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Praise for More Agile Testing
“I love this book. It will help to create really great testers. That’s a good thing, since 
anyone who reads this will want to have one on their team.”

—Liz Keogh, agile coach, Lunivore Limited

“This book will change your thinking and move your focus from tests to testing. Yes, 
it is not about the result, but about the activity!”

—Kenji Hiranabe, cofounder of Astah and CEO, Change Vision, Inc.

“To my mind, agile development is about learning—that one word captures the true 
spirit of what agile is all about. When I had the chance to read through their new 
book, I could only say, ‘Wow! Janet and Lisa have done themselves proud.’ This is 
not a book about testing; this is a book about learning. Their clear explanations are 
accompanied by great true stories and an impressive list of books, articles, and other 
resources. Those of us who like learning, who love to dig for more information, can 
rejoice! I know you’re always looking for something interesting and useful; I can 
guarantee that you will find it here!”

—Linda Rising, coauthor of Fearless Change: Patterns for Introducing New Ideas

“Janet and Lisa’s first book, Agile Testing, drew some general principles that are 
still important today but left me wondering, ‘how?’ In this second book, they adapt 
those principles to today’s development landscape—with mobile, DevOps, and 
cloud-based applications delivered in increasingly compressed release cycles. Read-
ers get specific testing tools for the mind along with new practices and commentary 
to accelerate learning. Read it today.”

—Matt Heusser, Managing Principal, Excelon Development

“An excellent guide for your team’s agile journey, full of resources to help you with every 
kind of testing challenge you might meet along the way. Janet and Lisa share a wealth of 
experience with personal stories about how they helped agile teams figure out how to get 
value from testing. I really like how the book is filled with techniques explained by lead-
ing industry practitioners who’ve pioneered them in their own organizations.” 

—Rachel Davies, agile coach, unruly and coauthor of Agile Coaching

“Let me net this out for you: agile quality and testing is hard to get right. It’s nuanced, 
context-based, and not for the faint of heart. In order to effectively balance it, you need 
hard-earned, pragmatic, real-world advice. This book has it—not only from Janet and 
Lisa, but also from forty additional expert agile practitioners. Get it and learn how to 
effectively drive quality into your agile products and across your entire organization.”

—Bob Galen, Principal Consultant, R Galen Consulting Group, and Author of Agile 
Reflections and Scrum Product Ownership



“Janet and Lisa have done it again. They’ve combined pragmatic life experience with 
ample storytelling to help people take their agile testing to the next level.” 

—Jonathan Rasmusson, author of Agile Samurai: How Masters Deliver Great Software

“In this sequel to their excellent first book, Janet and Lisa have embraced the matu-
rity of agile adoption and the variety of domains in which agile approaches are now 
being applied. In More Agile Testing they have distilled the experiences of experts 
working in different agile organizations and combined them with their own insights 
into a set of invaluable lessons for agile practitioners. Structured around a range of 
essential areas for software professionals to consider, the book examines what we 
have learned about applying agile, as its popularity has grown, and about software 
testing in the process. There is something for everyone here, not only software tes-
ters, but individuals in any business role or domain with an interest in delivering 
quality in an agile context.” 

—Adam Knight, Director of QA, RainStor

“This book has it all: practical advice and stories from the trenches. Whether you’ve 
never heard of agile or you think you’re an expert, there is something here that will 
help you out. Jump around in the book and try a few things; I promise you will be a 
better tester and developer for it.”

—Samantha Laing, agile coach and trainer, Growing Agile

“More Agile Testing is a great collection of stories and ideas that can help you 
improve not just how you test, but the products you build and the way you work. 
What I love most about the book is how easy many of the ideas are to try. If one 
message is clear, it is that regardless of your context and challenges, there are things 
you can try to improve. Get started today with something small, and nothing will be 
impossible.”

—Karen Greaves, agile coach and trainer, Growing Agile

“More Agile Testing is an extensive compilation of experiences, stories, and examples 
from practitioners who work with testing in agile environments around the world. 
It covers a broad spectrum, from organizational and hiring challenges, test tech-
niques and practices, to automation guidance. The diversity of the content makes 
it a great cookbook for anyone in software development who is passionate about 
improving their work and wants to produce quality software.”

—Sigurdur Birgisson, quality assistance engineer, Atlassian
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Foreword

By Elisabeth Hendrickson

Just ten years ago, agile was still considered radical. Fringe. Weird. The 
standard approach to delivering software involved phases: analyze, then 
design, then code, then test. Integration and testing happened only at 
the end of the cycle. The full development cycle took months or years.

If you have never worked in an organization with long cycles and dis-
crete phases, the idea may seem a little weird now, but it was the stan-
dard a decade ago.

Back when phases were the norm and agile was still new, the agile com-
munity was mostly programmer-centric. Janet and Lisa and a few others 
from quality and testing were there. However, many in the agile com-
munity felt that QA had become irrelevant. They were wrong, of course. 
QA changed, reshaped to fit the new context, but it did not go away.

It took people like Janet and Lisa to show how QA could be integrated 
into  agile  teams  instead  of  bypassed.  Their  first  book  together,  Agile 
Testing, carefully explained the whole-team approach to quality. They 
covered the cultural changes needed to fully integrate testing with devel-
opment. They explained how to overcome barriers. It’s a fantastic book,  
and I highly recommend it.

However, questions remained. How could the practices be adapted to 
various contexts? How do you start? What should testers learn in order 
to be more effective?

This book picks up where Agile Testing left off and answers those ques-
tions and more.

