help testers and teams improve. Different aspects of what and how to
learn are covered in the following chapters:

■■ Chapter 3, “Roles and Competencies”
■■ Chapter 4, “Thinking Skills for Testing”
■■ Chapter 5, “Technical Awareness”
■■ Chapter 6, “How to Learn”

Part III: Planning—So You Don’t Forget the Big Picture

Planning “just enough” is a balancing act. While we need to work in
small increments, we have to keep an eye on the larger feature set and
the entire system. This part covers different aspects of test planning,
from the release level down to the task level. It also explores different
models such as the agile testing quadrants and some of the adaptations
people have suggested.

■■ Chapter 7, “Levels of Precision for Planning”
■■ Chapter 8, “Using Models to Help Plan”

Part IV: Testing Business Value

If, like so many agile teams, you deliver robust code in a timely manner,
only to find it isn’t what the customers wanted after all, the information
in this part will help. We cover tools and practices, particularly those
from the agile business analysis profession, to help you test ideas and
assumptions early and ensure that everyone knows what to deliver. We

	 Preface	 xxv

address other overlapping disciplines and expanding mindsets. This is a
big area, so there are several chapters:

■■ Chapter 9, “Are We Building the Right Thing?”
■■ Chapter 10, “The Expanding Tester’s Mindset: Is This My Job?”
■■ Chapter 11, “Getting Examples”

Part V: Investigative Testing

The programmers have delivered some code to test. Where do you start?
If you or your team lacks experience with exploratory testing, you’ll find
some help here. We outline several exploratory testing techniques such
as using personas and tours to help generate test charter ideas, as well
as managing charters with session-based test management and thread-
based test management.

Along with all those different ways to do exploratory testing, we look
at other ways to verify that delivered code meets a wide range of busi-
ness and user needs. This part covers ways to mitigate risks and generate
useful information in several different types of testing that present chal-
lenges to agile teams. The investigative testing chapters are

■■ Chapter 12, “Exploratory Testing”
■■ Chapter 13, “Other Types of Testing”

Part VI: Test Automation

We see more and more teams finding ways to succeed with test auto-
mation. However, for many teams, automated tests produce sporadic
failures that are expensive to investigate. The time (cost) spent on each
failure may be more than the test is worth. There are plenty of pitfalls
in automating tests. In this part we give examples of ways to make
technical debt in testing visible. We look at different ways to use the
agile testing pyramid effectively to help you think about how to plan
your automation. We’ve introduced a few alternative pyramid models

xxvi	 Preface

to approach automation from different perspectives. You’ll learn ways
to design automated tests for optimum reliability and ease of mainte-
nance. This part also includes examples of scaling test automation in a
large enterprise company.

The chapters in Part VI are

■■ Chapter 14, “Technical Debt in Testing”
■■ Chapter 15, “Pyramids of Automation”
■■ Chapter 16, “Test Automation Design Patterns and Approaches”
■■ Chapter 17, “Selecting Test Automation Solutions”

Part VII: What Is Your Context?

Your approach to agile testing will naturally depend on your context.
Do you work with large enterprise systems? Maybe you’re newly tasked
with testing mobile apps or embedded software. Perhaps your team is
challenged with finding good ways to test data that helps businesses
make decisions. Have you wondered how agile can work in testing regu-
lated software? Finally, we look at the synergies between testing and the
DevOps movement. The chapters in this part cover a variety of areas,
so we have included a number of stories from people who are currently
working in those situations. Some of these chapters may not apply to
your working environment today, but tomorrow—who knows?

■■ Chapter 18, “Agile Testing in the Enterprise”
■■ Chapter 19, “Agile Testing on Distributed Teams”
■■ Chapter 20, “Agile Testing for Mobile and Embedded Systems”
■■ Chapter 21, “Agile Testing in Regulated Environments”
■■ Chapter 22, “Agile Testing for Data Warehouses and Business

Intelligence Systems”
■■ Chapter 23, “Testing and DevOps”

Part VIII: Agile Testing in Practice

We wrap up the book with a look at how teams can visualize quality and
testing, and a summary of agile testing practices that will give your team

	 Preface	 xxvii

confidence as you make release decisions. Creating a shared vision for
your team is critical to success, and we share a model to help bring test-
ing activities to the whole team. If you’re feeling a bit overwhelmed right
now and aren’t sure where to start, read these chapters first:

■■ Chapter 24, “Visualize Your Testing”
■■ Chapter 25, “Putting It All Together”

The book also includes two appendixes: Appendix A, “Page Objects in
Practice: Examples,” and Appendix B, “Provocation Starters.”

Other Elements

Since teams use such a wide variety of agile practices and approaches,
we’ve tried to keep our terminology as generic as possible. To make sure
we have a common language with you, we’ve included a glossary of the
terms we use.

You’ll find icons in the margins throughout the book where we’d like
to draw your attention to a specific practice. You’ll find all six icons in
Chapter 1, “How Agile Testing Has Evolved,” and Chapter 25, “Putting
It All Together.” An example of the icon for learning can be seen next to
following paragraph.

We hope you’ll want to learn more about some of the practices, tech-
niques, and tools that we cover. Please check the bibliography for refer-
ences to books, websites, articles, and blogs. We’ve sorted it by part so
you can find more information easily when you’re reading. Sources that
are mentioned directly in the book are listed alphabetically in the refer-
ence list for easy lookup.

The mind map overview from Agile Testing is included on the book
website, www.agiletester.com, so that you can get a feel for what was
covered there if you haven’t already read it.

http://www.agiletester.com

xxviii	 Preface

Experiment!
Linda Rising encouraged us years ago to try small experiments, evalu-
ate the results, and keep iterating to chip away at problems and achieve
goals. If you read something in this book that sounds as if it might be
useful for you or your team, give it a try for an iteration or two. Use your
retrospectives to see if it’s helping, and tweak as necessary. If it doesn’t
work, you learned something, and you can try something different.

We hope you will find many experiments to try in these pages.

	 xxix

Acknowledgments

This book has been a group effort. Please learn about all the wonderful
practitioners who shared their stories as sidebars in “About the Contrib-
utors.” Many are success stories, some describe lessons learned the hard
way, but we know all will benefit you, the reader.

We’re extremely grateful to Jennifer Sinclair for her wonderful illustra-
tions. She came up with such creative ideas to help us get across some
important concepts.

We referenced the ideas of so many other people who have taken ideas
from Agile Testing, adapted them to meet their needs, and were willing
to share with the world—thank you.

Our tireless reviewers helped us shape the book and cover the right top-
ics. We’re especially grateful to Mike Talks, Bernice Niel Ruhland, and
Sherry Heinze, who slogged through every chapter, in some cases mul-
tiple times. Thanks to Augusto Evangelisti, Gojko Adzic, Adam Knight,
Steve Rogalsky, Aldo Rall, Sharon Robson, James Lyndsay, JeanAnn
Harrison, Ken Rubin, Geoff Meyer, Adam Yuret, and Mike Cohn for
their valuable feedback. Each of our story contributors also helped
review the chapters that included their stories.

Special thanks to our technical reviewers, whose feedback on our final
draft was immensely helpful: Tom Poppendieck, Liz Keogh, Markus
Gärtner, and George Dinwiddie.

Thank you, Christopher Guzikowski, for making this book possible
in the first place, and Olivia Basegio, for answering a thousand ques-
tions and keeping us organized. We are grateful to our developmental

xxx	 Acknowledgments

editor, Chris Zahn, Kesel Wilson our production editor, and to Barbara
Wood for doing the final copy edit. It was wonderful working with the
Addison-Wesley crew again.

Thanks to a new English grad, Bea Paiko, who did a preliminary copy
edit that helped us write a bit more cleanly. Thank you, Mike Cohn,
for letting us be part of a great group of agile authors. Thanks to Ellen
Gottesdiener and Mary Gorman for sharing some of their book-writing
process tips with us; those helped us organize the book more easily.

We are both fortunate to have worked alongside so many amazing peo-
ple over the years who taught us so much about delivering valuable soft-
ware. They are too numerous to name here, but we refer to some in the
text and the bibliography. We’re lucky to be part of a generous global
software community.

Finally, a thank-you to our wonderful, supportive family and friends.

Janet’s personal thanks:
Thank you to my husband, Jack, for all the contracts reviewed, suppers
prepared, and errands run, and for letting me work long into the eve-
nings. I know I pretty much ignored you again for as long as it took to
write this book. Your encouragement kept me going.

Lisa, we complement each other in our writing styles, and I think that is
what makes us a great team. Thank you for providing a great place for
reviewing our first draft and a chance to meet your donkeys.

And finally, I want to acknowledge the power of wireless capability
and the Internet. While writing this book, I traveled north to Helsinki,
Finland, and camped in Grande Prairie, Canada. I was south to Johan-
nesburg in South Africa and camped in Botswana and Zimbabwe, writ-
ing between watching lions and elephants. As well I was in Australia,
although I did not test wireless in the outback there. I even was as high
as 3,000 meters (~10,000 feet) in Peru. There were only a few places
where I could not connect at all. This writing was truly a distributed
team effort.

	 Acknowledgments	 xxxi

Lisa’s personal thanks:
Thanks to my husband, Bob Downing, without whose support I could
never write or present anything. He never guessed that one day he’d be
out mucking a donkey pen while I slaved over a keyboard. He has kept
me and all our pets well fed and well loved. You’re still the bee’s knees,
my dear!

Thank you, Janet, for keeping us on track and doing so much of the
heavy lifting to get us organized, writing, and coming up with so many
great visuals. Working with you is always a privilege, a learning experi-
ence, and a lot of fun. And I also thank Janet’s husband, Jack, for his
help with the fine print and for enabling Janet to share all this fun and
hard work with me!

If readers learn a fraction of what I’ve learned while writing this book,
I’ll consider it a success!

This page intentionally left blank

	 xxxiii

About the Authors

Janet Gregory is an agile testing coach and process consultant with
DragonFire Inc. She is coauthor with Lisa Crispin of Agile Testing: A
Practical Guide for Testers and Agile Teams (Addison-Wesley, 2009) and
More Agile Testing: Learning Journeys for the Whole Team (Addison-
Wesley, 2015). She is also a contributor to 97 Things Every Programmer
Should Know. Janet specializes in showing agile teams how testers can
add value in areas beyond critiquing the product, for example, guid-
ing development with business-facing tests. Janet works with teams to
transition to agile development and teaches agile testing courses and
tutorials worldwide. She contributes articles to publications such as
Better Software, Software Test & Performance Magazine, and Agile Jour-
nal and enjoys sharing her experiences at conferences and user group
meetings around the world. For more about Janet’s work and her
blog, visit www.janetgregory.ca. You can also follow her on Twitter:
@janetgregoryca.

Lisa Crispin is the coauthor with Janet Gregory of Agile Testing: A Prac-
tical Guide for Testers and Agile Teams (Addison-Wesley, 2009) and More
Agile Testing: Learning Journeys for the Whole Team (Addison-Wesley,
2015); she is also coauthor with Tip House of Extreme Testing (Addison-
Wesley, 2002), and a contributor to Experiences of Test Automation by
Dorothy Graham and Mark Fewster (Addison-Wesley, 2011) and Beau-
tiful Testing (O’Reilly, 2009). Lisa was honored by her peers who voted
her the Most Influential Agile Testing Professional Person at Agile Test-
ing Days 2012. Lisa enjoys working as a tester with an awesome agile
team. She shares her experiences via writing, presenting, teaching, and
participating in agile testing communities around the world. For more
about Lisa’s work, visit www.lisacrispin.com, and follow @lisacrispin on
Twitter.

http://www.janetgregory.ca
http://www.lisacrispin.com

This page intentionally left blank

	 xxxv

About the Contributors

Gojko Adzic is a strategic software delivery consultant who works with
ambitious teams to improve the quality of their software products and
processes. He specializes in agile and lean quality improvement, in
particular agile testing, specification by example, and behavior-driven
development. Gojko is the author of Specification by Example (Adzic,
2011), winner of the 2012 Jolt award; Impact Mapping (Adzic, 2012);
Bridging the Communication Gap (Adzic, 2009); an award-winning blog;
and other testing- and agile-related books. In 2011, he was voted by
peers as the most influential agile testing professional.

Matt Barcomb is passionate about cultivating sustainably adap-
tive organizations, enjoys being out-of-doors, loves puns, and thrives
on guiding companies toward more rewarding and productive self-
organizing cultures. Matt has done this in his roles as a product devel-
opment executive, organizational design consultant, agile coach, devel-
opment team manager, and programmer. He believes that evolving
companies to customer-focused humanistic systems is the biggest chal-
lenge facing businesses today. As such, he has dedicated an inordinate
amount of his time and energy to finding ways of helping organizations
become better places to work.

Susan Bligh has been in the IT industry for seventeen years and has an
enthusiasm for business process and operational excellence through the
use of technology. She is currently a lead business analyst at an oil and
gas company in Calgary, Alberta, Canada. Susan has led business ana-
lyst efforts for large-scale projects affecting many disciplines and across
broad geographies. She has previously worked in software development,
training, and client management, as well as database administration.

xxxvi	 About the Contributors

She has a degree in computer science with a minor in management
from the University of Calgary.

Paul Carvalho is dedicated to helping software development teams
deliver high levels of quality with confidence. He inspires collaborative,
agile, test-infected teams with a holistic approach to quality. Paul has
devoted over twenty years to learning and applying testing approaches,
models, methods, techniques, and tools to enlighten decision makers.
He passes on that knowledge to individuals and organizations through
coaching, consulting, training, writing, and speaking internationally.
Paul is passionate about understanding human ecosystems for deliver-
ing great products that satisfy and delight customers, which he finds to
be a natural fit with the agile community. Connect with him through
STAQS.com.

Augusto Evangelisti is a software development professional, blogger,
and foosball player with a great interest in people, software quality, and
agile and lean practices. He enjoys cooking, eating, learning, and help-
ing agile teams exceed customer expectations while having fun.

David Evans is an experienced agile consultant, coach, and trainer with
over twenty-five years of IT experience. A thought leader in the field
of agile quality, he has provided training and consultancy for clients
in the UK, United States, Ireland, Sweden, Germany, France, Australia,
Israel, South Africa, and Singapore. A regular speaker at events and con-
ferences across Europe, David was voted Best Keynote Speaker at Agile
Testing Days 2013. He has also had several papers published in interna-
tional IT journals. He currently lives and works in the UK, where he is
a partner, along with Gojko Adzic, in Neuri Consulting LLP. He can be
reached at david.evans@neuri.co.uk on email and @DavidEvans66 on
Twitter.

Kareem Fazal is a platform software senior development engineer in the
Dell Enterprise Solutions Group. He has seven-plus years of experience
in the firmware industry working on automation and product develop-
ment. He joined Dell in 2010 as test lead and then transitioned into the
firmware development organization to lead automation strategies and
product development.

	 About the Contributors	 xxxvii

Benjamin Frempong, a senior test engineer in the Dell Enterprise Solu-
tions Group, has over ten years of experience leading hardware and soft-
ware QA programs in Dell’s Client and Enterprise organizations. He is
currently focused on helping teams implement efficient and sustainable
test automation strategies.

Chris George has been a software tester and question asker since
1996, working for a variety of UK companies making tools for data-
base development, data reporting, and digital content broadcasting.
During that time he has explored, investigated, innovated, invented,
planned, automated, stressed, reported, loaded, coded, and estimated
on both traditional (waterfall) and agile software teams. He also
presents at software conferences on testing topics and writes a blog,
www.mostly-testing.co.uk.

Mary Gorman, a leader in business analysis and requirements, is vice
president of quality and delivery at EBG Consulting. Mary coaches
product teams, facilitates discovery workshops, and trains stakehold-
ers in collaborative practices essential for defining high-value prod-
ucts. She speaks and writes for the agile, business analysis, and project
management communities. A Certified Business Analysis Professional,
Mary helped develop the IIBA’s A Guide to the Business Analysis Body of
Knowledge and certification exam. She also served on the task force that
created PMI’s Professional in Business Analysis role delineation. Mary is
coauthor of Discover to Deliver (Gottesdiener and Gorman, 2012).

