
More Agile Testing
Learning Journeys for the Whole Team

More lessons and insights from Janet Gregory
and Lisa Crispin, authors of Agile Testing: A
Practical Guide for Testers and Agile Teams

Packed with new examples from real teams, More Agile
Testing offers detailed information about adapting agile
testing for your environment; learning from experience
and continually improving your test processes; scaling
agile testing across teams; and overcoming the pitfalls
of automated testing. You’ll find brand-new coverage
of agile testing for the enterprise, distributed teams,
mobile/embedded systems, regulated environments, data
warehouse/BI systems, and DevOps practices.

• Clarify testing activities within the team

• Collaborate with business experts to identify valuable
features and deliver the right capabilities

• Design automated tests for superior reliability and
easier maintenance

• Improve and expand Agile team testing skills

• Plan “just enough,” balancing small increments with
larger feature sets and the entire system

• Use testing to identify and mitigate risks associated
with your current agile processes and to prevent
defects

• Address challenges within your product or
organizational context

• Perform exploratory testing using “personas” and
“tours”

• Understand exploratory testing approaches that
engage the whole team, using test charters with
session- and thread-based techniques

• Bring new agile testers up to speed quickly–without
overwhelming them

Save on Agile Testing

Save 35%* on
• Agile Testing
• More Agile Testing
• Agile Testing eBook Collection

Save 50%* on
Agile Testing Essentials
LiveLessons Video Course

Use code AGILETESTING
at informit.com/agile

544 pages | Paperback | ©2015

*Offer only good at informt.com with use of code. during checkout.
Offer cannot be combined with other offers and is subject to change.

Praise for More Agile Testing
“I love this book. It will help to create really great testers. That’s a good thing, since
anyone who reads this will want to have one on their team.”

—Liz Keogh, agile coach, Lunivore Limited

“This book will change your thinking and move your focus from tests to testing. Yes,
it is not about the result, but about the activity!”

—Kenji Hiranabe, cofounder of Astah and CEO, Change Vision, Inc.

“To my mind, agile development is about learning—that one word captures the true
spirit of what agile is all about. When I had the chance to read through their new
book, I could only say, ‘Wow! Janet and Lisa have done themselves proud.’ This is
not a book about testing; this is a book about learning. Their clear explanations are
accompanied by great true stories and an impressive list of books, articles, and other
resources. Those of us who like learning, who love to dig for more information, can
rejoice! I know you’re always looking for something interesting and useful; I can
guarantee that you will find it here!”

—Linda Rising, coauthor of Fearless Change: Patterns for Introducing New Ideas

“Janet and Lisa’s first book, Agile Testing, drew some general principles that are
still important today but left me wondering, ‘how?’ In this second book, they adapt
those principles to today’s development landscape—with mobile, DevOps, and
cloud-based applications delivered in increasingly compressed release cycles. Read-
ers get specific testing tools for the mind along with new practices and commentary
to accelerate learning. Read it today.”

—Matt Heusser, Managing Principal, Excelon Development

“An excellent guide for your team’s agile journey, full of resources to help you with every
kind of testing challenge you might meet along the way. Janet and Lisa share a wealth of
experience with personal stories about how they helped agile teams figure out how to get
value from testing. I really like how the book is filled with techniques explained by lead-
ing industry practitioners who’ve pioneered them in their own organizations.”

—Rachel Davies, agile coach, unruly and coauthor of Agile Coaching

“Let me net this out for you: agile quality and testing is hard to get right. It’s nuanced,
context-based, and not for the faint of heart. In order to effectively balance it, you need
hard-earned, pragmatic, real-world advice. This book has it—not only from Janet and
Lisa, but also from forty additional expert agile practitioners. Get it and learn how to
effectively drive quality into your agile products and across your entire organization.”

—Bob Galen, Principal Consultant, R Galen Consulting Group, and Author of Agile
Reflections and Scrum Product Ownership

Gregory_Crispin_CH00_FM.indd 1 9/10/14 11:29 AM

“Janet and Lisa have done it again. They’ve combined pragmatic life experience with
ample storytelling to help people take their agile testing to the next level.”