Even if that were all this book did, it would be an excellent sequel.



xviii	 Foreword

It’s more than that, though. Within these pages you will find a theme— 
one that Janet and Lisa have woven so deftly throughout the text you 
might not even realize it as you are reading. So I am going to call your 
attention to it: this is a book about adapting.

Reflect-and-adapt is the one simple trick that can enable your organiza-
tion to find its way to agile. Experiment, try something different, distill 
lessons learned, repeat. The next thing you know, your organization will 
be nimble and flexible, able to shift with market demands and deliver 
incrementally.

This book teaches you about adapting even as it is teaching you about 
agile testing.

Part II, “Learning for Better Testing,” isn’t just about how you learn as 
an individual but also about building a learning culture. Part VII, “What 
Is Your Context?,” isn’t just about variations in agile tailored to different 
situations; it’s also a field guide to various types of adaptations.

The world is changing so very quickly. Just a decade ago agile was weird; 
now it is mainstream. Just five years ago, tablets like iPads weren’t even 
on the market; now they’re everywhere. Practices, tools, technology, and 
markets are all changing so fast it’s hard to keep up. It’s not enough to 
learn one way of doing things; you need to know how to discover new 
ways. You need to adapt.

This book is a fantastic resource for agile testing. It will also help you 
learn to adapt and be comfortable with change.

I hope you enjoy it as much as I did.



	 xix

Foreword

By Johanna Rothman

What do testers do? They provide information about the product under 
test, to expose risks for the team.

That’s exactly what Janet Gregory and Lisa Crispin have done in their 
new book, More Agile Testing: Learning Journeys for the Whole Team. 
Do you have risks in your agility? There are plenty of ideas to help you 
understand the value of sustainable pace, creating a learning organiza-
tion, and your role in testing.

Not sure how to test for a given product, on a single team, or in a pro-
gram? There’s an answer for that, too.

How do you work with people in the next cube, down the hall, and 
across the world? Janet and Lisa have been there and done that. Their 
focus on roles and not titles is particularly helpful.

There are plenty of images in this book, so you won’t have to wonder, 
“What do they mean?” They show you, not just tell you.

More Agile Testing: Learning Journeys for the Whole Team is much more 
than a book about testing. It’s a book about how to use testing to help 
your entire team, and by extension, your organization, and transition to 
agile in a healthy way.

Isn’t that what providing information about the organization under 
test, exposing risks in the organization, is all about?

If you are a tester or a test manager, you need to read this book. If you 
integrate testing into your organization, you need to read this book. 
How else will you know what the testers could be doing?
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Preface

This book carries on where our first book, Agile Testing: A Practical 
Guide for Testers and Agile Teams, left off. We avoid repeating what we 
covered in our first book but give enough context so it stands alone if 
you have not read Agile Testing. We refer to the first book as Agile Testing 
when we think it might be helpful for the reader to explore basic con-
cepts in more detail.

Who Is This Book For?
We assume that you, the reader, are not a beginner in the world of agile 
testing, that you have some agile and testing experience and now you’re 
looking for help in the areas beyond where Agile Testing goes. If you feel 
that you would like an introduction to agile development that includes 
some basics of testing in agile before you read this book, The Agile Sam-
urai (Rasmussen, 2010) is an excellent place to start.

This book is aimed at anyone who is interested in testing activities 
on an agile team. In our experience, this includes not only testers and 
test managers, but programmers, product owners, business analysts, 
DevOps practitioners, line managers—pretty much everyone.

Acceptance Tests

In addition to sharing what we’ve learned over the past several years, we 
wanted to make this book as useful to our readers as the first one. We 
wanted to know what readers of the first book still needed to know after 

Who Is This Book For?

Acceptance Tests

How to Read This Book

Experiment!

Preface
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reading it, so we asked practitioners from the Agile Testing mailing list to 
send us their “acceptance tests” for this second book. We distilled those 
responses to this list of acceptance tests for More Agile Testing and did 
our best to satisfy these as we wrote the book.

You’ll note that we’ve used a style used in behavior-driven development 
(BDD), which we’ll talk more about in Chapter 11, “Getting Examples”:

Given <precondition>,

When <trigger, action>,

Then <the expected result>.

■■ Given that I am an agile tester or manager, when I hire new tes-
ters with no agile experience, then I’ll learn how to bring them 
up to speed and avoid throwing them into the deep end without 
a life jacket.

■■ Given that I am a team member on an agile team, when I finish 
this book, then I expect to know how to fit exploratory testing in 
with automated tests and to get a picture of the overall test cov-
erage, without resorting to heavyweight tools.

■■ Given that I am an experienced agile test manager, when I finish 
this book, then I will understand how to approach agile test-
ing techniques with multiple teams to allow my successful agile 
organization to grow.

■■ Given that I am an experienced agile test manager, when I finish 
reading this book, then I should have ideas about how to coordi-
nate test automation activities across iterations and teams, with 
ideas on how to improve.

■■ Given that I am an experienced agile manager, when I’ve read 
this book, then I will understand how other teams have adapted 
agile testing practices to suit their own context and will have 
ideas about how to apply them to mine.

■■ Given that I am an agile team member who is interested in test-
ing, when I finish this book, then I expect to have examples of 
what tests should and should not look like and how I can design 
tests effectively.
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■■ Given that I am an experienced agile tester, when I find an inter-
esting topic in this book about which I’d like to learn more, then 
I can easily find references to web resources or other books.

■■ Given that I am an experienced agile coach or manager who is 
reading the book, when I see a concept that would help my team, 
then I have enough information to be able to devise a strategy to 
get the team to try an experiment.

■■ Given that I am an agile team member who is concerned about 
testing and keeping the customers informed, when I have read 
this book, then I’ll understand good ways to communicate with 
customer team members about testing activities.