Ellen Gottesdiener, founder and principal of EBG Consulting, helps
people discover and deliver the right software products at the right time.
Ellen is an internationally recognized leader in agile product and project
management practices, product envisioning and roadmapping, busi-
ness analysis and requirements, retrospectives, and collaboration. As an
expert facilitator, coach, and trainer, Ellen works with clients around the
world and speaks frequently at a diverse range of industry conferences.
She is coauthor of Discover to Deliver (Gottesdiener and Gorman, 2012)
and author of two other acclaimed books: Requirements by Collabora-
tion (Gottesdiener, 2002) and The Software Requirements Memory Jogger
(Gottesdiener, 2005).

http://www.mostly-testing.co.uk

xxxviii	 About the Contributors

Jon Hagar is an independent consultant working in software product
integrity, verification, and validation testing at Grand Software Testing.
Jon publishes regularly, including a book on mobile/embedded software
testing: Software Test Attacks to Break Mobile and Embedded Devices
(Hagar, 2013). His interests include agile, mobile, embedded, QA, skill
building, and lifelong learning.

Parimala Hariprasad spent her youth studying people and philoso-
phy. By the time she got to work, she was able to use those learnings
to create awesome testers. She has worked as a tester for over ten years
for domains such as customer relationship management, security,
e-commerce, and health care. Her specialty is coaching and creating
great teams—teams that ultimately fired her because she wasn’t needed
anymore. She has experienced the transition from web to mobile and
emphasizes the need for design thinking in testing. She frequently
rants on her blog, Curious Tester (http://curioustester.blogspot.com).
She tweets at @CuriousTester and can be found on LinkedIn at
http://in.linkedin.com/in/parimalahariprasad.

JeanAnn Harrison has been in the software testing and quality assur-
ance field for over fifteen years, including seven years working within
a regulatory environment and eight years performing mobile software
testing. Her niche is system integration testing with a focus on multi-
tiered system environments involving client/server, web application, and
stand-alone software applications. JeanAnn is a regular speaker at many
software testing conferences and other events and is a Weekend Testing
Americas facilitator. She is always looking to gain inspiration from fel-
low testers throughout the software testing community and continues
to combine her practical experiences with interacting on software qual-
ity and testing forums, attending training classes, and remaining active
on social media sites.

Mike Heinrich has been working as a tester for over a decade, working
in logistics, banking, telecommunications, travel, and utilities. Through-
out his career, Mike has focused on data and integration testing. His
passion for data and delivering customer value has afforded him the
opportunity to present to a number of North American organizations
on agile data warehousing and data testing. In his free time, Mike enjoys
traveling the world, playing volleyball, and coaching basketball.

http://curioustester.blogspot.com
http://in.linkedin.com/in/parimalahariprasad

	 About the Contributors	 xxxix

Sherry Heinze is a test strategist, tester, QA analyst, and trainer with
a broad background in analysis, design, testing, training, implementa-
tion, documentation, and user support. For the last 17 years, Sherry
has focused on testing from analysis and design forward, sometimes
on cross-functional teams, sometimes with teams of testers, sometimes
alone. Sherry has extensive experience working in various methodolo-
gies with both users and technical staff to identify and test requirements,
design, create, test, implement, and support systems.

Matthew Heusser has spent his adult life developing, testing, and man-
aging software projects. Along the way Matt served as a contributing
editor for Software Test & Quality Assurance magazine, organized the
Agile Alliance Sponsored Workshop on Technical Debt, and served on
the board of directors for the Association for Software Testing. Perhaps
best known for his writing, Matt was the lead editor for How to Reduce
the Cost of Software Testing (Heusser, 2011) and is currently serving as
managing editor for Stickyminds.com. As the managing consultant at
Excelon Development, Matt manages key accounts for the company
while also doing consulting and writing. You can read more about Matt
at the Excelon website, www.xndev.com, or follow him on Twitter:
@ heusser.

Michael Hüttermann, a Java champion, is a freelance delivery engi-
neer and expert for DevOps, continuous delivery, and source control
management/application life cycle management. He is the author of
Agile ALM (Hüttermann, 2011a) and DevOps for Developers (Hütter-
mann, 2012). For more information see http://huettermann.net.

Griffin Jones, an agile tester, trainer, and coach, provides consulting on
context-driven software testing and regulatory compliance to companies
in regulated and unregulated industries. Recently, he was the director
of quality and regulatory compliance at iCardiac Technologies, which
provides core lab services for the pharmaceutical industry to evaluate
the cardiac safety of potential new drugs. Griffin was responsible for all
matters relating to quality and FDA regulatory compliance, including
presenting the verification and validation (testing) results to external
regulatory auditors. He is a host of the Workshop on Regulated Soft-
ware Testing (WREST) and a member of ASQ, AST, ISST, and RAPS.

http://www.xndev.com
http://huettermann.net

xl	 About the Contributors

Stephan Kämper studied physics, wrote his diploma thesis about holog-
raphy, and then joined the oceanography group at the University of
Bremen. In 2001 he started in software development by joining the test
team for an object-oriented database system. He never left software test-
ing and specialized in automated software tests and agile methods. He
worked on topics as diverse as precision navigation systems, payment
platforms, health care systems, telecommunication, and social networks.
Working in these different fields helped him recognize common pat-
terns, which he found useful in software testing. His languages are (in
alphabetical order) English, German, and Ruby. Follow him on Twitter
at @S_2K, and see his website: www.seasidetesting.com.

Trish Khoo has worked in test engineering and test management for
companies such as Google, Campaign Monitor, and Microsoft. She
maintains a blog at www.trishkhoo.com and a podcast at testcast.net,
enjoys speaking at conferences, and writes articles for technical publica-
tions. When she’s not doing all of that, she’s busy traveling the world,
sketching robots, or maybe just sleeping until noon. Trish earned a
bachelor’s degree in information technology from the University of
Queensland, where she graduated with honors.

Adam Knight has been testing data storage and analysis software for
ten years, with seven of those spent working in an agile team. Adam is
an enthusiastic exponent of exploratory testing approaches backed by
discerning use of automation. He is a great believer in creating multi-
skilled teams based on rich and unique individual skill sets. At his cur-
rent employer, RainStor, Adam has overseen the testing and techni-
cal support of a large-scale data storage system from its initial release
through successful adoption in some of the largest telecommuni-
cation and financial services companies in the world. He writes at
www.a-sisyphean-task.com.

Cory Maksymchuk is a software developer who is passionate about
agile processes and lean software development. He has spent most of
the last 12 years working in the Java stack as part of large software devel-
opment initiatives. His true passion in life is finding elegant solutions
to difficult problems, and he truly gets excited about seeing great ideas
come to life.

http://www.seasidetesting.com
http://www.trishkhoo.com
http://www.a-sisyphean-task.com

	 About the Contributors	 xli

Drew McKinney is a user experience designer with Pivotal Tracker and
Pivotal Labs. Before Pivotal, Drew ran Bloomingsoft, a mobile design
and development consultancy. In the past Drew has worked with com-
panies such as Disney Animation Studios, Audi USA, Cook Medical,
and Deloitte Consulting. He is an active member of the design commu-
nity and has spoken about design at numerous Indiana and Colorado
technology events.

Geoff Meyer, a test architect in the Dell Enterprise Solutions Group, has
over twenty-eight years of software industry experience as a developer,
manager, business analyst, and test architect. Since 2010, a secondary
focus of Geoff ’s has been fostering the agile-based software develop-
ment and test practices of more than eight hundred development, test,
and user experience engineers across four global design centers. Geoff is
an active member and contributor to the Agile Austin community.

Jeff “Cheezy” Morgan, chief technology officer and a cofounder of
LeanDog, has been teaching classes and coaching teams on agile and
lean techniques since early 2004. Most of his work has focused on the
engineering practices used by developers and testers. For the past few
years he has experienced great success and recognition for his work
focused on helping teams adopt acceptance-test-driven development
using Cucumber. He has authored several popular Ruby gems used by
software testers and is the author of the book Cucumber & Cheese—A
Testers Workshop (Morgan, 2013).

Claire Moss became the first discrete mathematics business gradu-
ate from the Georgia Institute of Technology in 2003 and immediately
jumped into software testing. She has been following this calling ever
since, working with agile product teams as a testing teacher, unit and
integration test adviser, exploratory tester, and test automator. Although
she’ll always go back to scrapbooking, her dominant hobby in recent
years has been writing, speaking, and nerding about testing. Claire has
always had a passion for writing, and she continues to use her evil pow-
ers for good on the job and on her blog at http://aclairefication.com.

Aldo Rall started off in testing as a junior programmer at the start of the
Y2K bubble. Since then, working in South Africa and the UK, he gained
practical experience in testing across a plethora of titles, assignments,

http://aclairefication.com

xlii	 About the Contributors

and projects. His greatest passion lies in the “people” dimension and
how that translates into successful products, teams, and testers. Through
this background, he enjoys opportunities to develop, grow, and mature
testing, testers, and teams.

Sharon Robson is the software testing practice lead for Software Educa-
tion. A passionate tester and a natural-born trainer, Sharon delivers and
develops courses at all levels of software testing from introductory to
advanced. Sharon also focuses on agile and spends a significant amount
of her time working with teams (training, coaching, and mentoring)
to assist them in their transitions. Sharon is currently researching and
writing about agile test approaches in various business domains. She
presents at both local and international conferences and contributes to
the testing and agile community via blogs, tweets, conference involve-
ment, and mentoring.

Steve Rogalsky, recognizing that software development culture, man-
agement, and process can be frustrating and inhibiting, has invested sig-
nificantly in finding ways to overcome and counteract those effects. He’s
found that valuing simplicity, respect for people, continuous improve-
ment, and short feedback loops are powerful tools for addressing these
shortcomings. Since software development doesn’t own those frustra-
tions, he’s also been translating what he’s learned into other areas of the
organization, family life, community groups, and coaching. He speaks
regularly at conferences in Canada and the United States, has been
featured on InfoQ, cofounded the Winnipeg Agile User Group, and
works at Protegra. You can read more about what he’s learned at
http://WinnipegAgilist.Blogspot.com.

Bernice Niel Ruhland, with over twenty years of professional experience
encompassing a variety of technical disciplines, currently serves as the
director of quality management programs for ValueCentric LLC. Apply-
ing her proficiencies in software programming, testing, assessment, and
implementation, Bernice leads the company’s software testing depart-
ment. As the driving force behind ValueCentric’s company-wide qual-
ity programs, she draws upon practices in the context-driven and agile
theories and methodologies to guide foundational efforts. When not
working, she maintains a successful blog, www.TheTestersEdge.com,
a collection of her observations related to a variety of technical topics
including software testing, leadership, and career development.

http://www.TheTestersEdge.com
http://WinnipegAgilist.Blogspot.com

	 About the Contributors	 xliii

Huib Schoots is a tester, consultant, and people lover. He shares his pas-
sion for testing through coaching, training, and giving presentations
on a variety of test subjects. Curious and passionate, he is an agile and
context-driven tester who attempts to read everything ever published
on software testing. He’s also a member of TestNet, AST, and ISST; a
black belt in the Miagi-Do School of Software Testing; and coauthor of
a book about the future of software testing. Huib maintains a blog on
www.magnificant.com and tweets as @huibschoots.

Paul Shannon and Chris O’Dell joined the 7digital team in 2010 and
2011 respectively, both starting in the team responsible for the 7digital
API. They worked on improving the quality of the testing in the API,
and Chris now leads that team, concentrating on improving the plat-
form for continuous delivery, resilience, and scaling. Paul works across
all teams in the 7digital technology team that are geared toward contin-
uous improvement and quality-driven software development practices.
The team follows a test-first approach with a highly collaborative and
visible workflow, and all absolutely love technology and testing.

Jennifer Sinclair has been an artist, art instructor, and educator since
1995. During that time, she has lived in Canada, Japan, and the United
States and has worked to improve art exploration for children and adults
of all ages and abilities. She has designed and illustrated images for the
Alberta Teachers’ Association Early Childhood Education Council and
the Alberta Education Council in Canada. She is currently working on
developing art lessons that integrate easily into the core subjects of ele-
mentary education. As a homemaker, freelance artist, and volunteer art
instructor, she is passionate about continuing to develop her skills and
knowledge and share them with as many people as possible. You can
reach her at jvaagesinclair@live.com.

Toby Sinclair joined the software testing business as a university gradu-
ate in 2007 and hasn’t looked back. He has worked for various software
testing consultancies in the UK and is currently working with J. P. Mor-
gan to advance its testing capabilities to support the transition to agile.
Toby is an active member of the testing community and can be found
on Twitter: @TobyTheTester.

Tony Sweets is a 20-year veteran of the software industry, currently
working as an information technology architect. For the past 13 years

http://www.magnificant.com

xliv	 About the Contributors

he has been working on Java enterprise web applications in the financial
sector. Tony possesses a wide range of skills but likes to work mostly on
Java applications and the tools that make the development process bet-
ter. Tony holds a bachelor’s degree in computer science from the Uni-
versity of Wyoming.

Mike Talks was 26 when he first gave IT “a go” as a career. Before that,
he’d been a teacher, research scientist, and data analyst, and his parents
worried he’d never “get a proper job.” Although originally a program-
mer, it was in testing where he flourished. He originally worked on long,
requirements-rich military waterfall projects in the UK, but since mov-
ing to New Zealand he’s found himself increasingly working on projects
with companies such as Assurity, Kiwibank, and Datacom, where timely
delivery is a key factor.

Eveliina Vuolli acts currently as operational development manager in
Nokia Solutions and Networks. She has been working with the network
management system R&D development team for 15 years, acting in
different kinds of roles in the global, multinational organization: inte-
gration and verification process owner, project manager and trainer in
various areas, and also coach. In addition, she has been involved in the
agile transformation in her own product area.

Pete Walen has been in software development for over twenty-five years.
He has worked in a variety of roles including developer, business analyst,
and project manager. He is an independent consulting contractor who
works with test teams over extended periods, coaching them and work-
ing to improve their testing techniques and practices. Pete describes
himself as a “Software Anthropologist and Tester,” which encompasses
the examination of how software and people relate and interact. He has
worked in a variety of shops using a variety of development methodolo-
gies and has adopted an attitude of “do what makes sense” for the orga-
nization and the project.

Mary Walshe helps teams deliver successful solutions to business
problems and plays a major role in striving for a kaizen culture in
these teams. Mary was the driving force behind the introduction of
acceptance-test-driven development in her department. She has been

	 About the Contributors	 xlv

working in the industry for four years, and currently she works on a
team in Paddy Power as an agile tester. Her team is using kanban to help
them measure their experiments and in order to continually improve.
In her spare time Mary runs adventure races, mountain bikes, and just
recently found a new love for skiing.

Christin Wiedemann, after finishing her Ph.D. in physics at Stockholm
University in 2007, began working as a software developer. Christin
soon discovered that she found testing to be more challenging and cre-
ative, and she joined the testing company AddQ Consulting. There, she
worked as a tester, test lead, and trainer, giving courses on agile test-
ing, test design, and exploratory testing. In late 2011, Christin moved to
Vancouver, Canada, joining Professional Quality Assurance. In her roles
as tester, test lead, trainer, and speaker, Christin uses her scientific back-
ground and pedagogic abilities to continually develop her own skills
and those of others.

Lynn Winterboer, with a proven background in a variety of data proj-
ects and agile practices, teaches and coaches data warehouse/business
intelligence teams on how to effectively apply agile principles and
practices to their work. For more than fifteen years, Lynn has served
in numerous roles within the analytics, business intelligence, and data
warehousing space. She very well understands the unique set of chal-
lenges faced by teams in this area that want to benefit from the incre-
mental style of agile development; Lynn leverages her experience and
training to help deliver practical solutions for her clients and students.
Lynn can be reached at www.LynnWinterboer.com.