—Jonathan Rasmusson, author of Agile Samurai: How Masters Deliver Great Software

“In this sequel to their excellent first book, Janet and Lisa have embraced the matu-
rity of agile adoption and the variety of domains in which agile approaches are now
being applied. In More Agile Testing they have distilled the experiences of experts
working in different agile organizations and combined them with their own insights
into a set of invaluable lessons for agile practitioners. Structured around a range of
essential areas for software professionals to consider, the book examines what we
have learned about applying agile, as its popularity has grown, and about software
testing in the process. There is something for everyone here, not only software tes-
ters, but individuals in any business role or domain with an interest in delivering
quality in an agile context.”

—Adam Knight, Director of QA, RainStor

“This book has it all: practical advice and stories from the trenches. Whether you’ve
never heard of agile or you think you’re an expert, there is something here that will
help you out. Jump around in the book and try a few things; I promise you will be a
better tester and developer for it.”

—Samantha Laing, agile coach and trainer, Growing Agile

“More Agile Testing is a great collection of stories and ideas that can help you
improve not just how you test, but the products you build and the way you work.
What I love most about the book is how easy many of the ideas are to try. If one
message is clear, it is that regardless of your context and challenges, there are things
you can try to improve. Get started today with something small, and nothing will be
impossible.”

—Karen Greaves, agile coach and trainer, Growing Agile

“More Agile Testing is an extensive compilation of experiences, stories, and examples
from practitioners who work with testing in agile environments around the world.
It covers a broad spectrum, from organizational and hiring challenges, test tech-
niques and practices, to automation guidance. The diversity of the content makes
it a great cookbook for anyone in software development who is passionate about
improving their work and wants to produce quality software.”

—Sigurdur Birgisson, quality assistance engineer, Atlassian

Gregory_Crispin_CH00_FM.indd 2 9/10/14 11:29 AM

	 361

Chapter 23

Testing and DevOps

We’ve worked for many years with team members who do activities that
are now called DevOps. As Jez Humble says, team members engaged in
DevOps build “a platform that allows developers to self-service environ-
ments for testing and production (and deployments to those environ-
ments)” (Humble, 2012). They provide tools that enable delivery teams
to build, test, deploy, and run their systems. In our experience, everyone
on agile teams is doing DevOps activities, but one or more team mem-
bers contribute in-depth specialized skills. Giving the skill set a label
has called attention to its importance in building quality into software.
DevOps is an integral component of successful agile testing.

A Short Introduction to DevOps

The term DevOps was first popularized by the DevOps Days conference
in Belgium in 2009. Since then there have been some excellent publica-
tions devoted to DevOps and how it fits into agile development. Con-
tinuous Delivery (Humble and Farley, 2010) and DevOps for Developers
(Hüttermann, 2012) are two good guides to DevOps.

DevOps includes practices and patterns that improve collaboration
among different roles in delivery teams, streamlining the process of
delivering high-quality software. These practices and patterns help
teams write testable, maintainable code, package the product, deploy it,
and support the deployed code.

One area of focus for DevOps is shortening cycle times. Some businesses
are able to take this to an extreme, delivering new code to production

23. Testing and DevOps

A Short Introduction to DevOps

DevOps and Quality

How Testers Add DevOps Value

Gregory_Crispin_CH23.indd 361 9/10/14 11:42 AM

362	 Chapter 23  n T esting and DevOps

many times per day. Delivery team members find reliable, repeatable
ways to get from an idea to delivered business value, with a cycle time
that’s not only short, but safe. This helps prevent defects and build in
quality.

DevOps activities are designed to improve the maintainability and speed
of automated tests and deployment. Examples include maintaining test
environments, providing fast feedback from continuous integration
(CI), and ensuring reliable and frequent—perhaps even continuous—
deployment. Many teams now test their infrastructure continually to
guard against spurious intermittent regression test failures due to server,
deployment, or configuration failures. Business stakeholders are also
involved, helping to hire the right people, obtain the necessary hardware
and software, and gather information to guide future development. Fig-
ure 23-1 illustrates that DevOps is the intersection of programming,
testing, operations, and the business. It is another way to look at the
whole-team approach to agile testing.

Test

Dev Biz

Ops

Figure 23-1  Intersection of development, testing, operations, and the
business: the whole-team approach!

Gregory_Crispin_CH23.indd 362 9/10/14 11:42 AM

	 DevOps and Quality	 363

DevOps and Quality

Agile team members’ skills often include scripting, system administra-
tion, coding, configuring CI, tooling, and collaboration and commu-
nication skills that enable them to perform DevOps activities. These
activities are instrumental in agile testing and continually building qual-
ity into our products.