■■ Given that I am an experienced agile test manager, when I have 
read this book, then I will know how mainstream adoption of 
agile is being done, and I will understand the working context of 
testers from other organizations when they apply for jobs on my 
team. (Note: This acceptance test is not part of this release, but 
we think some of the examples and stories in the book will help 
to achieve it.)

How to Read This Book

Though we’ve organized this book in a way that we feel flows best, you 
don’t have to start with Chapter 1 and keep going. As with Agile Testing, 
you can begin with whatever topics are most useful to you. We try to 
cover each topic in detail only once, but because so many of these con-
cepts, practices, and principles are interrelated, you’ll find that we refer 
to some ideas in more than one chapter.

Part I: Introduction

Read this part to understand where testing started in agile teams and 
how it has evolved to become the cornerstone of agile development and 
continuous delivery of products. Part of successful agile development 
is an organization’s ability to learn what’s most critical for long-range  
success with agile testing.

■■ Chapter 1, “How Agile Testing Has Evolved”
■■ Chapter 2, “The Importance of Organizational Culture”
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Part II: Learning for Better Testing

Both technology and the craft of testing are continually evolving, and 
lines between different disciplines are becoming more blurred. Even 
experienced practitioners have to keep growing their skills. This part 
includes examples of what testers and other disciplines such as business 
analysis and coding need to know to meet more difficult testing chal-
lenges. We explain the benefits of generalizing specialists and list some 
of the intangible thinking skills and specific technical testing skills that 
help testers and teams improve. Different aspects of what and how to 
learn are covered in the following chapters:

■■ Chapter 3, “Roles and Competencies”
■■ Chapter 4, “Thinking Skills for Testing”
■■ Chapter 5, “Technical Awareness”
■■ Chapter 6, “How to Learn”

Part III: Planning—So You Don’t Forget the Big Picture

Planning “just enough” is a balancing act. While we need to work in 
small increments, we have to keep an eye on the larger feature set and 
the entire system. This part covers different aspects of test planning, 
from the release level down to the task level. It also explores different 
models such as the agile testing quadrants and some of the adaptations 
people have suggested.

■■ Chapter 7, “Levels of Precision for Planning”
■■ Chapter 8, “Using Models to Help Plan”

Part IV: Testing Business Value

If, like so many agile teams, you deliver robust code in a timely manner, 
only to find it isn’t what the customers wanted after all, the information 
in this part will help. We cover tools and practices, particularly those 
from the agile business analysis profession, to help you test ideas and 
assumptions early and ensure that everyone knows what to deliver. We 
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address other overlapping disciplines and expanding mindsets. This is a 
big area, so there are several chapters:

■■ Chapter 9, “Are We Building the Right Thing?”
■■ Chapter 10, “The Expanding Tester’s Mindset: Is This My Job?”
■■ Chapter 11, “Getting Examples”

Part V: Investigative Testing

The programmers have delivered some code to test. Where do you start? 
If you or your team lacks experience with exploratory testing, you’ll find 
some help here. We outline several exploratory testing techniques such 
as using personas and tours to help generate test charter ideas, as well 
as managing charters with session-based test management and thread-
based test management.

Along with all those different ways to do exploratory testing, we look 
at other ways to verify that delivered code meets a wide range of busi-
ness and user needs. This part covers ways to mitigate risks and generate 
useful information in several different types of testing that present chal-
lenges to agile teams. The investigative testing chapters are

■■ Chapter 12, “Exploratory Testing”
■■ Chapter 13, “Other Types of Testing”

Part VI: Test Automation

We see more and more teams finding ways to succeed with test auto-
mation. However, for many teams, automated tests produce sporadic 
failures that are expensive to investigate. The time (cost) spent on each 
failure may be more than the test is worth. There are plenty of pitfalls 
in automating tests. In this part we give examples of ways to make 
technical debt in testing visible. We look at different ways to use the 
agile testing pyramid effectively to help you think about how to plan 
your automation. We’ve introduced a few alternative pyramid models 
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to approach automation from different perspectives. You’ll learn ways 
to design automated tests for optimum reliability and ease of mainte-
nance. This part also includes examples of scaling test automation in a 
large enterprise company.

The chapters in Part VI are

■■ Chapter 14, “Technical Debt in Testing”
■■ Chapter 15, “Pyramids of Automation”
■■ Chapter 16, “Test Automation Design Patterns and Approaches”
■■ Chapter 17, “Selecting Test Automation Solutions”

Part VII: What Is Your Context?

Your approach to agile testing will naturally depend on your context. 
Do you work with large enterprise systems? Maybe you’re newly tasked 
with testing mobile apps or embedded software. Perhaps your team is 
challenged with finding good ways to test data that helps businesses 
make decisions. Have you wondered how agile can work in testing regu-
lated software? Finally, we look at the synergies between testing and the 
DevOps movement. The chapters in this part cover a variety of areas, 
so we have included a number of stories from people who are currently 
working in those situations. Some of these chapters may not apply to 
your working environment today, but tomorrow—who knows?