Cirilo Wortel is an independent tester and trainer from the Nether-
lands. In 2006 Cirilo first got involved in agile software development. He
has worked with several enterprise companies, coaching and helping to
implement test automation during their agile adoption. Cirilo cohosted,
with Janet Gregory, a master class in agile testing for several years in the
Netherlands. He has contributed back to the community by founding
the Federation of Agile Testers, the largest agile testing user group in
the Netherlands, and is a frequent speaker at international conferences.
With several colleagues at Xebia, Cirilo developed Xebium, an automa-
tion tool for web applications.

http://www.LynnWinterboer.com

xlvi	 About the Contributors

Alexei Zheglov is dedicated to discovering and practicing new meth-
ods of managing and leading the improvement of modern, complex,
knowledge-intensive work. He came to this after a long software engi-
neering career, during which he learned to see and to solve many problems
in software delivery. Alexei presents his findings frequently at conferences
in Canada and abroad. He is recognized as a Kanban Coaching Profes-
sional and an Accredited Kanban Trainer. Alexei lives in Waterloo, Ontario,
Canada. His blog can be found at http://connected-knowledge.com.

http://connected-knowledge.com.

	 101

Chapter 8

Using Models to Help Plan

As agile development becomes increasingly mainstream, there are estab-
lished techniques that experienced practitioners use to help plan testing
activities in agile projects, although less experienced teams sometimes
misunderstand or misuse these useful approaches. Also, the advances in
test tools and frameworks have somewhat altered the original models
that applied back in the early 2000s. Models help us view testing from
different perspectives. Let’s look at some foundations of agile test plan-
ning and how they are evolving.

Agile Testing Quadrants

The agile testing quadrants (the Quadrants) are based on a matrix Brian
Marick developed in 2003 to describe types of tests used in Extreme
Programming (XP) projects (Marick, 2003). We’ve found the Quad-
rants to be quite handy over the years as we plan at different levels of
precision. Some people have misunderstood the purpose of the Quad-
rants. For example, they may see them as sequential activities instead of
a taxonomy of testing types. Other people disagree about which testing
activities belong in which quadrant and avoid using the Quadrants alto-
gether. We’d like to clear up these misconceptions.

Figure 8-1 is the picture we currently use to explain this model. You’ll
notice we’ve changed some of the wording since we presented it in Agile

8. Using Models
to Help Plan

Agile Testing Quadrants

Challenging the Quadrants

Using Other Influences for Planning

Planning for Test Automation

Planning for Quadrant 1 Testing

Planning for Quadrant 2 Testing

Planning for Quadrant 3 Testing

Planning for Quadrant 4 Testing

102	 Chapter 8   n  Using Models to Help Plan

Testing. For example, we now say “guide development” instead of “sup-
port development.” We hope this makes it clearer.

It’s important to understand the purpose behind the Quadrants and the
terminology used to convey their concepts. The quadrant numbering
system does not imply any order. You don’t work through the quadrants
from 1 to 4, in a sequential manner. It’s an arbitrary numbering system
so that when we talk about the Quadrants, we can say “Q1” instead of
“technology-facing tests that guide development.” The quadrants are

■■ Q1: technology-facing tests that guide development
■■ Q2: business-facing tests that guide development
■■ Q3: business-facing tests that critique (evaluate) the product
■■ Q4: technology-facing tests that critique (evaluate) the product

The left side of the quadrant matrix is about preventing defects before
and during coding. The right side is about finding defects and discov-
ering missing features, but with the understanding that we want to
find them as fast as possible. The top half is about exposing tests to the

Technology Facing

Q2

Examples
A/B Tests

Story Tests (written first)
UX (user experience) testing

Prototypes
Simulations

Unit Tests
Component Tests (code level)

Testing Connectivity

Exploratory Testing
Workflows

System Integration
(business oriented)

Usability Testing
UAT (user acceptance testing)

Performance Testing
Load Testing

Security Testing
Quality Attributes (...ilities)

Q1

Q3

Q4

Business Facing

G
ui

d
e

D
ev

el
o

p
m

en
t Critiq

ue the Pro
d

uct

Figure 8-1  Agile testing quadrants

	 Agile Testing Quadrants	 103

business, and the bottom half is about tests that are more internal to
the team but equally important to the success of the software product.
“Facing” simply refers to the language of the tests—for example, perfor-
mance tests satisfy a business need, but the business would not be able
to read the tests; they are concerned with the results.

Most agile teams would start with specifying Q2 tests, because those
are where you get the examples that turn into specifications and tests
that guide coding. In his 2003 blog posts about the matrix, Brian called
Q2 and Q1 tests “checked examples.” He had originally called them
“guiding” or “coaching” examples and credits Ward Cunningham for
the adjective “checked.” Team members would construct an example
of what the code needs to do, check that it doesn’t do it yet, make the
code do it, and check that the example is now true (Marick, 2003). We
include prototypes and simulations in Q2 because they are small experi-
ments to help us understand an idea or concept.

In some cases it makes more sense to start testing for a new feature using
tests from a different quadrant. Lisa has worked on projects where her
team used performance tests for a spike for determination of the archi-
tecture, because that was the most important quality attribute for the
feature. Those tests fall into Q4. If your customers are uncertain about
their requirements, you might even do an investigation story and start
with exploratory testing (Q3). Consider where the highest risk might be
and where testing can add the most value.

Most teams concurrently use testing techniques from all of the quad-
rants, working in small increments. Write a test (or check) for a small
chunk of a story, write the code, and once the test is passing, perhaps
automate more tests for it. Once the tests (automated checks) are pass-
ing, use exploratory testing to see what was missed. Perform security
or load testing, and then add the next small chunk and go through the
whole process again.

Michael Hüttermann adds “outside-in, barrier-free, collaborative” to
the middle of the quadrants (see Figure 8-2). He uses behavior-driven
development (BDD) as an example of barrier-free testing. These tests
are written in a natural, ubiquitous “given_when_then” language that’s
accessible to customers as well as developers and invites conversation

104	 Chapter 8   n  Using Models to Help Plan

between the business and the delivery team. This format can be used
for both Q1 and Q2 checking. See Michael’s Agile Record article (Hüt-
termann, 2011b) or his book Agile ALM (Hüttermann, 2011a) for more
ideas on how to augment the Quadrants.

The Quadrants are merely a taxonomy or model to help teams plan
their testing and make sure they have all the resources they need to
accomplish it. There are no hard-and-fast rules about what goes in
which quadrant. Adapt the Quadrants model to show what tests your
team needs to consider. Make the testing visible so that your team thinks
about testing first as you do your release, feature, and story planning.
This visibility exposes the types of tests that are currently being done
and the number of people involved. Use it to provoke discussions about
testing and which areas you may want to spend more time on.

When discussing the Quadrants, you may realize there are neces-
sary tests your team hasn’t considered or that you lack certain skills
or resources to be able to do all the necessary testing. For example, a
team that Lisa worked on realized that they were so focused on turning

Technology Facing

Examples
A/B Tests

Story Tests (written first)
UX (user experience) testing

Prototypes (paper or wireframes)
Simulations

Unit Tests
Component Tests (code level)

Testing Connectivity

Exploratory Testing
Workflows

System Integration
(business oriented)

Usability Testing
UAT (user acceptance testing)

Performance Testing
Load Testing

Security Testing
Quality Attributes (...ilities)

Business Facing

G
ui

d
e

D
ev

el
o

p
m

en
t Critiq

ue the Pro
d

uct

Outside-in
Barrier-free

Collaborative

Figure 8-2  Agile testing quadrants (with Michael Hüttermann’s adaptation)

	 Agile Testing Quadrants	 105

business-facing examples into Q2 tests that guide development that
they were completely ignoring the need to do performance and security
testing. They added in user stories to research what training and tools
they would need and then budgeted time to do those Q4 tests.

Planning for Quadrant 1 Testing

Back in the early 1990s, Lisa worked on a waterfall team whose program-
mers were required to write unit test plans. Unit test plans were definitely
overkill, but thinking about the unit tests early and automating all of
them were a big part of the reason that critical bugs were never called
in to the support center. Agile teams don’t plan Q1 tests separately. In
test-driven development (TDD), also called test-driven design, testing is
an inseparable part of coding. A programmer pair might sit and discuss
some of the tests they want to write, but the details evolve as the code
evolves. These unit tests guide development but also support the team in
the sense that a programmer runs them prior to checking in his or her
code, and they are run in the CI on every single check-in of code.

There are other types of technical testing that may be considered as
guiding development. They might not be obvious, but they can be criti-
cal to keeping the process working. For example, let’s say you can’t do
your testing because there is a problem with connectivity. Create a test
script that can be run before your smoke test to make sure that there
are no technical issues. Another test programmers might write is one to
check the default configuration. Many times these issues aren’t known
until you start deploying and testing.

Planning for Quadrant 2 Testing

Q2 tests help with planning at the feature or story level. Part IV, “Testing
Business Value,” will explore guiding development with more detailed
business-facing tests. These tests or checked examples are derived from
collaboration and conversations about what is important to the feature
or story. Having the right people in a room to answer questions and
give specific examples helps us plan the tests we need. Think about the
levels of precision discussed in the preceding chapter; the questions and
the examples get more precise as we get into details about the stories.
The process of eliciting examples and creating tests from them fosters

106	 Chapter 8   n  Using Models to Help Plan

collaboration across roles and may identify defects in the form of hid-
den assumptions or misunderstandings before any code is written.

Show everyone, even the business owners, what you plan to test; see if
you’re standing on anything sacred, or if they’re worried you’re missing
something that has value to them.

Creating Q2 tests doesn’t stop when coding begins. Lisa’s teams have
found it works well to start with happy path tests. As coding gets under
way and the happy path tests start passing, testers and programmers
flesh out the tests to encompass boundary conditions, negative tests,
edge cases, and more complicated scenarios.

Planning for Quadrant 3 Testing

Testing has always been central to agile development, and guiding
development with customer-facing Q2 tests caught on early with agile
teams. As agile teams have matured, they’ve also embraced Q3 testing,
exploratory testing in particular. More teams are hiring expert explor-
atory testing practitioners, and testers on agile teams are spending time
expanding their exploratory skills.

Planning for Q3 tests can be a challenge. We can start defining test char-
ters before there is completed code to explore. As Elisabeth Hendrick-
son explains in her book Explore It! (Hendrickson, 2013), charters let
us define where to explore, what resources to bring with us, and what
information we hope to find. To be effective, some exploratory test-
ing might require completion of multiple small user stories, or waiting
until the feature is complete. You may also need to budget time to create
the user personas that you might need for testing, although these may
already have been created in story-mapping or other feature-planning
exercises. Defining exploratory testing charters is not always easy, but it
is a great way to share testing ideas with the team and to be able to track
what testing was completed. We will give examples of such charters in
Chapter 12, “Exploratory Testing,” where we discuss different explor-
atory testing techniques.

One strategy to build in time for exploratory testing is writing stories
to explore different areas of a feature or different personas. Another

	 Agile Testing Quadrants	 107

strategy, which Janet prefers, is having a task for exploratory testing for
each story, as well as one or more for testing the feature. If your team
uses a definition of “done,” conducting adequate exploratory testing
might be part of that. You can size individual stories with the assump-
tion that you’ll spend a significant amount of time doing exploratory
testing. Be aware that unless time is specifically allocated during task
creation, exploratory testing often gets ignored.

Q3 also includes user acceptance testing (UAT). Planning for UAT needs
to happen during release planning or as soon as possible. Include your
customers in the planning to decide the best way to proceed. Can they
come into the office to test each new feature? Perhaps they are in a differ-
ent country and you need to arrange computer sharing. Work to get the
most frequent and fastest feedback possible from all of your stakeholders.

Planning for Quadrant 4 Testing

Quadrant 4 tests may be the easiest to overlook in planning, and many
teams tend to focus on tests to guide development. Quadrant 3 activities
such as UAT and exploratory testing may be easier to visualize and are
often more familiar to most testers than Quadrant 4 tests. For exam-
ple, more teams need to support their application globally, so testing in
the internationalization and localization space has become important.
Agile teams have struggled with how to do this; we include some ideas
in Chapter 13, “Other Types of Testing.”

Some teams talk about quality attributes with acceptance criteria on
each story of a feature. We prefer to use the word constraints. In Discover
to Deliver (Gottesdiener and Gorman, 2012), Ellen Gottesdiener and
Mary Gorman recommend using Tom and Kai Gilb’s Planguage (their
planning language; see the bibliography for Part III, “Planning—So You
Don’t Forget the Big Picture,” for links) to talk about these constraints
in a very definite way (Gilb, 2013).

If your product has a constraint such as “Every screen must respond in
less than three seconds,” that criterion doesn’t need to be repeated for
every single story. Find a mechanism to remind your team when you
are discussing the story that this constraint needs to be built in and
must be tested. Liz Keogh describes a technique to write tests about

108	 Chapter 8   n  Using Models to Help Plan

how capabilities such as system performance can be monitored (Keogh,
2014a). Organizations usually know which operating systems or brows-
ers they are supporting at the beginning of a release, so add them as
constraints and include them in your testing estimations. These types of
quality attributes are often good candidates for testing at a feature level,
but if it makes sense to test them at the story level, do so there; think,
“Test early.” Chapter 13, “Other Types of Testing,” will cover a few differ-
ent testing types that you may have been struggling with.

Challenging the Quadrants

Over the years, many people have challenged the validity of the Quad-
rants or adjusted them slightly to be more meaningful to them. We
decided to share a couple of these stories because we think it is valuable
to continuously challenge what we “know” to be true. That is how we
learn and evolve to improve and meet changing demands.

Gojko’s Challenge to the Quadrants

Gojko Adzic, an author and strategic software delivery con-
sultant, challenges the validity of the Quadrants in the current
software delivery era.

The agile testing quadrants model is probably the one thing that every-
one remembers about the original Agile Testing book. It was an incred-
ibly useful thinking tool for the software delivery world then—2008. It
helped me facilitate many useful discussions on the big picture missing
from typical programmers’ view of quality, and it helped many testers
figure out what to focus on. The world now, as of 2014, looks signifi-
cantly different. There has been a surge in the popularity of continuous
delivery, DevOps, Big Data analytics, lean startup delivery, and explor-
atory testing. The Quadrants model is due for a serious update.

One of the problems with the original Quadrants model is that it was
easily misunderstood as a sequence of test types—especially that
there is some kind of division between things before and things after
development.

This problem is even worse now than in 2008. With the surge in popu-
larity of continuous delivery, the dividing line is getting more blurred
and is disappearing. With shorter iterations and continuous delivery,
it’s generally difficult to draw the line between activities that support
the team and those that critique the product. Why would performance

	 Challenging the Quadrants	 109

tests not be aimed at supporting the team? Why are functional tests
not critiquing the product? Why is UAT separate from functional test-
ing? I always found the horizontal dimension of the Quadrants difficult
to justify, because critiquing the product can support the team quite
effectively if it is done in a timely way. For example, specification by
example helps teams to completely merge functional tests and UAT
into something that is continuously checked during development.
Many teams I worked with recently run performance tests during
development, primarily not to mess things up with frequent changes.
These are just two examples where things on the right side of the
Quadrants are now used more to support the team than anything else.
With lean startup methods, products get a lot of critiquing even before
a single line of production code is written.

Dividing tests into those that support development and those that
evaluate the product does not really help to facilitate useful discus-
sions anymore, so we need a different model—in particular, one
that helps to address the eternal issue of so-called nonfunctional
requirements, which for many people actually means, “It’s going to be
a difficult discussion, so let’s not have it.” The old Quadrants model
puts “ilities” into a largely forgotten quadrant of technical tests after
development. But things like security, performance, scalability, and so
on are not really technical; they imply quite a lot of business expecta-
tions, such as compliance, meeting service-levels agreements, handling
expected peak loads, and so on. They are also not really nonfunc-
tional, as they imply quite a lot of functionality such as encryption,
caching, and work distribution. This of course is complicated by the
fact that some expectations in those areas are not that easy to define
or test for—especially the unknown unknowns. If we treat these as
purely technical concerns, the business expectations are often not
explicitly stated or verified. Instead of nonfunctional, these concerns
are often dysfunctional. And although many “ilities” are difficult to
prove before the software is actually in contact with its real users, the
emergence of A/B split testing techniques over the last five years has
made it relatively easy, cheap, and low risk to verify those things in
production.