Years ago, before the idea of continuous integration existed (at least in my
world), I worked with a person I consider to be one of the first DevOps
practitioners. Darcy’s role included implementation of our product at client
sites, first-level support for clients, keeping our servers running, as well as
being our technical tester, setting up our test environments, and keeping
them running. He was able to bring what he knew from the world of clients
into our testing, including recovery testing. I did not realize the value he
brought to the development of our product until I worked in an organiza-
tion where that crossover role did not exist.

In another organization, we had an infrastructure test team. They worked
with the programmers and the teams that supported the hardware and
communications. They worked with each of the agile teams to help them
understand the impacts of changes to the infrastructure on the new
features.

People with specialized operations and system administration skills help
the team improve quality on many different fronts. They can help set up
appropriate development, test, and staging environments, optimize the
CI, and refine the deployment processes for these environments. They
can also help find or build and implement automation frameworks and
other tools that suit the team’s needs. In our experience, they’re terrific
at diagnosing problems and have many useful tools at their disposal.
They can help with the infrastructure to support automated tests, such
as generating test data.

Figure 23-2 illustrates the idea that DevOps crosses into all four of the
agile testing quadrants. It helps guide development with many different
types of testing activities, provides tools and environments for evalu-
ating the product, and builds the technology that enables testing of
diverse quality attributes such as performance, reliability, and security.

Janet’s Story

Gregory_Crispin_CH23.indd 363 9/10/14 11:42 AM

364	 Chapter 23  n T esting and DevOps

Back in the mainframe days when I worked as a programmer/analyst, I col-
laborated closely with the machine room operators. Together, we learned
ways to solve and prevent problems with processing batch jobs.

In the early 1990s I was fortunate to learn UNIX system administration skills
from experts on my team. I learned the importance of repeatable release
processes and ways to verify the packaged product. In the 2000s, my team-
mates with in-depth system administration skills helped find better test
automation frameworks and ways to configure CI jobs for quicker test feed-
back. They showed me how to use monitoring and log files to help with
debugging and exploring.

My current team is the first I’ve worked with that uses the term DevOps. We
have a backlog of DevOps user stories to improve all aspects of our infra-
structure, including our test environments, CI, and deployment process.
Interested team members join a weekly DevOps meeting to prioritize work,
and these activities are planned along with product features. Program-
mers work with the company that hosts our production site and maintains
our search engine software. We do our own production deploys and can
respond quickly to operational problems. We experiment with ways to
continually improve our delivery process.

Lisa’s Story

DevOps

Technology Facing

G
ui

d
e

D
ev

el
op

m
en

t Critiq
ue the Prod

uct

Business Facing

Figure 23-2  Test activities intersect at DevOps.

Gregory_Crispin_CH23.indd 364 9/10/14 11:42 AM

	 DevOps and Quality	 365

Seeing the Whole: Add Infrastructure to the Testing Scope,
DevOps Style

Michael Hüttermann, author of DevOps for Developers
(Hüttermann, 2012), shares a success story he had with a
whole-team approach to supporting infrastructure and testing
through DevOps.

In a bigger project with about 100 developers, we had to cope with
aggressive time-to-market targets, protecting competitive advantages,
a lot of technical complexity, as well as high demands on availability
and capacity. These were the main drivers to implement the DevOps
approach. This approach included applying “the infrastructure as
code” paradigm, which starts with putting Puppet manifests to version
control, in our case Git. [Authors’ note: See the “Tools” section of the
bibliography for links to all tools mentioned in this chapter.]

An end-to-end, department-spanning delivery pipeline was in place,
starting with stage 0, the developer workspace, and closing with
higher test machines, a production mirror, and production. From the
version control system, baselines were created continuously. Those
baselines contained different configuration units that made up a
release, including business code, unit tests, integration tests, and infra-
structure information. Building on top of these baselines, we created
release candidates continuously. Cherry-picked release candidates

Some companies maintain separate operations or IT departments. The
members of these silos often have to support multiple teams, juggling
development needs with production maintenance. They may lose touch
with the development teams and their needs.