■■ Chapter 18, “Agile Testing in the Enterprise”
■■ Chapter 19, “Agile Testing on Distributed Teams”
■■ Chapter 20, “Agile Testing for Mobile and Embedded Systems”
■■ Chapter 21, “Agile Testing in Regulated Environments”
■■ Chapter 22, “Agile Testing for Data Warehouses and Business 

Intelligence Systems”
■■ Chapter 23, “Testing and DevOps”

Part VIII: Agile Testing in Practice

We wrap up the book with a look at how teams can visualize quality and 
testing, and a summary of agile testing practices that will give your team 
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confidence as you make release decisions. Creating a shared vision for 
your team is critical to success, and we share a model to help bring test-
ing activities to the whole team. If you’re feeling a bit overwhelmed right 
now and aren’t sure where to start, read these chapters first:

■■ Chapter 24, “Visualize Your Testing”
■■ Chapter 25, “Putting It All Together”

The book also includes two appendixes: Appendix A, “Page Objects in 
Practice: Examples,” and Appendix B, “Provocation Starters.”

Other Elements

Since teams use such a wide variety of agile practices and approaches, 
we’ve tried to keep our terminology as generic as possible. To make sure 
we have a common language with you, we’ve included a glossary of the 
terms we use.

You’ll find icons in the margins throughout the book where we’d like 
to draw your attention to a specific practice. You’ll find all six icons in 
Chapter 1, “How Agile Testing Has Evolved,” and Chapter 25, “Putting 
It All Together.” An example of the icon for learning can be seen next to 
following paragraph.

We hope you’ll want to learn more about some of the practices, tech-
niques, and tools that we cover. Please check the bibliography for refer-
ences to books, websites, articles, and blogs. We’ve sorted it by part so 
you can find more information easily when you’re reading. Sources that 
are mentioned directly in the book are listed alphabetically in the refer-
ence list for easy lookup.

The mind map overview from Agile Testing is included on the book 
website, www.agiletester.com, so that you can get a feel for what was 
covered there if you haven’t already read it.

http://www.agiletester.com
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Experiment!
Linda Rising encouraged us years ago to try small experiments, evalu-
ate the results, and keep iterating to chip away at problems and achieve 
goals. If you read something in this book that sounds as if it might be 
useful for you or your team, give it a try for an iteration or two. Use your 
retrospectives to see if it’s helping, and tweak as necessary. If it doesn’t 
work, you learned something, and you can try something different.

We hope you will find many experiments to try in these pages.
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Chapter 8 

Using Models to Help Plan

As agile development becomes increasingly mainstream, there are estab-
lished techniques that experienced practitioners use to help plan testing 
activities in agile projects, although less experienced teams sometimes 
misunderstand or misuse these useful approaches. Also, the advances in 
test tools and frameworks have somewhat altered the original models 
that applied back in the early 2000s. Models help us view testing from 
different perspectives. Let’s look at some foundations of agile test plan-
ning and how they are evolving.

Agile Testing Quadrants

The agile testing quadrants (the Quadrants) are based on a matrix Brian 
Marick developed in 2003 to describe types of tests used in Extreme 
Programming (XP) projects (Marick, 2003). We’ve found the Quad-
rants to be quite handy over the years as we plan at different levels of 
precision. Some people have misunderstood the purpose of the Quad-
rants. For example, they may see them as sequential activities instead of 
a taxonomy of testing types. Other people disagree about which testing 
activities belong in which quadrant and avoid using the Quadrants alto-
gether. We’d like to clear up these misconceptions.

Figure 8-1 is the picture we currently use to explain this model. You’ll 
notice we’ve changed some of the wording since we presented it in Agile 
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Testing. For example, we now say “guide development” instead of “sup-
port development.” We hope this makes it clearer.

It’s important to understand the purpose behind the Quadrants and the 
terminology used to convey their concepts. The quadrant numbering 
system does not imply any order. You don’t work through the quadrants 
from 1 to 4, in a sequential manner. It’s an arbitrary numbering system 
so that when we talk about the Quadrants, we can say “Q1” instead of 
“technology-facing tests that guide development.” The quadrants are

■■ Q1: technology-facing tests that guide development
■■ Q2: business-facing tests that guide development
■■ Q3: business-facing tests that critique (evaluate) the product
■■ Q4: technology-facing tests that critique (evaluate) the product

The left side of the quadrant matrix is about preventing defects before 
and during coding. The right side is about finding defects and discov-
ering missing features, but with the understanding that we want to 
find them as fast as possible. The top half is about exposing tests to the 
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business, and the bottom half is about tests that are more internal to 
the team but equally important to the success of the software product. 
“Facing” simply refers to the language of the tests—for example, perfor-
mance tests satisfy a business need, but the business would not be able 
to read the tests; they are concerned with the results.

Most agile teams would start with specifying Q2 tests, because those 
are where you get the examples that turn into specifications and tests 
that guide coding. In his 2003 blog posts about the matrix, Brian called 
Q2 and Q1 tests “checked examples.” He had originally called them 
“guiding” or “coaching” examples and credits Ward Cunningham for 
the adjective “checked.” Team members would construct an example 
of what the code needs to do, check that it doesn’t do it yet, make the 
code do it, and check that the example is now true (Marick, 2003). We 
include prototypes and simulations in Q2 because they are small experi-
ments to help us understand an idea or concept.

In some cases it makes more sense to start testing for a new feature using 
tests from a different quadrant. Lisa has worked on projects where her 
team used performance tests for a spike for determination of the archi-
tecture, because that was the most important quality attribute for the 
feature. Those tests fall into Q4. If your customers are uncertain about 
their requirements, you might even do an investigation story and start 
with exploratory testing (Q3). Consider where the highest risk might be 
and where testing can add the most value.

Most teams concurrently use testing techniques from all of the quad-
rants, working in small increments. Write a test (or check) for a small 
chunk of a story, write the code, and once the test is passing, perhaps 
automate more tests for it. Once the tests (automated checks) are pass-
ing, use exploratory testing to see what was missed. Perform security 
or load testing, and then add the next small chunk and go through the 
whole process again.