Another aspect of testing not really captured well by the first book’s
Quadrants is the surge in popularity and importance of exploratory
testing. In the old model, exploratory testing is something that hap-
pens from the business perspective in order to evaluate the product
(often misunderstood as after development). In many contexts, well
documented in Elisabeth Hendrickson’s book on exploratory testing
(Hendrickson, 2013) and James Whittaker’s book How Google Tests
Software (Whittaker et al., 2012), exploratory testing can be incredibly
useful for the technical perspective as well and, more importantly, is
something that should be done during development.

110	 Chapter 8   n  Using Models to Help Plan

The third aspect that is not captured well by the early Quadrants is the
possibility to quantify and measure software changes through usage
analytics in production. The surge in popularity of Big Data analytics,
especially combined with lean startup and continuous delivery models,
enables teams to test relatively cheaply things that were very expensive
to test ten years ago—for example, true performance impacts. When the
original Agile Testing book came out, serious performance testing often
meant having a complete hardware copy of the production system.
These days, many teams de-risk those issues with smaller, less risky con-
tinuous changes, whose impact is measured directly on a subset of the
production environment. Many teams also look at their production log
trends to spot unexpected and previously unknown problems quickly.

We need to change the model (Figure 8-3) to facilitate all those dis-
cussions, and I think that the current horizontal division isn’t helping
anymore. The context-driven testing community argues very forcefully
that looking for expected results isn’t really testing; instead, they call
that checking. Without getting into an argument about what is or isn’t
testing, I found the division to be quite useful for many recent discus-
sions with clients. Perhaps that is a more useful second axis for the
model: the difference between looking for expected outcomes and
analyzing unknowns, aspects without a definite yes/no answer, where
results require skillful analytic interpretation. Most of the innovation
these days seems to happen in the second part anyway. Checking for
expected results, from both a technical and business perspective, is
now pretty much a solved problem.

TECHNOLOGY

Spec by Example

Performance

Compliance

Regression

Hypothesis (
LS)

Unit (T
DD)

Integration

Data Formats

API

Compatibility

ExploratoryUsability
Stakeholder Impact

Usage Analytics
A/B Testing

LoadPenetration
Production Trends

Smoke

BUSINESS

Ch
ec

k
fo

r
Ex

pe
ct

ed
 O

ut
pu

ts

A
na

ly
ze

 U
nd

ef
in

ed
U

nk
no

wn
, a

nd
 U

ne
xp

ec
te

d

Figure 8-3  Gojko Adzic’s version of the agile testing quadrants

	 Challenging the Quadrants	 111

Thinking about checking expected outcomes versus analyzing out-
comes that weren’t predefined helps to explain several important
issues facing software delivery teams today:

Security concerns could be split easily into functional tests for compli-
ance such as encryption, data protection, authentication, and so  
on (essentially all checking for predefined expected results), and  
penetration/investigations (not predefined). This will help to engage
the delivery team and business sponsors in a more useful discussion
about describing the functional part of security up front.

Performance concerns could be divided into running business sce-
narios to prove agreed-upon service levels and capacity, continuous
delivery style (predefined), and load tests (where will it break?). This
will help to engage the delivery team and business in defining perfor-
mance expectations and prevent people from treating performance as
a purely technical concern. By avoiding the support the team/evaluate
the product divisions, we allow a discussion of executing performance
tests in different environments and at different times.

Exploration would become much more visible and could be clearly
divided between technical and business-oriented exploratory tests.
This can support a discussion of technical exploratory tests that devel-
opers should perform or that testers can execute by reusing existing
automation frameworks. It can also support an overall discussion of
what should go into business-oriented exploratory tests.

Build-measure-learn product tests would fit into the model nicely, and
the model would facilitate a meaningful discussion of how those tests
require a defined hypothesis and how that is different from just push-
ing things out to see what happens through usage analytics.

We can facilitate a conversation on how to spot unknown problems
by monitoring production logs as a way of continuously testing tech-
nical concerns that are difficult to check and expensive to automate
before deployment, but still useful to support the team. By moving
the discussion away from supporting development or evaluating the
product toward checking expectations or inspecting the unknown, we
would also have a nice way of differentiating those tests from business-
oriented production usage analytics.

Most importantly, by using a different horizontal axis, we can raise
awareness about a whole category of things that don’t fit into typi-
cal test plans or test reports but are still incredibly valuable. The early
Quadrants were useful because they raised awareness about a whole
category of things in the upper-left corner that most teams weren’t
really thinking of but are now taken as common sense. The 2010s
Quadrants need to help us raise awareness about some more impor-
tant issues for today.

112	 Chapter 8   n  Using Models to Help Plan

Elisabeth Hendrickson also presented an alternative to the existing
Quadrants in her talk about “The Thinking Tester” (Hendrickson, 2012).
It is similar to Gojko’s version but has a different look. You can see in Fig-
ure 8-4 that she relabeled the vertical columns to “confirm” and “inves-
tigate,” while the horizontal rows still represent business and technology.

The top left quadrant represents the expectations of the business, which
could be in the form of executable (automated) specifications. Others
might be represented by paper prototypes or wireframes. At the top
right are tests that help investigate risks concerning the external qual-
ity of the product. It is very much like the original quadrant’s idea of
exploratory testing, scenarios, or usability testing. Like Gojko’s model,
the bottom right quadrant highlights the risks of the internal working
of the system.

Both of these alternative models provide value. We think there is room
for multiple variations to accommodate a spectrum of needs. For exam-
ple, organizations that are able to adopt continuous delivery are able to
think in this space, but many organizations are years from accomplish-
ing that. Check the bibliography for Part III for links to additional test-
ing quadrant models. Use them to help make sure your team covers all

BUSINESS

CONFIRM

BUSINESS-FACING
EXPECTATIONS

RISKS TO EXTERNAL
QUALITY ATTRIBUTES

TECHNOLOGY-
FACING

EXPECTATIONS

RISKS TO INTERNAL
QUALITY ATTRIBUTES

INVESTIGATE

TECHNOLOGY

✓

Figure 8-4  Elisabeth Hendrickson’s version of the agile testing quadrants

	 Using Other Influences for Planning	 113

the different types of tests you need in order to deliver the right value
for your customers.

Using Other Influences for Planning

There are many useful models and ideas for helping us in our test plan-
ning, and we shouldn’t throw them away. As Tim Ottinger and Jeff
Langr have said (Ottinger and Langr, 2009b), a mnemonic for think-
ing about what are called nonfunctional requirements is still useful. The
FURPS model (see Figure 8-5) was developed at Hewlett-Packard and
was first publicly elaborated by Grady and Caswell (Wikipedia, 2014f);
it is now widely used in the software industry. The + was later added
to the model after various campaigns at HP to extend the acronym to
emphasize various attributes.

James Whittaker developed a methodology he calls the Attribute Compo-
nent Capability (ACC) matrix (Whittaker, 2011) to help define what to test
based on risk. ACC consists of three different parts that define the system
under test: Attributes, Components, and Capabilities. He defines these as:

■■ Attributes (adjectives of the system) are qualities and character-
istics that promote the product and distinguish it from the com-
petition; examples are “Fast,” “Secure,” “Stable,” and “Elegant.”

■■ Components (nouns of the system) are building blocks that
together constitute the system in question. Some examples of

FURPS+

Functionality

Usability

Reliability

Performance

Supportability

Design constraints

Implementation req’ts

Interface req’ts

Physical req’ts

Plus:

Figure 8-5  FURPS+ flash card (Ottinger and Langr, 2011)

114	 Chapter 8   n  Using Models to Help Plan

Components are “Firmware,” “Printing,” and “File System” for
an operating system project, or “Database,” “Cart,” and “Product
Browser” for an online shopping site.

■■ Capabilities (verbs of the system) describe the abilities of a par-
ticular Component to satisfy the Attributes of the system. An
example Capability for a shopping site could be “Processes mon-
etary transactions using HTTPS.” You can see that this could be
a Capability of the “Cart” component when trying to meet the
“Secure” Attribute. The most important aspect of Capabilities is
that they are testable.

Creating a high-level matrix using this model can be a simple way to
visualize your system. Figure 8-6 shows an example of what such a
matrix might look like. Gojko Adzic agrees that exposing system char-
acteristics and providing more visibility is definitely a good idea (Adzic,
2010a), though he cautions that while we can learn from other fields,
we should be careful about using them as a metaphor for software
development.

Use heuristics such as Elisabeth Hendrickson’s “Test Heuristics Cheat
Sheet” (Hendrickson, 2011) or tried-and-true techniques such as state
diagrams or truth tables to think of new ideas for attributes. Combine
these ideas with models like the Quadrants so that the conversations
about the system constraints or usability can extract clear examples.
Using all the tools in your toolbox can only help increase the quality of
the product.

Components Capabilities

Manage profile

Mobile App Firmware Printing Fast Secure

INFLUENCE AREA RISK / IMPORTANCE

Stable

Send messages

Update network

Attributes

Figure 8-6  ACC example

	 Planning for Test Automation	 115

Planning for Test Automation

Since Mike Cohn came up with his test automation pyramid in 2003,
many teams have found it a useful model to plan their test automation.
To take advantage of fast feedback, we need to consider at what level
our automation tests should be. When we look at the standard pyramid,
Figure 8-7, we see three levels.

The lowest level is the base—the unit tests. When we consider testing,
we should try to push the tests as low as they can go for the highest
return on investment (ROI) and the quickest feedback.

However, when we have business logic where tests need to be visible to the
business, we should use collaborative tools that create tests at the service
layer (the API) to specify them in a way that documents system behavior.
See Chapter 16, “Test Automation Design Patterns and Approaches,” for

Manual / ET
Tests

Push the
tests
lower for
higher
ROI

Workflow
Tests

Through the UI

API / Service Layer
Business Rules

Functional Tests

Unit Tests / Component Tests
(Programmer Tests)

Automate at
the feature level

Automate at
the story level

Automate at
the task level

Figure 8-7  Automation pyramid

116	 Chapter 8   n  Using Models to Help Plan

more details. It is at this layer that we can automate at the story level so
that testing and automation can keep up with the coding.

The top layer of the pyramid consists of the workflow tests through the
user interface (UI). If we have a high degree of confidence in the unit
tests and the service-level or API-level tests, we can keep these slower,
more brittle automated tests to a minimum. See Chapter 15, “Pyramids
of Automation,” for more detail on alternative pyramid models.

Practices such as guiding development with examples can help define
what the best level for the test is. A team’s cadence can be set by how well
they plan and execute their automation and how well they understand
the level of detail they need. Consider also how to make your automa-
tion test runs visible, whether displayed in the continuous integration
environment or on a monitor that is in the open.

Summary

Models are a useful tool for planning. In this chapter, we covered the
following points:

■■ The agile testing quadrants provide a model for thinking about
testing in an agile world.

■■ The Quadrants help to emphasize the whole-team responsibil-
ity for testing.

■■ They provide a visible mechanism for talking about the testing
needed.

■■ The left side is about guiding development, learning what to
build, and preventing defects—testing early.

■■ The right side is about critiquing the product, finding defects,
and learning what capabilities are still missing.

■■ Gojko Adzic provides an alternative way to think about the
Quadrants if you are in a lean startup or continuous delivery
environment.

■■ We also introduced an alternative quadrant diagram from Elisa-
beth Hendrickson that highlights confirmatory checks versus
investigative testing.

	 Summary	 117

■■ There are already many tools in our agile testing toolbox, and we
can combine them with other models such as the Quadrants to
make our testing as effective as possible.

■■ FURPS and ACC are additional examples of models you can use
to help plan based on risk and a variety of quality characteristics.

■■ The automation pyramid is a reminder to think about automa-
tion and to plan for it at the different levels.

This page intentionally left blank

	 459

Index

Numbers
“5 Whys,” in visualization of thinking process, 44
7 Product Dimensions (Gottesdiener and

Gorman)
example applying 7 Product Dimensions,

131–133
for identifying product needs at all planning

levels, 129–131

A
AA-FTT (Agile Alliance Functional Test Tools),

4, 153
A/B tests

in hypotheses testing, 134
for mobile apps, 328
overview of, 203–204
UX designers and testers using, 140

ACC (Attribute Component Capability) matrix,
model use in testing, 113–114

Acceptance tests
automating, 214, 259
defined, 415
high-level, 153
including UX design in tests, 141
operational acceptance testing (OAT),

387–389, 419
Acceptance-test-driven development (ATDD)

agile approaches used with mobile and
embedded systems, 329

confidence-building practices, 394
functional test tools and, 237
guiding with examples, 55, 148-152
reducing defect debt, 214–215
scaling “Discuss-Distill-Develop-Demo”

cycle, 276
Accountability, from audits, 340
Accounting department, managing internal

dependencies, 292

Actions, in 7 Product Dimensions, 130
Adzic, Gojko, xxix, 112, 153, 155

about the contributors section, xxxv
ATDD and, 151
on automated tests as living documentation, 339
on automating acceptance tests, 214
challenge to Quadrants model, 108–112
on fostering a learning culture, 10, 13–14
on impact mapping, 123
on model use for visibility, 114
on SBE, 56, 153
specification workshops, 42
on testing through the UI, 243

Affinity diagrams, 44
“Agile Acid Test” (Hendrickson), 79
Agile Alliance Functional Test Tools (AA-FTT),

4, 153
Agile ALM (Hüttermann), 104
Agile Manifesto, 15, 87
The Agile Samurai (Rasmussen), xxi
Agile Testing: A Practical Guide for Testers and Agile

Teams (Crispin and Gregory), xxi, 3, 282
collaboration, 239
customer and developer teams, 27
defect-tracking systems, 321
design principles and patterns, 240–241, 243
documentation, 141, 340
embedded systems, 326
end game, 285
example use, 145, 148, 155
personas, 171
SBTM, 176
seven key success factors, 393
story board examples, 386
task creation, 97
ten principles for testers, 28, 386
test automation, 209, 223, 237, 254, 262
test manager role, 19

460	 Index

Agile Testing: A Practical Guide for Testers and Agile
Teams (continued)

test Quadrants, 65–66, 85, 108
tool selection, 264
tools for eliciting examples and

requirements, 123
user acceptance testing, 90, 202
visibility, 381, 391
whole team approach in, xvii
steel threads, 160, 313

ALM. See Application life cycle management
(ALM)

Analytical skills, requirements for DW/BI testers,
348. See also Business analysis (BA)

Analytics software, tools for mobile devices, 327
Andrea, Jennitta, 149
API level (service level)

in automation pyramid, 223–224
consistency in tool selection and, 265
testing through, 241–243

APIs (application programming interfaces)
architecture, 58

coding skills and, 57–58
whole team approach, 258–260

Appelo, Jurgen
on agile development, 16
“Feedback Wrap” workout, 45

Apple example, of value of product design, 140
Application life cycle management (ALM)

Agile ALM (Hüttermann), 104
defined, 415

Architecture, for API, 58
Ariely, Dan, 50
Arrange-Act-Assert pattern (Ottinger and

Langr), 240
Articles, learning resources, 75
ATDD by Example (Gärtner), 56
Attribute Component Capability (ACC) matrix,

model use in testing, 113–114
Attributes

in ACC matrix, 113
quality attributes. See Quality attributes

Audits
accountability from, 340
auditors as stakeholders, 342, 346

Automation, flexibility
of automation tools, 256
of build pipelines, 368
of build verification testing, 369–371
of extract, transform, and load (ETL) processes,

349–350
of provisioning of configuration base states,

374–376
of tests. See Test automation

B
Bach, Jon, 177
Backup/restore, managing Big Data, 358
“Bake-offs,” in tool testing, 261–262
Barcomb, Matt

about the contributors section, xxxv
on becoming a generalizing specialist,

33–36
on use of test automation pyramid, 228–229

BDD. See Behavior-driven development (BDD)
Beck, Kent, 9
“Beginner’s mind” (Hunt), 50
Behavior-driven development (BDD)

confidence-building (core) practices, 394
defined, 415–416
evolution of agile testing and, 3
functional test tools and, 237
Given, When, Then style, xxii–xxiii, 147,