Lisa once facilitated a workshop for a large company where partici-
pants from teams working on different product areas identified issues
that were impeding various aspects of their testing. Testers complained
that the other parts of the system had incompatibilities with theirs, and
they had no idea how to overcome these. One of the workshop partici-
pants was from the operations department. Once he saw the obstacles
that were listed, he said, “I had no idea you were struggling with this.
My team can take care of these problems. From now on, contact me
directly!” Sometimes solving a thorny testing problem just takes getting
people from different departments in the same room.

Gregory_Crispin_CH23.indd 365 9/10/14 11:42 AM

366	 Chapter 23  n T esting and DevOps

were promoted to be released to production. Those releases were
both fit for purpose (by containing the functional scope) and fit for
use (by conforming to the nonfunctional requirements).

After we applied DevOps concepts, the processes and tools of both
development and operations were aligned with each other. Each used
the same approaches to provision machines, including installation and
configuration of infrastructure, middleware, and the business applica-
tion. Development and operations continually collaborated to ensure
maximum knowledge and open information exchange. We had slack
time to learn and experiment, and we built mutual respect. We used
kanban to manage the flow and reviewed the design early in the pro-
cess. This enabled early and frequent learning, and “failing fast.”

By applying DevOps practices, service-level requirements and ser-
vice capabilities could be defined and checked early in the process.
Developer machines and test machines were production-like, thus
they delivered fast and meaningful feedback of installation and con-
figuration, as well as nonfunctional requirements such as security and
monitoring.

As part of the continuous delivery platform, Puppet was used together
with Vagrant and Jenkins to set up and remove virtual machines for
reproducible testing of the provisioning process itself, as well as the
defined result on the target machine.

In order to find errors early and often, we started with checking for
more basic failure categories. As part of a continuous build, the infra-
structure code in the form of Puppet manifests was validated early
in the process. When syntactical errors in the manifests were found
immediately, the process was aborted and no binaries were produced
for further usage. Finding this category of errors is easy to achieve by
just applying a puppet parser validate as part of a dedicated build
step in the continuous build.

After the actual configuration of the target test environment with
Puppet, another downstream stage was added to check the correct
provisioning. We introduced test manifests that were applied by pup-
pet apply–noop to check for Puppet compilation errors, and then
checked the resulting log of events. A basic automated smoke test
compared actual and desired results.

When the delivery pipeline was mature enough, we added code-style
verifications. We found it helpful to agree on a shared format for all our
artifacts. Many checks on business code were done with SonarQube,
but we also checked style guide compliance of infrastructure code
with puppet-lint.

Gregory_Crispin_CH23.indd 366 9/10/14 11:42 AM

	 DevOps and Quality	 367

Applying DevOps practices taught us that it was crucial to foster the
spirit of the “one team” that consists of members of development,
coders, testers, business, and operations, along with network, systems,
and database engineers. All involved experts became developers of
the solution.

The combined team shared business goals such as reducing cycle time.
Shared processes, such as using the same provisioning concept for
all machines, and shared tools, such as Puppet, also aligned the com-
bined team. Many production incidents are caused by changes to the
IT infrastructure or by unplanned work, such as firefighting production
incidents due to broken processes or badly tested solutions. Puppet
allowed us to define executable specifications of target infrastructure
behavior, making the infrastructure testable. This made automation
reliable, which shortened feedback cycles. The documentation about
the machines is always up-to-date, facilitating conversations between
developers and operations staff.

It was elementary to distinguish between accountability and responsi-
bility. Colleagues of the “one team” of devs and ops were collectively
responsible, but only one person from the development department
was accountable for development machines and one person from the
operations department was accountable for operations machines.
Other colleagues who were neither responsible nor accountable were
consulted or informed, early and often.

Overall it was a great success to emphasize the entire flow of work
from start (inception) to end (operation), to extend agile develop-
ment testing practices to operations, and to intensively include opera-
tions staff starting with the early phases of software development.

To achieve the reliable test automation and shortened feedback cycles
that Michael’s team enjoyed, you need to understand your build pipe-
line. Know what tests run in which environment. The concept of build
pipelines works well for talking about test environments. Building good
test environments has been an obstacle to many of the testers and teams
with which Janet has worked. In Chapter 5, “Technical Awareness,” Fig-
ure 5-2 was an example of a very simple build pipeline. Generally speak-
ing, there is an automated push to the development environment if the
CI tests all pass. However, one of the practices that we recommend is
to use a pull system for the test environment. This gives testers control
over their test execution. In our opinion, there is nothing worse than
to be halfway through an exploratory test cycle, only to have the build

Gregory_Crispin_CH23.indd 367 9/10/14 11:42 AM

368	 Chapter 23  n T esting and DevOps

you were testing overwritten. That often means starting the testing over
from scratch.