Michael Hüttermann adds “outside-in, barrier-free, collaborative” to 
the middle of the quadrants (see Figure 8-2). He uses behavior-driven 
development (BDD) as an example of barrier-free testing. These tests 
are written in a natural, ubiquitous “given_when_then” language that’s 
accessible to customers as well as developers and invites conversation 
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between the business and the delivery team. This format can be used 
for both Q1 and Q2 checking. See Michael’s Agile Record article (Hüt-
termann, 2011b) or his book Agile ALM (Hüttermann, 2011a) for more 
ideas on how to augment the Quadrants.

The Quadrants are merely a taxonomy or model to help teams plan 
their testing and make sure they have all the resources they need to 
accomplish it. There are no hard-and-fast rules about what goes in 
which quadrant. Adapt the Quadrants model to show what tests your 
team needs to consider. Make the testing visible so that your team thinks 
about testing first as you do your release, feature, and story planning. 
This visibility exposes the types of tests that are currently being done 
and the number of people involved. Use it to provoke discussions about 
testing and which areas you may want to spend more time on.

When discussing the Quadrants, you may realize there are neces-
sary tests your team hasn’t considered or that you lack certain skills 
or resources to be able to do all the necessary testing. For example, a 
team that Lisa worked on realized that they were so focused on turning 
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business-facing examples into Q2 tests that guide development that 
they were completely ignoring the need to do performance and security 
testing. They added in user stories to research what training and tools 
they would need and then budgeted time to do those Q4 tests.

Planning for Quadrant 1 Testing

Back in the early 1990s, Lisa worked on a waterfall team whose program-
mers were required to write unit test plans. Unit test plans were definitely 
overkill, but thinking about the unit tests early and automating all of 
them were a big part of the reason that critical bugs were never called 
in to the support center. Agile teams don’t plan Q1 tests separately. In 
test-driven development (TDD), also called test-driven design, testing is 
an inseparable part of coding. A programmer pair might sit and discuss 
some of the tests they want to write, but the details evolve as the code 
evolves. These unit tests guide development but also support the team in 
the sense that a programmer runs them prior to checking in his or her 
code, and they are run in the CI on every single check-in of code.

There are other types of technical testing that may be considered as 
guiding development. They might not be obvious, but they can be criti-
cal to keeping the process working. For example, let’s say you can’t do 
your testing because there is a problem with connectivity. Create a test 
script that can be run before your smoke test to make sure that there 
are no technical issues. Another test programmers might write is one to 
check the default configuration. Many times these issues aren’t known 
until you start deploying and testing.

Planning for Quadrant 2 Testing

Q2 tests help with planning at the feature or story level. Part IV, “Testing 
Business Value,” will explore guiding development with more detailed 
business-facing tests. These tests or checked examples are derived from 
collaboration and conversations about what is important to the feature 
or story. Having the right people in a room to answer questions and 
give specific examples helps us plan the tests we need. Think about the 
levels of precision discussed in the preceding chapter; the questions and 
the examples get more precise as we get into details about the stories. 
The process of eliciting examples and creating tests from them fosters 
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collaboration across roles and may identify defects in the form of hid-
den assumptions or misunderstandings before any code is written.

Show everyone, even the business owners, what you plan to test; see if 
you’re standing on anything sacred, or if they’re worried you’re missing 
something that has value to them.

Creating Q2 tests doesn’t stop when coding begins. Lisa’s teams have 
found it works well to start with happy path tests. As coding gets under 
way and the happy path tests start passing, testers and programmers 
flesh out the tests to encompass boundary conditions, negative tests, 
edge cases, and more complicated scenarios.

Planning for Quadrant 3 Testing 

Testing has always been central to agile development, and guiding 
development with customer-facing Q2 tests caught on early with agile 
teams. As agile teams have matured, they’ve also embraced Q3 testing, 
exploratory testing in particular. More teams are hiring expert explor-
atory testing practitioners, and testers on agile teams are spending time 
expanding their exploratory skills.

Planning for Q3 tests can be a challenge. We can start defining test char-
ters before there is completed code to explore. As Elisabeth Hendrick-
son explains in her book Explore It! (Hendrickson, 2013), charters let 
us define where to explore, what resources to bring with us, and what 
information we hope to find. To be effective, some exploratory test-
ing might require completion of multiple small user stories, or waiting 
until the feature is complete. You may also need to budget time to create 
the user personas that you might need for testing, although these may 
already have been created in story-mapping or other feature-planning 
exercises. Defining exploratory testing charters is not always easy, but it 
is a great way to share testing ideas with the team and to be able to track 
what testing was completed. We will give examples of such charters in 
Chapter 12, “Exploratory Testing,” where we discuss different explor-
atory testing techniques.

One strategy to build in time for exploratory testing is writing stories 
to explore different areas of a feature or different personas. Another 
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strategy, which Janet prefers, is having a task for exploratory testing for 
each story, as well as one or more for testing the feature. If your team 
uses a definition of “done,” conducting adequate exploratory testing 
might be part of that. You can size individual stories with the assump-
tion that you’ll spend a significant amount of time doing exploratory 
testing. Be aware that unless time is specifically allocated during task 
creation, exploratory testing often gets ignored.

Q3 also includes user acceptance testing (UAT). Planning for UAT needs 
to happen during release planning or as soon as possible. Include your 
customers in the planning to decide the best way to proceed. Can they 
come into the office to test each new feature? Perhaps they are in a differ-
ent country and you need to arrange computer sharing. Work to get the 
most frequent and fastest feedback possible from all of your stakeholders.