152, 156
guiding development with examples, 55, 148,

152–153
use with mobile and embedded systems, 329

Benchmarking
in goal setting, 277

Big Data
challenges of, 357–359
database transactions and, 352

Big picture
benefits of agile principles, 297
feature testing and, 391, 396–397
key success factors, 393
product delivery and, 91
using the Quadrants model, 108
starting off right and, 239
visualizing, 127

	 Index	 461

Bligh, Susan
about the contributors section, xxxv–xxxvi
on user acceptance testing in enterprises,

294–296
BLM (build-measure-learn)

defined, 416
for early testing or exploring, 134

Bolton, Michael
evolution of agile testing and, 3
on testing as social science, 25

Brainstorming
achieving consensus for automation solutions,

262, 263
in collaboration process, 49, 52
for example sources, 155
facilitating, 42
impact mapping, 123
visualization tools, 44

Branching, continuous integration issues related to,
62–65

Brodwell, Johannes, 312
Browsers

compatibility issues, 91
testing browser-based applications, 244

Budd, Andy, 140
Bugs. See Defects/bugs
Build pipelines

automating, 368
defined, 416
DevOps and, 367–368
test environments and, 367
verification testing, 369–371

Building the right thing. See Development,
building the right thing

Build-measure-learn (BLM)
defined, 416
for early testing or exploring, 134

Business analysis (BA)
combining with testing, 129, 395
including business analysts on agile teams,

27–28
onboarding process for business analysts, 37–38
skill requirements, 137–139
testers and, 139–140

Business capabilities. See Features

Business intelligence (BI) tests
applying agile principles to, 351
challenges of Big Data, 357, 359
data in, 352–353
learning to test, 351–352
managing test data, 355–356
for performance and scale, 357–359
solving bad test data problem, 353–354
unique aspects of, 347–350

Business rules
levels for testing through the UI, 243
in test automation pyramid, 233–234

Business value
determining tester jobs. See Testers, determining

job responsibilities
developing the right thing. See Development,

building the right thing
examples. See Examples, guiding development
key components of, 119–120, 122
tests in delivering, 4–5

Buy-in, lack of, 160–161

C
Capabilities, in ACC matrix, 114
Capacity utilization, Zheglov on, 10–12
Card system, for tracking technical debt, 230
Carvalho, Paul

about the contributors section, xxxvi
on internationalization and localization testing,

195–199
Change

adapting to (Ruhland), 15
end-to-end testing, 229–230
Fearless Change (Manns and Rising), 19
learning and, 9

Charles, Fiona, 25
Charters

creating, 168–171
generating ideas for, 171
journeys in creating, 175–176
managing, 176
personas in creating, 171–174
in SBTM, 176–178
stories as basis of, 175
in TBMT, 178–183

462	 Index

Charters (continued)
tours in creating, 174–175

Charts
example use in everyday life, 146–147
visualizing what you are testing, 100

Clean Coder (Martin), 401
Coaches

coaching retreats, 74
learning from, 71
skills of, 48–49

Cockburn, Alistair, 36
Code/coding

checking business code with SonarQube, 366
creating tests before coding, 96
fast feedback and, 354
integrating with testing in TDD, 105–106
Q2 test guiding, 103
refactoring, 213
technical skills, 56–58
version (or source code) control, 60–65, 420

Cohn, Mike, xxix–xxx, 115–116, 223
Collaboration

in approach to tool selection, 264
collaborative vs. noncollaborative tools, 265
with customers, 147, 393
DevOps and. See DevOps
distributed teams and, 309–311
DW/BI tests and, 350
learning from, 73–74
listening and, 49
meeting regulatory needs, 344–346
process (Robson), 52–53
reducing technical debt, 218–220
technical skills and, 56
through tests, 311–312
tools for distributed teams, 319–321
using video chat tools for, 312, 319–320
valuing customer collaboration over contract

negotiation, 151–152
whole team approach to testing and, 239

Command line, general technical skills, 59
Communication

conflict management, 318
cultural and language issues, 303–304
distributed teams and, 306–307, 309–311
of the importance of testing, 381–382

time zone issues, 304–305
tools for distributed teams, 319
use of video chat for, 306

Community of practice (CoP)
learning and sharing, 76
testers acting as, 80

Competencies. See Roles/competencies
Compliance. See also Regulatory environments

part of Release Done, 342
regulatory, 340–341

Component tests, in test automation pyramid,
224–225, 233–234

Concurrency tests, 194–195
Conferences, learning from, 72–74
Confidence-building (core) practices

context sensitivity, 399–400
continual learning, 397–398
example use, 394–395
exploratory testing, 395–396
feature testing, 396–397
keeping it real, 401

Configuration base states, automating
provisioning of, 374–376

Conflict management, distributed teams and, 318
Consistency

organizational controls for achieving, 278
in tool selection, 265, 289

Constraints
minimum acceptable result, 277
planning Q4 tests and, 107–108
time constraints and organizational skills, 51

Context
business intelligence systems. See Business

intelligence (BI) tests
data warehouses. See Data warehouses (DWs)
DevOps. See DevOps
distributed teams. See Distributed teams
embedded systems. See Embedded systems/

software
enterprise-level testing. See Enterprises (large

organizations)
overview of, 271–273
regulated environments. See Regulatory

environments
Context sensitivity

acceptance tests and, 150

	 Index	 463

alternatives to Quadrant model, 112–113
Big Data and, 5
blurred roles and, 142
in coordination of multiple teams, 283
as core practice, 399–400
cultural issues facing distributed teams, 302–303
education relative to roles and

responsibilities, 17
interdependence of software development and

infrastructure and operations, 26
learning from spikes before planning, 90
mobile and embedded systems and, 5, 333
problem solving and, 43
Q4 tests (technology-facing tests) and, 65–66
in simplification of approach, 157
starting off right in test automation, 239
TBTM and, 182
test managers and, 19

Context-driven testing, 399
Continual learning. See also Learning

acquiring automation and coding skills, 57
BA skills and, 138
as core practice, 397–398
empowering team members for, 13
hiring people who want to learn, 37
time for, 9
from people in other departments, 365
small experiments in, 80
testing for mobile software, 336
T-shaped skills, 28–29
value of domain knowledge, 47

Continuous delivery, DevOps and, 366
Continuous Delivery (Humble and Farley), 361
Continuous improvement

kanban used for, 386–389
positive outcomes of, 297
T-shaped skills, 28
visualization for, 386, 390

Continuous integration (CI)
automated regression testing for, 289–290
building and maintaining test environments

and, 60
core development practices, 394
defined, 416
determining how much automation is

enough, 262

long-running tests and, 229
mobile and embedded systems and, 329
regression testing and, 97
failing builds and, 263
systems, 62–65
time zone issues, 305
T-shaped skills and, 29
visual cues of technical debt, 217
walking new tester through CI process, 38

Contract negotiation, valuing customer
collaboration over, 151–152

Control
in 7 Product Dimensions, 130
dealing with organizational controls, 278–283

Conversations
elicit examples, 239
as means of delivering value, 150–152
value of, 147

Coordination, of multiple teams, 283–284
CoP (Community of practice)

learning and sharing, 76
testers acting as, 80

Core practices. See Confidence-building (core)
practices

Courses, learning from, 74–75
Co-workers, learning from, 77
Creativity, learning and, 8
Critical thinking, 49
Cross-site scripting, security tests and, 65–66
Cucumber and Cheese (Morgan), 332
The Cucumber Book (Wynne and Hellesøy), 56
Cucumber tool, 265
Cultural issues, distributed teams and, 302–303
Cunningham, Ward

“checked examples” and, 103
coining term “technical debt,” 211
evolution of agile testing and, 3

Customers
in Agile Testing (Crispin and Gregory), 27
buy-in lacking, 160–161
capturing expectations of, 152
collaborating with, 147, 393
customer-facing tests guiding development, 239
determining purpose of new features and, 122
enterprises involving, 294–296
focus on, 276

464	 Index

Customers (continued)
playing role of “bad customer” in exploratory

testing, 166–167
teams and, 416
tools for engaging. See Tools, for customer

engagement
valuing customer collaboration over contract

negotiation, 151–152
Cycle time

defined, 416
DevOps shortening, 361–362
reducing, 367
setting goal for, 387–388

D
Dashboard, visibility to tests and test results, 392
Data

in 7 Product Dimensions, 130
business intelligence and, 352–353
challenges of Big Data, 357, 359
managing test data, 249–250, 355–356
solving bad test data problem, 353–354

Data integrity tests, skill requirements for DW/BI
testers, 348

Data modeling
abstraction of logical models, 351
for data warehouse, 347

Data warehouses (DWs)
applying agile principles to, 351
challenges of Big Data, 357, 359
data in, 352–353
learning to test, 351–352
managing test data, 355–356
solving bad test data problem, 353–354
succeeding with agile testing in, 400
testing performance and scale, 357–359
unique aspects of testing in, 347–350

Database team, managing internal
dependencies, 292

Databases
DW/BI tester skills, 348
general technical skills, 59

de Bono, Edward, 50
Deadlines

building trust and, 17
pressure of unrealistic, 7–8

Debrief sessions
following testing tours (Gärtner), 175
recording results of exploratory testing, 186
SBTM use for training testers, 176

Debugging. See Defects/bugs
Decision tables, test design techniques, 67
Default Data pattern (Morgan), 250
Defects/bugs

“bug hunts,” 183
catching/tracking, 392
debugging test failures, 250–251
implementing agile at Dell and, 281
making test maintenance visible, 213
preventing, 36, 47, 102, 158, 216, 362
prioritizing fixes, 289
processes for dealing with, 287
reducing defect debt (zero tolerance), 213–216
visual (whiteboard) approach to, 81–82

Defect-tracking systems (DTSs), 321
Definitions/assumptions, in collaboration

process, 52
Deliverables

formal documentation of, 92–94
impact mapping and, 124–125

Delivery. See also Product release
delivery (development) team, 416–417
product delivery and, 296–297
single and multiple-team cycles, 91

Dell example, of agile journey
challenges and solutions, 279–280
evolution of, 282
implementing, 281
results, 296
scaling agile testing, 287–288

Dependencies
coordinating between teams, 285
customer involvement in enterprises, 294–296
distributed teams, 305
managing, 292
removing, 293
third-party partnerships, 292–294

Derby, Esther
adding feedback loops and, 16
Problem Solving Leadership (PSL) course, 74

Design patterns and principles
Default Data pattern (Morgan), 250

	 Index	 465

Factory pattern, 410–412
overview of, 240
Page Object pattern, 246–248, 407–410
testing through the API, 241–243
testing through the UI, 243–246

Desktop sharing, collaboration tools, 321
Detail, getting bogged down in, 159–160
Detail level in planning. See Levels of precision

(detail), for planning
Development. See also DevOps

core practices, 394
environment for, 59–60
guiding with examples, 55–56, 148–149
liability in separating from IT or operations, 365
need for testers in, 26–27
planning iterative development, 88
tests guiding, 102

Development (delivery) teams
adopting agile values, 7
bonding with, 345
collaborating to meet regulatory needs, 344–345
defined, 416–417

Development, building the right thing
7 Product Dimensions (Gottesdiener and

Gorman), 129–131
determining the purpose of new features,

121–123
example applying 7 Product Dimensions,

131–133
impact mapping, 123–126
investing and, 134–135
overview of, 119–120
story mapping, 126–129
tools for customer engagement, 123
tools for exploring early, 134

DevOps
adding infrastructure to testing scope,

365–367
in all Quadrants, 363–364
automating build verification testing, 369–371
automating provisioning of configuration base

states, 374–376
branching issues and, 63
build pipeline and, 367–368
defined, 417
evolution of agile testing and, 5

interdependence of software development and
infrastructure and operations, 26

monitoring and logging and, 59
overview of, 361–362
quality and, 363
testers adding DevOps value, 371–372
testing infrastructure, 372–373

DevOps for Developers (Hüttermann), 361
Dinwiddie, George, xxix, 4
Discover to Deliver (Gottesdiener and Gorman),

107, 191–192
“Discuss-Distill-Develop-Demo” cycle, in

ATDD, 276
Dispersed teams. See also Distributed teams

communication and collaboration and, 310
overview of, 299–301
visualizing testing in, 386

Distributed teams
challenges of, 302
collaboration and, 309–312, 400
collaboration tools, 319–321
communication and, 309–311, 400
communication tools, 319
coping strategies, 308
cultural issues, 302–303
dependencies, 305
experience of working on, 306–307
experience working on offshore test team,

315–317
facilitating online communication, 306
integrating, 308–309
language issues, 303–304
management issues, 317–318
offshore testing, 312–317
overview of, 299–302
planning sessions, 305, 308
reasons for, 301–302
short feedback loops, 321–322
time zone issues, 304–305
tools for, 319–322
visualizing testing, 386

Documentation. See also Living documentation
of deliverables, 92–94
excessive, 341–342
“lack of documentation” myth, 339–340
linking to requirements, 345

466	 Index

Documentation (continued)
recording results of exploratory testing, 185
skill requirements, 141–142
training end users, 295

Domain knowledge, 46–47
Domain-specific language (DSL)

collaborating with distributed teams, 311
describing feature behavior, 147
example use and, 157–158
guiding development with customer-facing

tests, 239
programmer buy-in and, 160
tests using, 56
in whole team approach, 259

Done
Feature Done, 286
Product Done, 287
Release Done, 342
Story Done, 286

Don’t repeat yourself (DRY) principle, 35, 240
Driving development. See Examples, guiding

development
Dropbox

collaboration tools, 312
experience working on offshore test team,

315–317
DRY (Don’t repeat yourself) principle,

35, 240
DSL. See Domain-specific language (DSL)
DTSs (Defect-tracking systems), 321
DWs. See Data warehouses (DWs)

E
Elaboration, types of thinking skills, 49
Eliot, Seth, 200–201
Email, as communication tool, 319
Embedded systems/software

automation-assisted exploratory testing
(Hagar), 334–335

critical nature of testing in, 328–329
defined, 325
learning agile testing for mobile software

(Harrison), 336–337
lessons learned in applying agile testing (Hagar),

330–332
overview of, 325–326

similarities and differences of agile testing in,
326–328

test automation strategies (Morgan), 332–334
testing context and, xxvi
types of agile approaches used with, 329

Emery, Dale, 248
Emotions, learning and, 70–71
Empathy, giving/receiving feedback and, 45
End game

activities, 285
additional testing during, 90
addressing integration issues early, 291
defined, 417
taking release to Product Done, 287

End-to-end testing
Ruhland on, 193
susceptibility to change, 229–230
test automation pyramid, 225

Enterprise Solutions Group (ESG), at Dell
challenge of hardware compatibility matrix,

369, 371
challenges in transitioning to agile, 266–267,

279–280
results of adopting agile, 296

Enterprises (large organizations)
aligning target setting for test automation

across, 277–278
Big Data as challenge to, 357
coordinating multiple teams, 283–284
coordinating tooling for, 289–290
customer involvement, 294–296
defined, 417
dependency management, 292
implementing test automation in, 254–258
organizational controls, 278–283
overview of, 275
product delivery and, 296–297
scaling automation for, 264–265, 267–268
scaling testing for, 276–277
system test team and environment and, 284–289
test coverage, 291
third-party partnerships, 292–294
version control, 290
what they are, 275–276

Environments
in 7 Product Dimensions, 130

	 Index	 467

in DevOps, 376
development environments, 59–60
feature testing by, 286
system test team and, 284–289
test environments. See Test environments

ESG. See Enterprise Solutions Group (ESG), at Dell
ETL. See Extract, transform, and load (ETL)
Evangelisti, Augusto, xxix

about the contributors section, xxxvi
on branching strategy, 63
on conversation value, 150
on managing testers, 19
on quality guilds, 14
on reducing defect debt, 213–216

Evans, David
about the contributors section, xxxvi
on automated tests as living documentation, 339
on getting to know distributed team

members, 310
“Pillars of Testing” model, 402–405
on spending time effectively, 9

Everyday Scripting with Ruby (Marick), 57
Examples, guiding development

ATDD, 149–150
BDD, 152–153
benefits of, 157–158
capturing examples and turning into automated

tests, 147
“checked examples” in Q1 and Q2 tests, 103
collaborating with distributed teams, 311
conversation as means of delivering value,