Figure 23-3 is a diagram of an automated build pipeline. If you compare
it to the simple build pipeline in Figure 5-2, you’ll see that the test and
the staging environments in this example are not part of the automa-
tion. Those are two environments where you would perform explor-
atory testing.

In Chapter 18, “Agile Testing in the Enterprise,” we presented Dell’s test-
ing strategy for its enterprise solution. This next story gives more details
on the infrastructure needed.

Fail

Check-in
Triggers

Build

Fail

Fail

Fail

D
ev

el
o

p
er

Ch
ec

k-
in

CI
–B

ui
ld

Ru
n

U
ni

t
Te

st
s

D
ev

el
o

p
m

en
t

En
vi

ro
nm

en
t

A
ut

o
m

at
ed

 P
us

h

A
ut

o
m

at
ed

A
cc

ep
ta

nc
e

Te
st

s

Lo
ad

 a
nd

 P
er

fo
rm

an
ce

Pr
o

d
uc

tio
n

Pass

Trigger
Deploy
Smoke

Test

Trigger
Auto

Acceptance
Tests

Trigger
Load/

Performance
Tests

Trigger
Release to
Production

with
Approvals

Pass Pass Pass

Figure 23-3  Automated build pipeline

Gregory_Crispin_CH23.indd 368 9/10/14 11:42 AM

	 DevOps and Quality	 369

Automated Build Verification Testing

Kareem Fazal, a software engineer at Dell, talks more about
their complex build verification and how they adapted it after
their first attempts.

The Hardware Test-Matrix Challenge
One of the challenges faced in virtually all of our software test environ-
ments at Dell Enterprise Solutions Group (ESG) is the extensive hard-
ware compatibility matrix that our software is expected to support.
This is most evident in our Server Systems Management firmware and
software projects supporting our twelfth-generation servers. When
we first applied agile practices to our 12G servers, we established a CI
and automated build verification test (aBVT) environment. This CI and
aBVT environment supported a project with 15 Scrum teams distrib-
uted across India and the United States. Since new code was checked
in several times an hour, there was a constant demand for frequent,
“known-good” builds. The automated build and tests needed to fin-
ish within 90 minutes, running against multiple physical unit-under-test
(UUT) environments that were configured with specific network inter-
face card (NIC) and RAID combinations.

The procedures that we initially used for aBVT were not very flexible. It
was difficult to add test suites that did not follow a predefined inter-
face format to the existing suite. Also, since test cases were bound to
servers, if a specific configuration was required that wasn’t already in
place, a server had to be taken offline and reconfigured. This meant
that we had to be very careful about what tests were run and how
much time a test scenario took in order to balance resource use with
testing requirements. Under these conditions, it was easier to simply
reduce the number of tests run and limit each test run to only those
test cases that matched the hardware configuration that was in place.
To make matters worse, this was a single-threaded environment, so
although there were multiple incoming build requests every hour, they
were bottlenecked behind the single, in-progress build verification
test run.

Gregory_Crispin_CH23.indd 369 9/10/14 11:42 AM

370	 Chapter 23  n T esting and DevOps

The Solution
In preparation for the next update release, the CI and aBVT team took
steps to address the limitations of the test environment. The build
team envisioned a solution that provided

•	 Scrum teams with “ease of use” in developing and submitting test
cases to achieve maximum hardware coverage

•	 Build teams with “efficient use of hardware resources” without
requiring manual intervention between test runs

•	 Scrum teams with the “flexibility” to prioritize test cases on spe-
cific configurations

In response, our team developed the generic resource manager
(GRM). The GRM achieved the flexibility and ease of use we were
seeking by having all configurations defined by a simple set of stand-
alone XML files. The name space was defined in a way that did not
place arbitrary limitations on what information could be defined, while
remaining basically simple and easy to understand. The manner in
which the configuration was used allowed for good scalability as well.
The tester could define as much or as little information for each testing
scenario as was required with very little superfluous effort.