Planning for Quadrant 4 Testing

Quadrant 4 tests may be the easiest to overlook in planning, and many 
teams tend to focus on tests to guide development. Quadrant 3 activities 
such as UAT and exploratory testing may be easier to visualize and are 
often more familiar to most testers than Quadrant 4 tests. For exam-
ple, more teams need to support their application globally, so testing in 
the internationalization and localization space has become important. 
Agile teams have struggled with how to do this; we include some ideas 
in Chapter 13, “Other Types of Testing.”

Some teams talk about quality attributes with acceptance criteria on 
each story of a feature. We prefer to use the word constraints. In Discover 
to Deliver (Gottesdiener and Gorman, 2012), Ellen Gottesdiener and 
Mary Gorman recommend using Tom and Kai Gilb’s Planguage (their 
planning language; see the bibliography for Part III, “Planning—So You 
Don’t Forget the Big Picture,” for links) to talk about these constraints 
in a very definite way (Gilb, 2013).

If your product has a constraint such as “Every screen must respond in 
less than three seconds,” that criterion doesn’t need to be repeated for 
every single story. Find a mechanism to remind your team when you 
are discussing the story that this constraint needs to be built in and 
must be tested. Liz Keogh describes a technique to write tests about 
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how capabilities such as system performance can be monitored (Keogh, 
2014a). Organizations usually know which operating systems or brows-
ers they are supporting at the beginning of a release, so add them as 
constraints and include them in your testing estimations. These types of 
quality attributes are often good candidates for testing at a feature level, 
but if it makes sense to test them at the story level, do so there; think, 
“Test early.” Chapter 13, “Other Types of Testing,” will cover a few differ-
ent testing types that you may have been struggling with.

Challenging the Quadrants

Over the years, many people have challenged the validity of the Quad-
rants or adjusted them slightly to be more meaningful to them. We 
decided to share a couple of these stories because we think it is valuable 
to continuously challenge what we “know” to be true. That is how we 
learn and evolve to improve and meet changing demands.

Gojko’s Challenge to the Quadrants

Gojko Adzic, an author and strategic software delivery con-
sultant, challenges the validity of the Quadrants in the current 
software delivery era.

The agile testing quadrants model is probably the one thing that every-
one remembers about the original Agile Testing book. It was an incred-
ibly useful thinking tool for the software delivery world then—2008. It 
helped me facilitate many useful discussions on the big picture missing 
from typical programmers’ view of quality, and it helped many testers 
figure out what to focus on. The world now, as of 2014, looks signifi-
cantly different. There has been a surge in the popularity of continuous 
delivery, DevOps, Big Data analytics, lean startup delivery, and explor-
atory testing. The Quadrants model is due for a serious update.

One of the problems with the original Quadrants model is that it was 
easily misunderstood as a sequence of test types—especially that 
there is some kind of division between things before and things after 
development.

This problem is even worse now than in 2008. With the surge in popu-
larity of continuous delivery, the dividing line is getting more blurred 
and is disappearing. With shorter iterations and continuous delivery, 
it’s generally difficult to draw the line between activities that support 
the team and those that critique the product. Why would performance 
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tests not be aimed at supporting the team? Why are functional tests 
not critiquing the product? Why is UAT separate from functional test-
ing? I always found the horizontal dimension of the Quadrants difficult 
to justify, because critiquing the product can support the team quite 
effectively if it is done in a timely way. For example, specification by 
example helps teams to completely merge functional tests and UAT 
into something that is continuously checked during development. 
Many teams I worked with recently run performance tests during 
development, primarily not to mess things up with frequent changes. 
These are just two examples where things on the right side of the 
Quadrants are now used more to support the team than anything else. 
With lean startup methods, products get a lot of critiquing even before 
a single line of production code is written.

Dividing tests into those that support development and those that 
evaluate the product does not really help to facilitate useful discus-
sions anymore, so we need a different model—in particular, one 
that helps to address the eternal issue of so-called nonfunctional 
requirements, which for many people actually means, “It’s going to be 
a difficult discussion, so let’s not have it.” The old Quadrants model 
puts “ilities” into a largely forgotten quadrant of technical tests after 
development. But things like security, performance, scalability, and so 
on are not really technical; they imply quite a lot of business expecta-
tions, such as compliance, meeting service-levels agreements, handling 
expected peak loads, and so on. They are also not really nonfunc-
tional, as they imply quite a lot of functionality such as encryption, 
caching, and work distribution. This of course is complicated by the 
fact that some expectations in those areas are not that easy to define 
or test for—especially the unknown unknowns. If we treat these as 
purely technical concerns, the business expectations are often not 
explicitly stated or verified. Instead of nonfunctional, these concerns 
are often dysfunctional. And although many “ilities” are difficult to 
prove before the software is actually in contact with its real users, the 
emergence of A/B split testing techniques over the last five years has 
made it relatively easy, cheap, and low risk to verify those things in 
production.

Another aspect of testing not really captured well by the first book’s 
Quadrants is the surge in popularity and importance of exploratory 
testing. In the old model, exploratory testing is something that hap-
pens from the business perspective in order to evaluate the product 
(often misunderstood as after development). In many contexts, well 
documented in Elisabeth Hendrickson’s book on exploratory testing 
(Hendrickson, 2013) and James Whittaker’s book How Google Tests 
Software (Whittaker et al., 2012), exploratory testing can be incredibly 
useful for the technical perspective as well and, more importantly, is 
something that should be done during development.
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The third aspect that is not captured well by the early Quadrants is the 
possibility to quantify and measure software changes through usage 
analytics in production. The surge in popularity of Big Data analytics, 
especially combined with lean startup and continuous delivery models, 
enables teams to test relatively cheaply things that were very expensive 
to test ten years ago—for example, true performance impacts. When the 
original Agile Testing book came out, serious performance testing often 
meant having a complete hardware copy of the production system. 
These days, many teams de-risk those issues with smaller, less risky con-
tinuous changes, whose impact is measured directly on a subset of the 
production environment. Many teams also look at their production log 
trends to spot unexpected and previously unknown problems quickly.