150–152
as core practice, 394–395
in defect prevention, 158
evolution of agile testing and, 3
overview of, 55–56, 145
pitfalls of, 159–162
planning Q2 tests and, 105
power of using, 145, 147–148
resource materials for learning mechanics

of, 162
SBE, 153–154
solving bad test data problem, 354
use in real life, 146–147
various approaches to, 148–149
where to get, 155–157

Executives, educating, 17–19
Experiments

learning and, xxviii
small experiments in continual learning, 80

Exploratory testing
in agile testing context, 188–190
automation-assisted, 334–335
collaboration with development team

and, 345
as core practice, 395–396
creating test charters, 94, 168–171
defined, 417
in DW/BI, 350
in evolution of agile testing, 5
generating test charter ideas, 171
groups in, 183–185
helping others and, 80
Hendrickson on, 66–67
journeys in, 175–176
managing test charters, 176
offshore test teams and, 315
overview of, 165–167
personas in, 171–174
Q3 tests (business-facing tests) and, 66, 103,

106–107
recording results, 185–188
in SBTM, 176–178
skill development for, 167
skills requirements in square-shaped teams,

30–32
stories in, 175
in TBMT, 178–183
in test automation pyramids 223, 227–228
tours in, 174–175

Explore It (Hendrickson), 50, 66, 106, 168
Extract, transform, and load (ETL)

defined, 417
learning to test BI and, 351
managing test data and, 355–356
speeding up/automating, 349
testing data rules, 353–354

Extreme Manufacturing, 331
Extreme Programming (XP)

agile testing quadrants and, 101
evolution of agile testing and, 3–4
testing needs and, 192

468	 Index

F
Facilitation skills, thinking skills, 42–43
Factory pattern, design patterns, 410–412
Fail fast, learning and, 12
Farley, David, 361
Fast feedback, agile principles

API level tests and, 223
applying to DW/BI, 351–352
automated tests and, 97, 153, 161, 227
automation levels and, 115
A/B tests and, 204
build pipeline and, 416
DevOps and, 362
in distributed teams, 301
learning from, 12, 87, 394
as objective of test execution, 256
prioritizing information from, 347
for product improvement and visibility, 17
providing information to developers, 331
rapid release cycles and, 200
on regression failures, 234, 289
for risk reduction, 291
test environments and, 60
in testing and coding approach, 354
“Trinity Testing” (Harty) and, 184
from users, 327

Fazal, Kareem
about the contributors section, xxxvi
on automating build verification testing,

369–371
Fearless Change (Manns and Rising), 19
Feature Done, 286
Feature injection, BDD and, 153
Feature testing

as core practice, 396–397
in different environments, 286
iterative testing and fast feedback and, 5
release planning and, 92
remember the big picture, 396–397
story maps in, 126

Features
exploratory testing at feature level, 189
levels of precision in planning, 92–94, 96
overview of, 88
planning Q2 tests and, 105
planning Q3 tests and, 106–107

prioritizing, 283
the “why” of new features, 121–123

Federated data, 348, 417
“Feedback Wrap” workout (Appelo), 45
Feedback/feedback loops

continuous integration and, 262
fail fast and, 12
fast feedback. See Fast feedback, agile principles
impact mapping and, 125
key success factors, 393
mobile and embedded systems and, 326
offshore test teams and, 316–317
organizational culture and, 15–17
planning for, 87
from prototyping, 205–206
regression testing and, 161
short feedback loops in agile testing, 321–322
skill in giving/receiving, 45–46
test automation pyramid and, 223

Fishbone diagrams. See Ishikawa diagrams, 44
FIT (Framework for Integrated Test), 3
FitNesse tool, 254–255, 257, 265
Flow diagrams

benefits of flow-based systems, 383
example use in, 145
kanban and, 88
story level and, 96

Focus groups, 140
Framework for Integrated Test (FIT), 3
Freeman, Steve, 126
Frempong, Benjamin

about the contributors section, xxxvii
on automating provisioning of configuration

base states, 374–376
Functional decomposition, types of thinking

skills, 49
Functional tests

ATDD and, 150
in expanded test automation pyramid, 233–234
in test automation pyramid, 115
tools for, 237
turning examples into automated tests, 147

Functionality
key components of business value of software, 122
testing through the UI, 243

FURPS model, for planning tests, 113–114

	 Index	 469

G
g11n. See Globalization
Gärtner, Markus, xxix

on ATDD, 56
on debriefing following tours, 175
Pomodoro Testing, 182–183
on starting testing process right, 239
on technical debt, 211

Gawande, Atul, 9
Generalizing specialists, 33–36
George, Chris

about the contributors section, xxxvii
on reducing technical debt, 218–220

Gilb, Kai, 107
Gilb, Tom, 107, 277
Git tool, 365–366
Globalization

challenges of global markets, 195
defined, 415
guiding development with examples, 55–56,

148–150
language and character set support, 198
planning Q4 tests and, 107
programmer buy-in and, 160

Goals
in collaboration process, 52
metrics in setting, 277
SMART, 49, 386
stakeholders in goal setting process, 124

Gorman, Mary, xxx
7 Product Dimensions, 129, 131–133
about the contributors section, xxxvii
given_when_then template for getting

examples, 156
on Planguage, 107
on representation of quality attributes, 191

GoToMeeting, collaboration tool, 312
Gottesdiener, Ellen, xxx

7 Product Dimensions, 129, 131–133
about the contributors section, xxxvii
given_when_then template for getting

examples, 156
on Planguage, 107
on representation of quality attributes, 191

Graphs, for recording test results, 187
Group chats, collaboration tool, 321

Group hugs
concurrency testing and, 194–195
exploratory testing and, 183–184

Groups, in exploratory testing, 183–185
Guest, David, 29
Guiding development. See Examples, guiding

development

H
Hagar, Jon

about the contributors section, xxxviii
on automation-assisted exploratory testing,

334–335
defining embedded software and mobile

apps, 325
on lessons learned applying agile testing to

mobile and embedded systems, 330–332
Hagberg, Jan Petter, 303, 322
Hardware compatibility matrix, at Dell, 369
Hariprasad, Parimala

about the contributors section, xxxviii
on offshore testing teams, 315–318

Harrison, JeanAnn, xxix
about the contributors section, xxxviii
on collaboration in meeting regulatory needs,

344–346
on learning agile testing for mobile software,

336–337
Harty, Julian, 330

on critical nature of testing for mobile apps, 328
on “Trinity Testing,” 184

Hassa, Christian, 276–277
Heinrich, Mike

about the contributors section, xxxviii
example of data warehouse setup—

Figure 22-1, 348
on learning to test BI, 351–352

Heinze, Sherry, xxix
about the contributors section, xxxvix
on example use in everyday life, 146–147

Hellesøy, Aslak, 56
Help Desk persona, 172–173
Hendrickson, Elisabeth, xvii, 109, 214

“Agile Acid Test,” 79
ATDD and, 151
challenging use of Quadrants, 112–113

470	 Index

Hendrickson, Elisabeth (continued)
“Discuss-Distill-Develop-Demo” cycle, 276
evolution of agile testing and, 3
on exploratory testing, 66–67
on planning Q3 tests, 106–107
on resources for good charters, 168
“Test Heuristics Cheat Sheet” as source for ideas

in exploratory testing, 167
on tools for structured and focused thinking, 50

Heuristics
defined, 418
in exploratory testing, 166
planning models and, 114

Heusser, Matthew
about the contributors section, xxxvix
on charters and session-based testing, 169–170
on managing regression tests, 177–178

Hiring
finding the right people, 36–37
onboarding process for testers, 37–38

Hiring Geeks That Fit (Rothman), 37
How Google Tests Software (Whittaker), 109
“How?” questions

in creation of roadmaps, 123–124
iPhone example, 140

Humble, Jez, 361
“Hump of pain,” in test automation, 237
Hunt, Andy, 49–50
Hussman, David, 71

on journeys as means of creating charters,
175–176

persona use by, 171
Hüttermann, Michael, 372

about the contributors section, xxxvix
on adding infrastructure to testing scope,

365–367
on DevOps, 361
on “outside-in, barrier-free collaborative” in Q

tests, 103–104
Hypotheses, A/B tests for checking, 134

I
i18n. See Internationalization
IaaS (Infrastructure as a service), 418
IDEs. See Integrated development environments

(IDEs)

Impact mapping
overview of, 123–126
for product vision, 89
tools for visualization of thinking process,

43–44
Infrastructure

adding infrastructure to testing scope, 365–367
“Levels of Service” provided by infrastructure

testers, 371–372
support for distributed teams, 322
testing, 372–373
testing requirements and, 192

Infrastructure as a service (IaaS), 418
Initiative, testers taking, 142–143
Integrated development environments (IDEs)

collaboration and, 56
manage automation with, 262
tester expertise with IDE tools, 60
T-shaped skills and, 29
unit tests in, 4

Integration
addressing integration issues early, 291
of distributed teams, 308–309
product release level and, 90
system integration team in offshore testing, 313

Integration tests, offshore testing and, 312–314
Integrity checks, data and relational, 59
Interfaces

in 7 Product Dimensions, 129–130
technical skills and, 58
user interfaces. See User interface (UI)

Internationalization
planning Q4 tests and, 107
testing needs and, 195–200

Interoperability, test planning and, 91
Investigative testing

A/B tests. See A/B tests
concurrency testing, 194–195
exploratory testing. See Exploratory testing
internationalization and localization, 195–200
overview of, 163
regression testing. See Regression tests
types of, 164
user acceptance testing. See User acceptance

testing (UAT)
user experience testing. See User experience (UX)

	 Index	 471

Ishikawa diagrams
types of thinking skills, 49
for visualization of thinking process, 44

IT departments, liability in separating from
development, 365

Iterations
iteration demos as learning opportunity, 77
managing Big Data, 358
planning, 88, 93, 96–97, 130, 293, 310
planning meetings, 173–174, 186
regression testing and, 98
stories and, 28
visual cues of technical debt, 217

Ivarsson, Anders, 297

J
JavaScript, test automation pyramid and, 226
JBehave, for automating acceptance tests, 214
Jdefault library, 250
Jenkins tools

in DevOps example, 366
testing infrastructure with, 373

Job responsibilities. See Roles/competencies;
Testers, determining job responsibilities

Johnson, Karen N., 330
Jones, Griffin

about the contributors section, xxxvix
on possibility of agile in regulated

environment, 343
Journeys, in creating test charters, 175–176
JUnit tests, 265

K
Kahneman, Daniel, 50
Kämper, Stephan

about the contributors section, xl
on testing infrastructure, 372–373

Kanban
for capacity utilization (Zheglov), 10–12
as communication tool, 319
for continuous improvement, 386–389
course on, 75
defined, 418
distributed teams and, 311
as flow-based method, 88
in reducing defect debt, 214

use in testing (Rogalsky), 382–385
for visualizing testing, 382–385

Kaner, Cem, 399
Karten, Naomi, 49
Keeping it real

continual improvement and adaptation, 6
as core practice, 401
cutting corners and, 220
getting buy-in, 160
maintaining automation tests, 248
making regulatory requirements part of

work, 344
managing source code, 64
options in dealing with uncertainty, 18
planning and, 87
regression testing and, 200
tests, skills, and resources and, 104–105
trust building within teams, 45
unsustainable pace and, 8
value of whole team understanding operating

environment, 376
“what” vs. “why” in feature development, 122
working with third-parties and, 293

Kelln, Nancy, 25
Keogh, Liz, xxix, 18

on BDD, 152
on getting needed capabilities in place before

testing, 239
on having too many unknowns, 161–162
on reviewing workflow for simplicity, 385
on tests for monitoring system performance,

107–108
on value of conversations, 147

Kerievsky, Joshua, 3
Khoo, Trish

about the contributors section, xl
on need for testers in development, 26–27

Kniberg, Henrik
on use of agile by Spotify, 16
using agile principles without being too

rigorous, 297
Knight, Adam, xxix

about the contributors section, xl
on branching strategy, 64–65
on development environments, 59
DW/BI tests and, 350

472	 Index

Knight, Adam (continued)
experience using TBTM, 182
on managing testers, 19
on square-shaped team, 30–32
on testing performance and scale, 357–359
on tools for extending test harnesses, 237–238

Kohl, Jonathan, 326, 330

L
L10n. See Localization
Lambert, Rob, 29
Langr, Jeff

Arrange-Act-Assert pattern, 240
automating acceptance tests, 214
mnemonic for nonfunctional requirements—

FURPS, 113
Large organizations. See Enterprises (large

organizations)
Leadership skills, 74
Lean Coffee sessions, 14
Lean principles

implementing, 276
just in time and, 85
in manufacturing, 10
startup, 108–110, 134, 203

Learning. See also Continual learning
change and, 9
conferences, courses, meet-ups, coach camps

and collaborating, 72–75
domain knowledge, 46–47
evolution of agile testing and, 5
experiments and, xxviii
fostering a learning culture, 13–15, 77
helping others, 79–80
importance of a learning culture, 12–13
making time for, 8–12, 77–79
mentors, learning from, 71
overview of, 69
publications, podcasts, and online communities,

75–77
resources, 72–74
roles and competencies and. See Roles/

competencies
social networking, 74
styles, 69–72
surprise learning, 80–83

technical skills. See Technical awareness
(technical skills)

to test business intelligence, 351–352
thinking skills. See Thinking skills

Legacy systems
defined, 418
internationalization requirements, 198
reducing technical debt, 218
session-based testing and, 169
test strategy for, 177

Levels of precision (detail), for planning
applying to enterprise example, 284
different points of view and, 87–89
feature level, 92–94, 96
overview of, 87
product delivery cycle, 91–92
product release level, 89–90
regression testing and, 97–98
story level, 96
task level, 96–97
visualizing what you are testing, 98–100

Listening
learning by, 69
thinking skills, 48–49

Living documentation. See also Documentation
continuity provided by domain-specific

language, 239
SBE and, 153–154, 420
TDD and, 56
test automation and, 38, 209, 268, 339, 342
testing through the API and, 241–243
testing through the UI and, 243

L-mode (linear and slow), thinking skills
and, 49

Load testing
applying Q4 tests, 103
test environments, 61

Localization
planning Q4 tests and, 107
testing needs and, 195–200

Log files, reading, 59
Logic Bubbles, thinking skills and, 50
Lyndsay, James, xxix, 178

on breadth and specificity of test charters, 169
resources for session-based testing, 178
on scripted testing vs. exploratory testing, 166

	 Index	 473

M
Maassen, Olav, 123
Maintainability, in expanded test automation

pyramid, 233–234
Maintenance

making test maintenance visible, 213
of tests, 248–251
visual cues of technical debt, 217

Maksymchuk, Cory
about the contributors section, xl
on using examples to prevent defects, 158

Management 3.0 (Appelo), 16
Management issues, distributed teams and,

317–318
Manns, Mary Lynn, 19
Mapping

impact mapping. See Impact mapping
mind mapping. See Mind mapping
relationship mapping, 49
story mapping. See Story mapping
tools for structured and focused thinking, 50

Marick, Brian, 103
on automating acceptance tests, 214
evolution of agile testing and, 3
on example-driven development, 145
on learning to code, 57
on Quadrants, 101

Martin, Robert C., (Bob)
on building trust, 17
on prioritization of high-value work, 401
on rules of clean code, 35

Matrices
adding visibility to tests and test results, 390
Attribute Component Capability (ACC) matrix,

113–114
monitoring risks and assumptions, 92
release-level test matrix, 99

Matts, Chris, 153
on Real Options, 18
on determining the most valuable options, 123

McDonald, Mark P., 276, 292
McKee, Lynn, 25, 55
McKinney, Drew

about the contributors section, xli
on user research, 205–206

McMahon, Chris, 310

Meetings
GoToMeeting collaboration tool, 312
for prioritization of work, 364
getting the right people, 365
standup meetings, 15

Melnick, Grigori, 214
Metrics, in goal setting, 277
Meyer, Geoff, xxix, 287–288, 296–297

about the contributors section, xli
on agile journey at Dell, 279–282
on suitable approach to test automation,