The GRM achieved efficient use of server resources by making sure
that they were used in parallel as much as possible, and it allocated
resources based on the test requirements. If a test takes longer than
expected or ends with an error, the GRM adapts to the conditions
at hand. Resource requirements that are defined for a particular test
can be as broad or as narrow as required without having an effect on
other tests in the test run.

The GRM can be used for small-test setups, but it can also scale and
support complex scenarios with many types of resources and thou-
sands of tests in the mix. This is accomplished with a robust, easy-
to-understand configuration methodology using a standard XML file
format.

Results
With the deployment of the GRM into the aBVT environment, the teams
were able to maximize test matrix coverage for each run of a test suite.
Because test cases for a particular run did not always require, or con-
sume, all available configurations, additional aBVT runs were initiated
in parallel, to make maximum use of available configurations. The GRM
provided the build team with the flexibility to scale up and add con-
figurations and test cases without disabling any in-progress test runs,
easing maintenance concerns.

Gregory_Crispin_CH23.indd 370 9/10/14 11:42 AM

	 How Testers Add DevOps Value	 371

As you can see from Kareem’s story about his experiences, there is no
“one size fits all.” Dell ESG custom-built a flexible solution that worked
for teams around the globe. Look at your own environments, and strive
to simplify the build and deploy and test cycle so that it is consistent and
maintainable.

How Testers Add DevOps Value

One area of DevOps where testers can contribute their specialized skills
is in helping to test the infrastructure. They can help identify places
where infrastructure might break simply by asking questions like, “How
do we test what happens if the network goes down?” Testers may not
know all the answers, but they are good at asking questions.

Janet worked with a company whose infrastructure testing group
worked closely with the individual feature teams, but on a more formal
basis. They created an agreement with the teams that looked something
like this.

The “Levels of Service” that infrastructure testers are prepared to provide
are:

■■ No involvement: If testing is required, it will be planned, executed,
and monitored by a representative from a team appropriate to the
activity (e.g., DBA, Network, Infrastructure).

■■ Guidance: Infrastructure testers will provide guidance to assist with
planning an appropriate test. The test will be executed by a represen-
tative from a team appropriate to the activity (e.g., DBA, Network,
Infrastructure). Testers may review test results and assist with risk
assessment for a release/acceptance decision.

■■ Planning: Infrastructure testers will prepare a risk-based test plan
that defines the testing approach and scope, lists tests to be conducted
and acceptance criteria, and identifies risks associated with the project.
This plan will be turned over to a representative from a team appro-
priate to the activity (e.g., DBA, Network, Infrastructure) for execu-
tion. Infrastructure testers may review test progress and results and
assist with risk assessment for a release/acceptance decision.

■■ Infrastructure testing: Testers will prepare a risk-based test plan
that defines the testing approach and scope, lists tests to be conducted
and acceptance criteria, and identifies risks associated with the proj-
ect. Infrastructure testers will execute the tests, providing feedback to

Gregory_Crispin_CH23.indd 371 9/10/14 11:42 AM

372	 Chapter 23  n T esting and DevOps

the project team on execution status. Issues will be recorded, tracked,
actioned, and escalated using the standard defect-tracking system.
Infrastructure testers will present test results and risk assessment for a
release/acceptance decision.

Those definitions are more formal than we’d normally use in agile
teams. However, it shows how testing specialists can contribute in dif-
ferent situations, helping to manage risk and provide feedback about the
infrastructure, including the test and production environments. Earlier
in the chapter we learned how Michael Hüttermann’s teams tested their
infrastructure using open-source tools such as Puppet, Vagrant, and
Jenkins. We’ll look at more examples.

Testing Infrastructure

Stephan Kämper, a tester from Germany, explains more
details about how he tests infrastructure.

In my context, the infrastructure is the extra hardware and software
that you need to execute tests. It typically includes a CI system, includ-
ing jobs the system executes; build tools like make, rake, or Maven;
and the machines on which the CI runs. Whether or not the (wireless)
network or firewall should also be considered part of your testing
infrastructure depends on your own context.

In my current team (as of late 2013), we run automated checks against
every single commit to the source control system, create new soft-
ware artifacts (deployable build items) regularly, and run stand-alone
integration tests against these artifacts on newly built virtual machines.
These artifacts are put through a system integration test and finally
brought onto the production system via the CI system.