We need to change the model (Figure 8-3) to facilitate all those dis-
cussions, and I think that the current horizontal division isn’t helping 
anymore. The context-driven testing community argues very forcefully 
that looking for expected results isn’t really testing; instead, they call 
that checking. Without getting into an argument about what is or isn’t 
testing, I found the division to be quite useful for many recent discus-
sions with clients. Perhaps that is a more useful second axis for the 
model: the difference between looking for expected outcomes and 
analyzing unknowns, aspects without a definite yes/no answer, where 
results require skillful analytic interpretation. Most of the innovation 
these days seems to happen in the second part anyway. Checking for 
expected results, from both a technical and business perspective, is 
now pretty much a solved problem.
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Figure 8-3  Gojko Adzic’s version of the agile testing quadrants
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Thinking about checking expected outcomes versus analyzing out-
comes that weren’t predefined helps to explain several important 
issues facing software delivery teams today:

Security concerns could be split easily into functional tests for compli-
ance such as encryption, data protection, authentication, and so  
on (essentially all checking for predefined expected results), and  
penetration/investigations (not predefined). This will help to engage 
the delivery team and business sponsors in a more useful discussion 
about describing the functional part of security up front.

Performance concerns could be divided into running business sce-
narios to prove agreed-upon service levels and capacity, continuous 
delivery style (predefined), and load tests (where will it break?). This 
will help to engage the delivery team and business in defining perfor-
mance expectations and prevent people from treating performance as 
a purely technical concern. By avoiding the support the team/evaluate 
the product divisions, we allow a discussion of executing performance 
tests in different environments and at different times.

Exploration would become much more visible and could be clearly 
divided between technical and business-oriented exploratory tests. 
This can support a discussion of technical exploratory tests that devel-
opers should perform or that testers can execute by reusing existing 
automation frameworks. It can also support an overall discussion of 
what should go into business-oriented exploratory tests.

Build-measure-learn product tests would fit into the model nicely, and 
the model would facilitate a meaningful discussion of how those tests 
require a defined hypothesis and how that is different from just push-
ing things out to see what happens through usage analytics.

We can facilitate a conversation on how to spot unknown problems 
by monitoring production logs as a way of continuously testing tech-
nical concerns that are difficult to check and expensive to automate 
before deployment, but still useful to support the team. By moving 
the discussion away from supporting development or evaluating the 
product toward checking expectations or inspecting the unknown, we 
would also have a nice way of differentiating those tests from business-
oriented production usage analytics.

Most importantly, by using a different horizontal axis, we can raise 
awareness about a whole category of things that don’t fit into typi-
cal test plans or test reports but are still incredibly valuable. The early 
Quadrants were useful because they raised awareness about a whole 
category of things in the upper-left corner that most teams weren’t 
really thinking of but are now taken as common sense. The 2010s 
Quadrants need to help us raise awareness about some more impor-
tant issues for today.
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Elisabeth Hendrickson also presented an alternative to the existing 
Quadrants in her talk about “The Thinking Tester” (Hendrickson, 2012). 
It is similar to Gojko’s version but has a different look. You can see in Fig-
ure 8-4 that she relabeled the vertical columns to “confirm” and “inves-
tigate,” while the horizontal rows still represent business and technology.

The top left quadrant represents the expectations of the business, which 
could be in the form of executable (automated) specifications. Others 
might be represented by paper prototypes or wireframes. At the top 
right are tests that help investigate risks concerning the external qual-
ity of the product. It is very much like the original quadrant’s idea of 
exploratory testing, scenarios, or usability testing. Like Gojko’s model, 
the bottom right quadrant highlights the risks of the internal working 
of the system.

Both of these alternative models provide value. We think there is room 
for multiple variations to accommodate a spectrum of needs. For exam-
ple, organizations that are able to adopt continuous delivery are able to 
think in this space, but many organizations are years from accomplish-
ing that. Check the bibliography for Part III for links to additional test-
ing quadrant models. Use them to help make sure your team covers all 
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the different types of tests you need in order to deliver the right value 
for your customers.

Using Other Influences for Planning

There are many useful models and ideas for helping us in our test plan-
ning, and we shouldn’t throw them away. As Tim Ottinger and Jeff 
Langr have said (Ottinger and Langr, 2009b), a mnemonic for think-
ing about what are called nonfunctional requirements is still useful. The 
FURPS model (see Figure 8-5) was developed at Hewlett-Packard and 
was first publicly elaborated by Grady and Caswell (Wikipedia, 2014f); 
it is now widely used in the software industry. The + was later added 
to the model after various campaigns at HP to extend the acronym to 
emphasize various attributes.

James Whittaker developed a methodology he calls the Attribute Compo-
nent Capability (ACC) matrix (Whittaker, 2011) to help define what to test 
based on risk. ACC consists of three different parts that define the system 
under test: Attributes, Components, and Capabilities. He defines these as:

■■ Attributes (adjectives of the system) are qualities and character-
istics that promote the product and distinguish it from the com-
petition; examples are “Fast,” “Secure,” “Stable,” and “Elegant.”

■■ Components (nouns of the system) are building blocks that 
together constitute the system in question. Some examples of 
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Components are “Firmware,” “Printing,” and “File System” for 
an operating system project, or “Database,” “Cart,” and “Product 
Browser” for an online shopping site.