266–267
Mind mapping

adding visibility to tests and test results,
390–391

as collaboration tool, 321
converting from SBTM to TBTM, 180–181
for documentation of deliverables, 94
impact mapping developed from, 123
mobile apps and, 327
for recording results of exploratory testing, 185
types of thinking skills, 49
for visualization of thinking process, 43
for visualizing what you are testing, 98–100

Minimum viable product (MVP)
defined, 418
visualizing, 126

Ministry of Testing, 327
Mission statement, as source for charters, 169
Mobile apps/mobile devices

automation-assisted exploratory testing
(Hagar), 334–335

concurrency testing and, 194
critical nature of testing in, 328–329
integration of hardware and operating systems

in, 344–345
learning agile testing for (Harrison), 336–337
lessons learned in applying agile testing (Hagar),

330–332
overview of, 325–326
similarities and differences in agile testing in,

326–328
test automation, 244
test automation strategies (Morgan), 332–334
test planning and, 91
types of agile approaches used with, 329

474	 Index

Models, data, 347
Models, planning

agile testing quadrants and, 101–105
alternative to Quadrants (Hendrickson), 112–113
challenges to Quadrants, 108–111
FURPS model and ACC matrix applied to,

113–114
heuristics applied to, 114
overview of, 101
Q1 tests, 105
Q2 tests, 105–106
Q3 tests, 106–107
Q4 tests, 107–108
test automation and, 115–116

Monitoring
general technical skills, 59
managing Big Data, 359
memory, CPU, logging and, 59
risks and assumptions, 92
testing requirements and, 192

Morgan, Jeff (“Cheezy”)
about the contributors section, xli
on managing test data, 249–250, 355–356
on test automation strategies for mobile and

embedded systems, 332–334
on testing browser-based applications, 244–245

Morville, Peter, 328
Moss, Claire

about the contributors section, xli
on learning, 80–83

MVP. See Minimum viable product (MVP)

N
Naming conventions, test standards, 265
Natural language, use in BDD, 152
North, Dan

on BDD, 152
evolution of agile testing and, 3

Notes, recording results of exploratory testing,
185–186

O
OAT (operational acceptance testing)

cycle time from demo to, 387–389
defined, 419

Observation skills, 48

O’Dell, Chris
about the contributors section, xliii
on flipping an inverted test automation

pyramid, 229–230
Offshore testing. See also Distributed teams

cultural issues and, 303
experience working on test team, 315–317
language usage, 312
overview of, 301
pros/cons, 312–315

One-page test plans, 94
Online boards, in visualizing testing for

distributed or dispersed teams, 386
Online communities, learning from, 75–77
Online courses, learning from, 74
Online games, for integration of distributed

teams, 309
Online mind mapping, visualizing what you are

testing, 98–100
Online tracking tools, managing dependencies, 305
Open source projects, as learning opportunity, 76
Operational acceptance testing (OAT)

cycle time from demo to, 387–389
defined, 419

Operations
development and. See DevOps
liability in separating from development, 365

Options Board, for displaying 7 Product
Dimensions, 132

OPV (Other people’s views), thinking skills and, 50
Oracles, in exploratory testing, 166
Organization, of regression tests, 97
Organizational culture

educating stakeholders, 17–19
fostering a learning culture, 13–15, 77
importance of a learning culture, 12–13
investing time in learning, 8–12
managing testers, 19–20
overview of, 7–8
transparency and feedback loops, 15–17

Organizations
dealing with organizational controls, 278–283
enterprise-level. See Enterprises (large

organizations)
Other people’s views (OPV), thinking skills

and, 50

	 Index	 475

Ottinger, Tim
Arrange-Act-Assert pattern, 240
on automating acceptance tests, 214
mnemonic for nonfunctional requirements—

FURPS, 113
Ownership, offshore test team and, 316

P
Page Object pattern

creating maintainable UI tests, 245
creating with PageFactory class, 410–412
example written with Selenium 2 (WebDriver),

407–410
implementing, 247–248
test automation strategies for mobile and

embedded systems, 332–334
testing through the UI and, 243–246
understanding, 246–247

Paper prototypes. See Prototyping
Parallelization, in managing Big Data, 358–359
Patton, Jeff

persona use by, 171
on story mapping, 126–127

Performance tests
DW/BI and, 357–359
in expanded test automation pyramid, 233–234
test environments, 61

Personas
creating test charters, 171–174
playing role of “bad customer” in exploratory

testing, 166–167
in story mapping, 128
user experience designers creating, 396

“Pillars of Testing” model (Evans), 402–405
Pilot projects, for working out kinks, 280
Planguage (Gilb and Gilb), 107, 277
Planning

applying to enterprise example, 284
distributed teams and, 305, 308
example of lightweight test plan (BMI

calculator), 95–96
features, 92–94
feedback/feedback loops, 87
identifying product needs, 129–131
iteration planning, 93, 96–97, 130, 293, 310
iteration planning meetings, 173–174, 186

“Levels of Service” provided by infrastructure
testers, 371

models. See Models, planning
points of view in, 87–89
at product level, 286
question asker and, 25
regression testing and, 97–98
release planning, 89–92
story readiness, pre-planning, 96, 293
task level, 96–97
visual (whiteboard) approach to, 81–82
visualizing what you are testing, 98–100

Platform as a service (PaaS), 419
Play, as learning technique, 73–74
Plunkett, Brian, 280
POC (proof of concept), 64
Podcasts, learning from, 75–77
Points of view, in planning, 87–89
Pomodoro Testing (Gärtner), 182–183
“Power of Three” (Dinwiddie), 4
Practice, learning and, 74
Pragmatic Thinking and Learning (Hunt), 49
Prioritization

of backlog, 173–174
of defect backlog, 81
of defect/bug fixes, 289
of features, 46, 159, 283
of outcomes, 17
of stories, 127–128, 293
of test charters, 396
as a thinking skill for testing, 41, 49

Privacy, data-related issues, 353
Problem Solving Leadership (PSL) course, 43, 74
Problem solving skills, thinking skills, 43–44
Product Done, taking release to, 287
Product release

defined, 419
enterprises and, 296–297
integrating exploratory testing into agile

testing, 189
overview of, 88
planning, 89–92
regulatory compliance as part of Release

Done, 342
single and multiple-team product delivery

cycles, 91–92

476	 Index

Products
roadmap, 90
test planning at product level, 286

Profiling, general technical skills, 59
Programmers

buy-in and, 160–161
on system test team, 284

Programming, 57. See also Code/coding
Proof of concept (POC), 64
Prototyping

example use in, 145
use in testing, 205–206
UX designers and testers both using, 140

“Provocation Starters” (Vaage), 71–72, 413–414
Pryce, Nat, 126
Pseudo code, automating tests and, 57
PSL (Problem Solving Leadership) course, 43, 74
Publications, learning from, 75–77
Puppet tools, in DevOps example, 365–367
Putting it all together

confidence-building practices, 394
context sensitivity, 399–400
continual learning, 397–398
creating shared vision, 402
example use, 394–395
exploratory testing, 395–396
feature testing, 396–397
keeping it real, 401
“Pillars of Testing” model (Evans), 402–405
seven key success factors, 393

Pyramid, test automation
alternative versions, 224–227
dangers of delaying test automation, 227–229
evolution of agile testing at Dell, 282
example of expanded pyramid, 231–234
example of flipping an inverted pyramid,

229–231
original version, 223–224
overview of, 223
planning for test automation, 115–116
showing different dimensions, 231, 234

Q
qTrace tool, for recording, 187–188
Quadrants, agile testing

alternative to (Hendrickson), 112–113

A/B tests in Q2. See A/B tests
challenges to, 108–111
DevOps working across all, 363–364
evolution of agile testing at Dell, 282
order of applying, 103–105, 191, 239
overview of, 101–103
Q1 tests, 105, 145
Q2 tests, 105–106, 145
Q3 tests, 106–107
Q4 tests, 107–108, 268
technical debt due to skipping Q3 and

Q4 tests, 211
testing quality attributes, 65–67
UAT in Q3, 201

Quality
balancing many aspects of, 135
DevOps and, 363
guilds and, 14

Quality attributes
in 7 Product Dimensions, 130
in acceptance tests, 150
representation in operations and development

dimensions, 191
testing, 65–67

Query languages, skill requirements, 59
Questioning (tools)

tools for visualization
 of thinking process, 44
“Why?,” “Who?”, “How?”, and “What?”, 123–124

Queueing theory, capacity utilization and, 10–12

R
Rainsberger, J. B., 147
Rall, Aldo, xxix

about the contributors section, xli–xlii
on helping others, 79

Rasmussen, Jonathan, xxi
Real Options (Matts and Maassen), 18
Reality checks. See Keeping it real
Recording

refactoring ideas, on whiteboards, 230
results of exploratory testing, 185–188

Refactoring
defined, 419
scaling automation for large organizations, 268
whiteboard for recording ideas, 230

	 Index	 477

Reflect-and-adapt (Hendrickson), xviii
Regression tests

challenges of, 200–201
continuous integration with automated

tests, 289
defined, 419
DevOps role building/deploying, 376
DW/BI and, 349
in expanded test automation pyramid, 234
failures, 62
key success factors, 393
managing with SBTM charters, 177–178
manual, 213, 223
planning for, 97–98
scaling for large organizations, 267–268
team approach to biggest problem, 217–218
technical debt in, 216–217
testing through the UI and, 243, 245
too many, 161

Regulatory environments
agile use in regulated environments, 343
collaboration in meeting regulatory needs,

344–346
compliance and, 340–341
excessive documentation and, 341–342
including auditors in the solution, 342
“lack of documentation” myth, 339–340
overview of, 339

Relationship mapping, types of thinking
skills, 49

Relationship skills, 74
Release candidates

creating continuously, 365
defined, 419
product release level and, 189

Release Done, regulatory compliance as part
of, 342

Release planning sessions, 92
Reliability, in expanded test automation pyramid,

233–234
Requirements gathering, 159
Resources, for learning

conferences, courses, meet-ups, and
collaborating, 72–75

publications, podcasts, and online communities,
75–77

Retrospectives
in addressing technical debt, 217
collaboration tools, 322
power of, 13
self-managed teams and, 24

Return on investment (ROI)
defined, 419
key components of business value of

software, 122
meeting automation challenges and, 258
test automation pyramid and, 115
test planning and, 91
testing through the UI and, 243

Ries, Eric, 134
Rising, Linda

Fearless Change (Manns and Rising), 19
on power of retrospectives, 13

Risk-based testing, 51
Risks, testing, 125
R-mode (nonlinear, fast, “rich”), thinking skills

and, 49
Roadmaps, questions in creation of, 123–124
Robson, Sharon, xxix

about the contributors section, xlii
adding dimensions to test automation pyramid,

231–232
on application of thinking skills to testing,

49–51
on effective collaboration, 52–53

Rogalsky, Steve, xxix
about the contributors section, xlii
on learning, 79
on podcast as learning resource, 75–76
on story mapping and testing, 127–129
on use of kanban in testing, 382–385

ROI. See Return on investment (ROI)
Roles/competencies

advantages of some blurred roles on teams, 142
competencies vs. roles, 24–28
generalizing specialists, 33–36
hiring the right people, 36–37
onboarding process for testers, 37–38
overview of, 23
square-shaped team and, 30–32
T-shaped skill set and, 28–30
importance of titles (Walen), 25

478	 Index

Root-cause analysis, tools for visualization of
thinking process, 44

Rothman, Johanna, xix
on feedback loops and transparency, 16
on hiring right people, 37

RSpec approach, to test-driven development, 259
Rubin, Ken, xxix
Ruby Faker library, 250
Ruhland, Bernice Niel, xxix, 77

about the contributors section, xlii
on adapting to change, 15
on group exploration process, 183
on maintaining list of testing types for her

team, 193
on one-page test plans, 94
on recording results of exploratory testing, 187
on SBTM use to train testers, 176
on self-managed teams, 23–24
on testers and business analysts, 138

S
SaaS (software as a service)

defined, 420
product development and, 202

Sandboxes, test environments, 60
Satir Global Network, 74
SBE. See Specification by example (SBE)
SBMT. See Session-based test management

(SBTM)
Scale, in agile testing

automation and, 358–359
considerations regarding, 275
Dell example, 287–288
for enterprises, 276–277
speed and, 357–358

Scenarios
creating test charters, 174
use of examples and, 159

Schoots, Huib
about the contributors section, xliii
on documentation, 94
experience working on distributed teams,

306–307
Scope

adding infrastructure to testing scope, 365–367
deriving using SBE, 153

Scott, Alister
alternative test automation pyramid, 227
on testing through the UI, 243

Scripted tests, 166
Scrum/scrum teams

Agile evolution at Dell and, 282
in automated build verification, 370
Extreme Manufacturing and, 331
first agile experiences compared with, 382
scaling agile testing, 287–288
sprint cycles, 266–267
time-boxing, 281

Security
data-related issues, 353
security worried persona, 172
applying Q4 tests, 103
quality attributes and, 65–66
skill requirements for DW/BI testers, 348

Selenium 2 (WebDriver)
Page Object example, 407–410
PageFactory class, 410–412

Selenium test library, 244, 254–255, 265
Self-managed teams, Ruhland on, 23–24
Semantic Studios, 329
Session sheets, recording results of exploratory

testing, 185
Session-based test management (SBTM)

converting to TBTM, 179–181
managing regression tests with SBTM charters,

177–178
managing test charters, 176, 178
charters and session-based testing, 169–170
recording results of exploratory testing, 186

Set-based development, 245, 259, 420
Shannon, Paul

about the contributors section, xliii
on flipping an inverted test automation

pyramid, 229–230
“Sharing the pain,” 213
Shore, James, 214
Simplicity principle

applying to DW/BI, 351
applying to planning, 88
automated tests and, 256
mind mapping for detail capture, 94
reviewing workflow for simplicity, 385

	 Index	 479

Sinclair, Jennifer, xxix, xliii
Sinclair, Toby

about the contributors section, xliii
on A/B tests, 203–204

Single, responsibility, Open/closed, Liskov
substitution, Interface segregation,
Dependency inversion (SOLID), 57

Sjödahl, Lars, 304
Skills

business analysis skills, 137–139
DevOps activities and, 363
documentation skills, 141–142
investing time in learning, 8
thinking skills. See Thinking skills
square-shaped team example, 30–32
team building and, 24, 27–28
technical skills, See Technical awareness

(technical skills)
T-shaped skill set, 28–30
UX design skills, 140–141

Slices
feature testing and, 396
testing, 127

Small chunks principle
applying to DW/BI, 351
build-measure-lean (BML) and, 134
charters as, 170
distributed teams and, 313
identifying chunks for testing, 127
for learning and adapting, 87
for planning, 87
stories and, 88, 103
for training, 38

SMART (specific, measurable, achievable, relevant,
and time-boxed)

continuous improvement and, 386
types of thinking skills, 49

Smoke tests, 263
Socratic questioning, types of thinking skills, 49
Soft skills. See Thinking skills
Software as a service (SaaS)

defined, 420
product development and, 202

Software delivery cycle, feedback loops in, 15
Software Test Attacks to Break Mobile and

Embedded Devices (Hagar), 330

SOLID: Single, responsibility, Open/closed,
Liskov substitution, Interface segregation,
Dependency inversion (SOLID), 57

Solving problems, 43–44
SonarQube, checking business code with, 366
Source code control system, 62–65, 420
tester expertise, 60
version control, 61
SOX compliance, regulatory environments, 340
Specialists, generalizing specialists, 33–36
Specification by Example (Adzic), 56
Specification by example (SBE)

agile approaches used with mobile and
embedded systems, 329

confidence-building practices, 394
defined, 420
functional test tools, 237
guiding development with examples, 55–56,

148, 153–154
use in reducing defect debt, 214
in whole-team approach to meeting new

challenges, 259
Specification workshops, facilitating, 42
Spikes

deferring test planning until after spike
solutions, 92

planning and, 90
testing potential automation tool with, 261

Split testing. See A/B tests
Spotify, 16, 297
Spott, Dave, 280
Spreadsheets

example use in, 145, 157
recording results of exploratory testing, 186
struggling with failing CI builds, 263