The whole workflow, from a single commit to production, is orches-
trated and supported by the CI system. Since we wrote the code to
do all this, it seemed like a very good idea to also test it. The ability to
go live with changes depends on that code.

What Part of the Infrastructure to Test
I do not suggest that you test your CI system as such, and neither do I
recommend that you test your build system. However, I do think the
code you write and feed to these systems should indeed be tested.

Gregory_Crispin_CH23.indd 372 9/10/14 11:42 AM

	 How Testers Add DevOps Value	 373

As an example, let’s assume you’re using Jenkins as the CI system and
rake as the build tool. We use the Jenkins Job DSL/Plugin, which allows
us to write Jenkins jobs as code, in contrast to the usual way of setting
them up via the graphical user interface. That way we can have our
Jenkins code under version control.

Since rake tasks are Ruby code, the tasks delegate the work to Ruby
classes, modules, or methods, which in turn can be developed and
tested like any other code. The same is certainly possible for other
combinations of build systems and programming languages.

One Caveat
Some Jenkins jobs actually change the “world”—that is, they deploy
software to production systems. This is hard to test in a laboratory
environment since the whole point of a production system is, well,
leaving the safety of a test environment.

But even in this case, you can parameterize the Jenkins jobs so that
you can deploy to a test or staging system and production using the
same script. That way, deploying to a test system is in fact the test for
deploying to production. Note that even when this works nicely, the
deployment to production may still be broken, since you might deploy
to the wrong server.

Stephan emphasizes the value of testing automated deployments. Other
types of infrastructure testing that testers might perform are often
part of Quadrant 4 tests, including connectivity, reliability, failover, or
backup and restores.

Teams are often called upon to test in production, monitoring site activ-
ity or performance. Pairing to monitor production log files has advan-
tages similar to those of pair programming and testing. It is easy to
concentrate on one thing and completely miss another, so a second pair
of eyes is invaluable.

We’ve talked about what DevOps does for testing and quality and how
testers can help with DevOps activities. In the final part of this section,
we’ll cover the intersection of both.

Gregory_Crispin_CH23.indd 373 9/10/14 11:42 AM

374	 Chapter 23  n T esting and DevOps

Automated Provisioning of Configuration Base States

Ben Frempong, a storage test engineer, continues the Dell
story, describing how they automated configuration base
states to make the setup for testing much easier.

In mid-2012, our Storage Test team was faced with budget and staff-
ing challenges. We had to devise a sustainable solution to a reality that
faces most test organizations at one time or another: how to do more
with fewer resources while continuously improving the quality of prod-
ucts we deliver to our customers. The solution required us to reinvent
and implement sustainable and innovative automation strategies in our
testing process to achieve three key goals:

1.	 Maximize the utilization of our hardware resources.

2.	 Improve the efficiency of our test execution staff.

3.	 Capture automation metrics.

The first task was to establish some standards for our automation initia-
tives. We chose Python as our standard scripting language and selected
a centralized, internally developed automation framework for remote
script deployment. Next, we focused on two teams that had similar
needs: one local and the other remote. After analyzing their daily
tasks, we organized their testing activities into the following workflow
sequence:

1.	 Configure base hardware.

2.	 Install OS.

3.	 Install updates (firmware/BIOS/OS device drivers).

4.	 Install solution/product peripherals.

5.	 Install and configure solution/product-specific packages.

6.	 Run a suite of manual and automated test cases.

7.	 Perform exploratory testing.

8.	 Tear down and reprovision the system for another configuration.

I observed that the first three steps, the base state of provision-
ing workflows, was often a manual, time-consuming, and repetitive
sequence of tasks with the same operating system, on the same hard-
ware or platform families. There were sometimes minor configuration
changes such as add-in storage peripherals, but these changes did not
impact the base state of any configuration. Additionally, the base state

Gregory_Crispin_CH23.indd 374 9/10/14 11:42 AM

	 How Testers Add DevOps Value	 375

configurations often had to be redeployed to validate software build
releases or bug fixes during a program’s test cycles. An automated pro-
cess could be used to create disk images, files containing the contents
and structure of a disk volume or data storage device, with the neces-
sary base configurations. These images could be used to automatically
reprovision each configuration’s base state.