■■ Capabilities (verbs of the system) describe the abilities of a par-
ticular Component to satisfy the Attributes of the system. An 
example Capability for a shopping site could be “Processes mon-
etary transactions using HTTPS.” You can see that this could be 
a Capability of the “Cart” component when trying to meet the 
“Secure” Attribute. The most important aspect of Capabilities is 
that they are testable.

Creating a high-level matrix using this model can be a simple way to 
visualize your system. Figure 8-6 shows an example of what such a 
matrix might look like. Gojko Adzic agrees that exposing system char-
acteristics and providing more visibility is definitely a good idea (Adzic, 
2010a), though he cautions that while we can learn from other fields, 
we should be careful about using them as a metaphor for software 
development.

Use heuristics such as Elisabeth Hendrickson’s “Test Heuristics Cheat 
Sheet” (Hendrickson, 2011) or tried-and-true techniques such as state 
diagrams or truth tables to think of new ideas for attributes. Combine 
these ideas with models like the Quadrants so that the conversations 
about the system constraints or usability can extract clear examples. 
Using all the tools in your toolbox can only help increase the quality of 
the product.

Components Capabilities

Manage profile

Mobile App Firmware Printing Fast Secure

INFLUENCE AREA RISK / IMPORTANCE

Stable

Send messages

Update network

Attributes

Figure 8-6  ACC example
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Planning for Test Automation

Since Mike Cohn came up with his test automation pyramid in 2003, 
many teams have found it a useful model to plan their test automation. 
To take advantage of fast feedback, we need to consider at what level 
our automation tests should be. When we look at the standard pyramid, 
Figure 8-7, we see three levels.

The lowest level is the base—the unit tests. When we consider testing, 
we should try to push the tests as low as they can go for the highest 
return on investment (ROI) and the quickest feedback.

However, when we have business logic where tests need to be visible to the 
business, we should use collaborative tools that create tests at the service 
layer (the API) to specify them in a way that documents system behavior. 
See Chapter 16, “Test Automation Design Patterns and Approaches,” for 

Manual / ET
Tests

Push the
tests
lower for
higher
ROI

Workflow
Tests

Through the UI

API / Service Layer
Business Rules

Functional Tests

Unit Tests / Component Tests
(Programmer Tests)

Automate at
the feature level

Automate at
the story level

Automate at
the task level

Figure 8-7  Automation pyramid
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more details. It is at this layer that we can automate at the story level so 
that testing and automation can keep up with the coding.

The top layer of the pyramid consists of the workflow tests through the 
user interface (UI). If we have a high degree of confidence in the unit 
tests and the service-level or API-level tests, we can keep these slower, 
more brittle automated tests to a minimum. See Chapter 15, “Pyramids 
of Automation,” for more detail on alternative pyramid models.

Practices such as guiding development with examples can help define 
what the best level for the test is. A team’s cadence can be set by how well 
they plan and execute their automation and how well they understand 
the level of detail they need. Consider also how to make your automa-
tion test runs visible, whether displayed in the continuous integration 
environment or on a monitor that is in the open.

Summary

Models are a useful tool for planning. In this chapter, we covered the 
following points:

■■ The agile testing quadrants provide a model for thinking about 
testing in an agile world.

■■ The Quadrants help to emphasize the whole-team responsibil-
ity for testing.

■■ They provide a visible mechanism for talking about the testing 
needed.

■■ The left side is about guiding development, learning what to 
build, and preventing defects—testing early.

■■ The right side is about critiquing the product, finding defects, 
and learning what capabilities are still missing.

■■ Gojko Adzic provides an alternative way to think about the 
Quadrants if you are in a lean startup or continuous delivery 
environment.

■■ We also introduced an alternative quadrant diagram from Elisa-
beth Hendrickson that highlights confirmatory checks versus 
investigative testing.
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■■ There are already many tools in our agile testing toolbox, and we 
can combine them with other models such as the Quadrants to 
make our testing as effective as possible.

■■ FURPS and ACC are additional examples of models you can use 
to help plan based on risk and a variety of quality characteristics.

■■ The automation pyramid is a reminder to think about automa-
tion and to plan for it at the different levels.
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cycle time from demo to, 387–389
defined, 419

Operations
development and. See DevOps
liability in separating from development, 365

Options Board, for displaying 7 Product 
Dimensions, 132
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fostering a learning culture, 13–15, 77
importance of a learning culture, 12–13
investing time in learning, 8–12
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dangers of delaying test automation, 227–229
evolution of agile testing at Dell, 282
example of expanded pyramid, 231–234
example of flipping an inverted pyramid, 
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skills, 49

Relationship skills, 74
Release candidates

creating continuously, 365
defined, 419
product release level and, 189

Release Done, regulatory compliance as part  
of, 342

Release planning sessions, 92
Reliability, in expanded test automation pyramid, 

233–234
Requirements gathering, 159
Resources, for learning

conferences, courses, meet-ups, and 
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square-shaped team and, 30–32
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SBMT. See Session-based test management 

(SBTM)
Scale, in agile testing

automation and, 358–359
considerations regarding, 275
Dell example, 287–288
for enterprises, 276–277
speed and, 357–358

Scenarios
creating test charters, 174
use of examples and, 159

Schoots, Huib
about the contributors section, xliii
on documentation, 94
experience working on distributed teams, 

306–307
Scope

adding infrastructure to testing scope, 365–367
deriving using SBE, 153

Scott, Alister
alternative test automation pyramid, 227
on testing through the UI, 243
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