SQL (Structured Query Language), 59
SQL injection, security tests, 65–66
Square-shaped team, 30–32
Staging environments, for testing, 60
Stakeholders

accountability to, 343
auditors as, 342
buy-in, 160–161
educating, 17–19
getting examples from, 147–148
giving/receiving feedback, 46

480	 Index

Stakeholders (continued)
specification workshops and, 42
tools for engagement with, 123–127

Standards, naming conventions, 265
Standup meetings, for face-to-face

communication, 15
State transition diagrams, 67
Steel threads, 160, 313
Stories

blocked, 292
breaking features up into, 92, 94
in coaching, 48
for code refactoring, 213
creating test charters from, 175
determining purpose of, 121
feature-testing, 94, 96
getting examples for, 155
guiding development with examples, 55
iteration testing and, 28
in levels of precision, 89
levels of precision in planning, 96
overview of, 88–89
planning Q2 tests and, 105
planning Q3 tests and, 106–107
prioritizing, 127–128, 293
regression testing and, 97–98
team approach to biggest problem, 218

Story boards
communication tools, 319
effective visualization of testing process,

384–386
getting to know distributed team members, 311

Story Done, vs. Feature Done, 286
Story mapping

getting examples and, 155
impact mapping developed from, 123
overview of, 126–127
testing and, 127–129

Stress tests
meeting regulatory needs and, 345
mobile devices and, 345

Structured Query Language (SQL), 59
Subversion, 64
Success

importance of celebrating, 17
key factors in, 393

Sweets, Tony
about the contributors section, xliii–xliv
on use of Page Object pattern, 246–248

System integration team, approaches to offshore
testing, 313

System test team
coordinating dependencies between teams,

285–286
creating, 284–285
managing, 287

System under test (SUT)
changes and updates and, 240
how much automation is enough and, 263

T
Tabaka, Jean, 71
Tables, recording results of exploratory

testing, 187
Talks, Mike, xxix

about the contributors section, xliv
on constant learning, 78–79
on downside of kanban boards, 384
example of need for business analysis in testing,

138–139
on learning domain knowledge, 46–47
on onboarding process for new testers, 38

Tasks
addressing both product and regulatory

needs, 342
creating testing tasks, 96–97
exploratory testing with, 189

Taxonomy, Quadrants as, 104
TBMT. See Thread-based test management

(TBMT)
TDD. See Test-driven development (TDD)
Teams

adopting agile values, 7
automation solutions for teams in transition,

253–254, 258
bonding with, 345
competencies included on, 27
coordinating multiple, 283–284
creating system test team, 284–289
dependencies between, 92
dispersed. See Dispersed teams
distributed. See Distributed teams

	 Index	 481

finding/hiring the right people, 36–37
fostering a learning culture, 13–15
generalizing specialists and, 36
including business analysts on, 129
multidisciplinary, 256
product delivery cycles and, 91
self-managed (Ruhland), 23–24
square-shaped team, 30–32
technical skills and, 56
understanding team issues (Gregory), 18
whole-team approach. See Whole team

Technical awareness (technical skills)
automation and coding skills, 56–58
automation through the API, 240–243
automation through the UI, 243
continuous integration and source code control

systems, 62–65
development environments and, 59–60
DW/BI testing, 348
general technical skills, 59
guiding development with examples, 55–56
learning resources, 74
overview of, 55
quality attribute testing, 65–67
test design techniques, 67
test environments, 60–62

Technical debt
defined, 420
making it visible, 212–213, 216–217
overview of, 211–212
quantifying cost of, 17
reducing defect debt, 213–216
reducing through collaboration, 218–220
team approach to, 217–218, 220
test automation volcano and, 229
unrealistic deadlines creating, 7–8

Technical skills. See Technical awareness (technical
skills)

Technical writers, 141–142
Telecommuting, creating policy for, 310
Test automation

acceptance tests, 214
aligning target setting for test automation across

enterprise, 277–278
automation-assisted exploratory testing

(Hagar), 334–335

collaborative solutions in tool selection,
260–261, 264

continuous integration with automated
regression testing, 289

data management, 249–250
design patterns and principles, 240
development environments and, 59–60
examples turned into automated tests, 147
exploratory testing used in conjunction

with, 167
how much automation is enough, 262–263
implementing in large organizations, 254–258
maintaining tests, 248–251
for mobile and embedded systems, 332–334
overview of, 209–210
Page Object pattern and, 246–248
Planning, 115–116
pyramid approaches. See Pyramid, test

automation
Q4 tests (technology-facing tests), 268
regression testing, 97
rules and reasons for, 241
scaling for large organizations, 264–265,

267–268
scaling for Big Data, 357–359
selecting test automation solutions, 253
solutions for teams in transition, 253–254, 258
starting off right, 239–241
technical debt and. See Technical debt
technical skills for, 56–58
test environments and, 61
testing through the API (service level), 241–243
testing through the UI, 243–246
third-party partnerships and, 293
tools and processes in, 237–238
transition challenges and, 266–267
whole team approach to, 238–239, 258–260

Test charters. See Charters
Test coverage

in enterprises, 291
medical device example, 344

Test design. See also Design patterns and principles
techniques, 67
use of diagrams for, 67
UX design skills, 140–141
UX designers creating personas, 396

482	 Index

Test environments. See also Environments
build pipelines and, 367
building and maintaining, 60–62
DevOps in maintenance of, 362
making visible, 291
overview of, 60–62

Test failure
debugging, 250–251
managing, 289–290
timing issues, 237

“Test Heuristics Cheat Sheet” (Hendrickson), 114
Test matrix. See Matrices
Test-driven design. See Test-driven development

(TDD)
Test-Driven Development (Beck), 9
Test-driven development (TDD)

BDD as response to, 153
collaborating with distributed teams, 312
core development practices, 394
defined, 421
DSL examples and, 158
example-driven development compared

with, 148
integrating coding and testing, 105
in mobile and embedded systems, 326, 329
programmer buy-in and, 160
reducing defect debt, 214
scaling, 276–277
at the task level, 96, 98

Testers. See also Roles/competencies
adding DevOps value, 371–372
agile principles for, 28–29, 386
business analysis skills, 137–140
as community of practice (CoP), 80
database skills, 348
determining job responsibilities, 137
documentation skills, 141–142
generalizing specialists and, 36
giving/receiving feedback and, 46
“Levels of Service” provided by infrastructure

testers, 371–372
managing, 19–20
need for in development (Khoo), 26–27
onboarding process for, 37–38
quality guilds (Evangelisti), 14
SBTM use in training, 176

square-shaped team example, 30–32
on system test team, 284
taking initiative, 142–143
technical skills and collaboration, 56
Trio (developer, tester, BA) in exploratory

testing, 184
UX design skills, 140–141

Testing
acceptance tests. See Acceptance tests
A/B tests. See A/B tests
BI tests. See Business intelligence (BI) tests
business analysis overlapping with, 137
component tests, 224–225, 233–234
context-driven, 399
creating tasks for, 96–97
creating tests before coding, 96
early, 134
end-to-end tests. See End-to-end testing
evolution of agile testing, 3–6
example of lightweight test plan (BMI

calculator), 95–96
exploratory. See Exploratory testing
features. See Feature testing
functional tests. See Functional tests
integrating coding with, 105
investigative. See Investigative testing
learning, 72–76
load testing, 61, 103
offshore. See Offshore testing
performance tests. See Performance tests
Pomodoro testing (Gärtner), 182–183
prototyping in, 205–206
Quadrants. See Quadrants, agile testing
quality attributes, 65–67
regression tests. See Regression tests
requirements and purpose of (Walen), 139–140
risk-based, 51
risks, 125
scaling tests, 276–277, 287–288
scripted tests, 166
session-based, 169–170
slices, 127
smoke tests, 263
as social science (Walen), 25
staging environments for, 60
starting process right (Gärtner), 239

	 Index	 483

story mapping and, 127–129
stress tests, 345
testing-as-a-service, 314
thinking skills applied to (Robson), 49–51
through the API (service level), 241–243
through the UI, 243–246
types of, 192–194
unit tests. See Unit tests
user acceptance testing (UAT), 149–150
visualizing what you are testing, 98–100
workflow tests. See Workflow tests

Testing, in enterprise
aligning target setting for test automation,

277–278
implementing test automation in, 254–258
scaling testing, 276–277
system test team and environment and, 284–289
test coverage, 291

Testing in production (TiP) (Eliot), 200–201
Testing-as-a-service, 314
Thinking skills

coaching and listening, 48–49
collaboration skills, 52–53
diagrams for structured and focused thinking

(Robson), 50
domain knowledge and, 46–47
exploratory testing and, 165
facilitation, 42–43
giving/receiving feedback, 45–46
learning resources, 75
organizational skills, 51
overview of, 41–42
problem solving, 43–44
thinking differently, 49–51

Thinking, Fast and Slow (Kahneman), 50
Thinking for Action (de Bono), 50
“The Thinking Tester” (Hendrickson), 112
Third-party

compatibility issues, 178
test libraries, 244

Third-party vendors
customer involvement in enterprises,

294–296
managing dependencies, 292–294
time frames and expectations of, 200
“why” of feature development and, 122

Thread-based test management (TBMT)
converting from SBMT to, 179–181
fractal representation of, 182
overview of, 178, 181–183

“Three Amigos” (Dinwiddie), 4
Thucydides, for automating acceptance tests, 214
Time constraints, organizational skills and, 51
Time management, making time for learning, 77–79
Time zones

communication and collaboration and, 309–310
coping strategies for distributed teams, 309
issues facing distributed teams, 304–305

Time-boxing
in collaboration process, 53
Scrum guidelines and, 281
story level and, 96
test planning and, 88

Titles, 25
Tools. See also by individual types

Agile Alliance Functional Test Tools committee
(AA-FTT), 4, 153

analytic tools, 327
“bake-offs” for testing, 261–262
collaboration tools, 312, 322
collaborative approach to selecting, 264
consistency in selection of, 265, 289
coordination of tooling, 289–290
for DevOps, 366, 373
for exploring early, 134
facilitating online communication, 306–307
implementing agile at Dell and, 281
recording tools, 187–188
in test automation, 237–238
tester expertise with IDE tools, 60
thinking tools, 49–50
videoconferencing tools, 315–317
for visualization of thinking process, 43–44

Tools, for customer engagement
7 Product Dimensions (Gottesdiener and

Gorman), 129–133
impact mapping, 123–126
overview of, 123
story mapping, 126–129

Tools, for distributed teams
collaboration tools, 319–321
communication tools, 319

484	 Index

Tours, creating test charters, 174–175
Transition, to agile development

automation solutions for teams in transition,
253–254, 258

challenges, 266–267
Transparency, in organizational culture, 15–17. See

also Visibility
“Trinity Testing” (Harty), 184
Trust

building, 17
self-managed teams and, 24

T-shaped skills
collaboration as means of developing, 344
developing, 398
generalizing specialists and, 33
roles and competencies and, 28–30

Tung, Portia, 73–74

U
UAT. See User acceptance testing (UAT)
UIs. See User interface (UI)
Uncertainty, building trust and, 18
Unit tests

consistency in tool selection and, 265
defined, 421
DW/BI and, 349
JUnit tests, 265
planning early and automating, 105
in TDD, 98
test automation pyramids and, 115, 224–225,

233–234
UNIX shell commands, skill requirements, 59
Usability feedback

in expanded test automation pyramid,
233–234

from prototyping, 205–206
User acceptance testing (UAT)

acceptance tests contrasted with, 149–150
in enterprises (Bligh), 294–295
in expanded test automation pyramid, 233–234
learning to test BI and, 351–352
offshore testing and, 312–314
overview of, 201–202
product release level and, 90
Q3 tests and, 107
value of conversations and, 151–152

User experience (UX)
A/B tests applied to, 203
considering impact of stakeholders on business

goals, 124
design skill requirements, 140–141
mobile devices and, 328–329
testing, 205–207
UX designers creating personas, 396

User interface (UI)
achieving consensus for automation solutions,

260–261
collaboration in meeting regulatory needs, 344
consistency in tool selection and, 265
example of benefit of including UX design in

tests, 141
mobile devices and, 328
technical skills and, 58
test automation and, 225–226, 287
in test automation pyramid, 223–224
testing mobile projects and, 344
testing through the UI, 243–246

User stories. See Stories
User Story Mapping (Patton), 127
Users

in 7 Product Dimensions, 129
training end users, 295

Utilization, capacity utilization, 10–12
UX. See User experience (UX)

V
Vaage, Carol, 71–72, 413–414
Vagrant tool, used in DevOps example, 366
Vendors. See Third-party vendors
Version control

in enterprises, 290
Git and, 365
source code control systems, 61–65, 420

Videoconferencing
collaboration tools, 319–320
working on offshore test team and, 315–317

Virtual machines, for running test suites, 262
Visibility

communicating importance of testing, 381–382
diagrams for visualization of thinking

process, 44
for continuous improvement, 386–390

	 Index	 485

giving/receiving feedback and, 46
kanban and, 382–385
online boards for distributed or dispersed

teams, 386
overview of, 381
reducing need for control, 16
story boards and, 384–386
of technical debt, 212–213, 216–217
of test environments, 291
of tests and test results, 381, 390–392
working on offshore test team and, 316–317

Vision, creating shared, 402
Visual aids, 98–100
Visual learning, 69, 81
Visualization. See Visibility
Volcano, test automation, 228
Vuolli, Eveliina

about the contributors section, xliv
on introducing automation in enterprise

system, 277–278

W
Walen, Pete

about the contributors section, xliv
on importance of titles, 25
on requirements and purpose of testing,

139–140
“Walking skeleton” (Freeman and Pryce), 126
Walshe, Mary

about the contributors section, xliv–xlv
on kanban for continuous improvement,

386–389
Web browsers. See Browsers
WebDriver tool, 261
WebEx, working on offshore test team and,

315–317
Weekend Testing, 74
“What?” questions

in creation of roadmaps, 123–124
iPhone example, 140
“what” vs. “why” in feature development, 122

Whelan, Declan, 153
Whittaker, James, 109
“Who?” questions

in creation of impact maps, 123–124
iPhone example impact map, 140

Whole team. See also DevOps
achieving consensus for automation solutions,

260–262
approach to agile testing, 362
approach to test automation, 238–239
key success factors, 393
meeting automation challenges, 228, 258–260
required for DW/BI testing, 348–349
understanding operating environment, 376

“Why?” questions
in building the right thing. See Development,

building the right thing
iPhone example impact map, 140
questions in creation of impact maps, 123–124

Wiedemann, Christin
about the contributors section, xlv
on converting from SBTM to TBTM,

179–181
Wikis

adding visibility to tests and test results, 392
automation solutions in large

organizations, 257
collaboration tools, 321
communication tools, 319
integration of distributed teams, 309
recording results of exploratory testing, 185
team wikis, 36

Winterboer, Lynn
about the contributors section, xlv
on solving the bad test data problem, 353–354

WIP (work-in-progress)
bandwidth for testing and, 401
kanban and, 382

Workflow tests
automating provisioning of configuration base

states, 374–376
in expanded test automation pyramid, 233–234
levels for testing through the UI, 243
in test automation pyramid, 115–116

Work-in-progress See WIP
Workshops

getting participation in specification
workshops, 155

as learning resource, 74
Wortel, Cirilo, 265

about the contributors section, xlv

486	 Index

Wortel, Cirilo (continued)
on automation solutions in large organizations,

254–258
Wynne, Mat, 56

X
XP. See Extreme Programming (XP)

Z
“Zen, the Beginner’s Mind” workshop (Hussman

and Tabaka), 71
Zheglov, Alexei

about the contributors section, xlvi
on capacity utilization, 10

	Contents
	Foreword by Elisabeth Hendrickson
	Foreword by Johanna Rothman
	Preface
	Acknowledgments
	About the Authors
	About the Contributors
	Chapter 8 Using Models to Help Plan
	Agile Testing Quadrants
	Challenging the Quadrants
	Using Other Influences for Planning
	Planning for Test Automation
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