Existing imaging solutions at that time worked very well in large-deploy-
ment environments but not so well in test environments, where one is
continuously reprovisioning the same hardware. Also, they took up to
90 minutes or more, depending on the operating system, to capture
an image. It might take several hours to restore non-Windows images
such as Linux OS. This explained why testers preferred the manual
method. We tried to automate existing off-the-shelf imaging solu-
tions, but no single solution supported automated image capture and
restores for all three required system environments that we needed to
support: Windows, Linux, and ESXi5. Considering the matrix of hard-
ware that needed to be validated, we would have to either purchase
more hardware and assign more configurations per tester, or add more
testers. Due to our budget challenges, neither solution was an option.

Instead, we prioritized automating the provisioning workflows with
some innovative ideas by developing our own fully automated imaging/
redeployment solution. First, we repackaged the kernel for the open-
source imaging tool Clonezilla to work with our automation framework.
Next, we wrote fully automated imaging and redeployment scripts for
Windows, Linux, and ESXi5 images. These scripts automatically capture
and redeploy base-state images in 10 to 15 minutes or less.

The results have been positive. One of the project teams had typi-
cally required up to three testers per test iteration to cover 12 to 18
configurations. After implementing the automated imaging and restore
tasks, the team lead was able to single-handedly execute the test itera-
tion himself without additional resources. He even had more time for
exploratory testing because the test execution framework allowed him
to launch a sequence of automated tasks, which could run overnight
or during lunch.

With our new approach to workflow test automation, we are now able
to do more with fewer resources, while giving our skilled staff more
time for exploratory testing. This allows us to continue to deliver qual-
ity products. We are also able to reduce expenditure and maximize the
utilization of our hardware resources. Last, from a process perspective,
we are able to use the information about our automation capabilities
in our test planning, test strategy, and business decisions.

Gregory_Crispin_CH23.indd 375 9/10/14 11:42 AM

376	 Chapter 23  n T esting and DevOps

Testers, programmers, and operations experts can collaborate on the
CI process to make build jobs more robust, test results more reliable,
and deploys to various environments timely and sane. If the whole team
understands their operating environments, they may save many hours
spent investigating test failures. For example, DevOps may be able to
help create checks for connectivity or configuration before deploying,
which eliminates wasted time rejecting builds. Alternatively, testers and
programmers can analyze test suites to identify duplicate tests, tests that
don’t add value, and ways to improve reliability. They can also look for
gaps in regression test automation and work to fill them.

DevOps practices help our teams efficiently build regression test code
and deploy it as needed to environments that support effective explor-
atory testing. Skilled DevOps practitioners help us implement tools to
support testing all necessary quality attributes such as security, perfor-
mance, and reliability. These abilities are essential for cross-functional
teams to deliver high-quality software that provides business value fre-
quently, at a sustainable pace.

Summary

DevOps is a perfect example of the whole-team approach to quality at
work. It brings together generalizing specialists with different T-shaped
skills to help ensure several aspects of quality. Even when development
and operations are separate departments, they can work together to
achieve shared goals. Here are some points about DevOps that we cov-
ered in this chapter:

■■ DevOps is a blend of development, testing, and operations
engaged in practices that streamline the delivery process, provide
timely feedback to improve cycle time and software quality, and
facilitate collaboration among all roles on the team.

■■ Team members with operations and system administration skills
collaborate with other team members to build a CI and deploy-
ment infrastructure that supports short cycle times.

■■ Development teams, including testers, can help implement a
test-guided approach to building that infrastructure and ensure
that the infrastructure continues to operate effectively.

Gregory_Crispin_CH23.indd 376 9/10/14 11:42 AM

	 Summary	 377

■■ DevOps practitioners help build and implement test automation
drivers, libraries and frameworks, and test data generation tools.

■■ Understand your team’s build pipeline and test environments to
take advantage of where you can use automation to supplement
your exploratory test efforts.

■■ Each organization needs to experiment with different hardware
configurations to find ones that provide flexibility, consistency,
and maintainability.

■■ Testers can contribute to infrastructure testing by asking good
questions and helping with a risk-based approach as well as by
actively engaging in testing configuration and deployment.

■■ Automating the provisioning of configuration base states lets
teams do more with fewer resources, using sustainable auto-
mation strategies that provide useful metrics and enable more
exploratory testing time.

■■ DevOps can help the team find ways to overcome impediments
such as fragile or slow automated tests.

Gregory_Crispin_CH23.indd 377 9/10/14 11:42 AM

