Brad Dayley

SamsTeach Yourself

JQuery

and JavaScript

FREE SAMPLE CHAPTER
SHARE WITH OTHERS

fF 9 B @ ®

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672337345
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672337345
https://plusone.google.com/share?url=http://www.informit.com/title/9780672337345
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672337345
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672337345/Free-Sample-Chapter

Brad Dayley

SamsTeachYourself

JQuery and
JavaScript

N
|'iOlII‘S

SAMS 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself jQuery and JavaScript in 24 Hours

Copyright © 2014 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.
ISBN-13: 978-0-672-33734-5

ISBN-10: 0-672-33734-7

Library of Congress Control Number: 2013954604

Printed in the United States of America

First Printing December 2013

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Special Sales
For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,

training goals, marketing focus, or branding interests), please contact our corporate sales depart-
ment at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact international@pearsoned.com.

Acquisitions Editor
Mark Taber

Managing Editor
Sandra Schroeder
Senior Project
Editor

Tonya Simpson

Copy Editor
Barbara Hacha

Indexer
Erika Millen

Proofreader
Anne Goebel

Technical Editor
Russell Kloepfer
Publishing
Coordinator
Vanessa Evans

Book Designer
Gary Adair

Cover Designer
Mark Shirar

Compositor
Jake McFarland

For D!

—A&F

Contents at a Glance

Introduction 1

Part I: Introduction to jQuery and JavaScript Development

1 Intro to Dynamic Web Programming 5
2 Debugging jQuery and JavaScript Web Pages................................... 35
3 Understanding Dynamic Web Page Anatomy 65
4 Adding CSS/CSS3 Styles to Allow Dynamic Design and Layout.......... 97
5 Jumping into jQuery and JavaScript Syntax........................ 135
6 Understanding and Using JavaScript Objects................................. 161

Part Il: Implementing jQuery and JavaScript in Web Pages

Part llI:

Part IV:

7 Accessing DOM Elements Using JavaScript and jQuery Obijects........ 185
8 Navigating and Manipulating jQuery Objects and DOM Elements

with jQuery 205

9 Applying Events for Richly Interactive Web Pages........................... 223

10 Dynamically Accessing and Manipulating Web Pages.................... 255

11 Accessing Data Outside the Web Page..................................... 285

Building Richly Interactive Web Pages

12 Enhancing User Interaction Through Animation and Other

Special Effects.................. 301
13 Interacting with Web Forms......................... 325
14 Creating Advanced Web Page Elements.. 365

Advanced Concepts

15 Accessing Server-Side Data via AJAX ... 395

16 Interacting with External Services, Facebook, Google, Twitter,
and Flickr. 425

Part V: jQuery Ul

Part VI:

17 Introducing jQuery Ul ... 459
18 Using jQuery UI Effects................................... 475
19 Advanced Interactions Using jQuery UI Interaction Widgets............ 493
20 Using jQuery UI Widgets to Add Rich Interactions to Web Pages...... 521

jQuery Mobile

21 Introducing Mobile Website Development..................................... 541
22 Implementing Mobile Web Pages............................. 553
23 Formatting Content in Mobile Pages .. 579
24 Implementing Mobile Form Elements and Controls 599

Table of Contents

Introduction 1
Beyond jQuery and JavaScript.............. 1
Code Examples 2
Special Elements ... 3
Q&A, Quizzes, and EXercises. ... 3

Part I: Introduction to jQuery and JavaScript Development

HOUR 1: Intro to Dynamic Web Programming 5
Understanding the Web Server/Browser Paradigm.. 5
Preparing to Write jQuery and JavaScript....................... 17
SUIMIMQTY . 32
Q& A 32
Workshop. ... 33

HOUR 2: Debugging jQuery and JavaScript Web Pages 35
Viewing the JavaScript Console ... 35
Debugging HTML Elements. ... 40
Debugging CSS 46
Debugging jQuery and JavaScript................. 53
Analyzing the Network Traffic ... 59
SUIMIMQTY ..o 62
Q& A 62
Workshop. ... 63

HOUR 3: Understanding Dynamic Web Page Anatomy 65
Using HTML/HTMLS Elements to Build a Dynamic Web Page...................... 65
Understanding HTML Structure ... 66
Implementing HTML Head Elements ... 68
Adding HTML Body Elements........................ 72
Adding Some Advanced HTMLS Elements... 87

WOTKSNOD. ..o
HOUR 4: Adding CSS/CSS3 Styles to Allow Dynamic Design and Layout
Adding CSS Styles to the Web Page.......................
Adding CSS Styles to HTML Elements.......................oooo
Preparing CSS Styles for Dynamic Design..........................
SUIMIMQAIY ..o
QA
WOTKSNOD. ..o
HOUR 5: Jumping into jQuery and JavaScript Syntax
Adding jQuery and JavaScript toa Web Page......................
Accessing the DOM ...
Understanding JavaScript Syntax ...
SUIMIMQAIY ..o
QA
WOTKSNOD. ..o
HOUR 6: Understanding and Using JavaScript Objects
Using Object Syntax....................
Understanding Built-In Objects ...
Creating Custom-Defined Objects............................
SUIMIMQAIY ..o
QA
WOTKSNOD. ..o

Part II: Implementing jQuery and JavaScript in Web Pages

HOUR 7: Accessing DOM Elements Using JavaScript and jQuery Objects
Understanding DOM Obijects Versus jQuery Objects..................................
Accessing DOM Obijects from JavaScript.......................
Using jQuery Selectors ...

viii Sams Teach Yourself jQuery and JavaScript in 24 Hours

HOUR 8: Navigating and Manipulating jQuery Objects and DOM Elements

with jQuery 205
Chaining jQuery Object Operations........................o.coiii 205
Filtering the jQuery Object Results............................. 206
Traversing the DOM Using jQuery Objects ... 207
Looking at Some Additional jQuery Object Methods 211
SUIMIMQAIY ..o 220
QA 220
WOTKSNOPD. ..o 221

HOUR 9: Applying Events for Richly Interactive Web Pages 223
Understanding Events...................... 223
Using the Page Load Events for Initialization... 229
Adding and Removing Event Handlers to DOM Elements.......................... 230
Triggering Events Manually ... 241
Creating Custom Events................................ 249
Implementing Callbacks..................... 251
SUIMIMQTY ... 253
Q& A 253
Workshop. ... 253

HOUR 10: Dynamically Accessing and Manipulating Web Pages 255
Accessing Browser and Page Element Values 255
Dynamically Manipulating Page Elements....................................... 266
Dynamically Rearranging Elements on the Web Page............................... 277
SUIMIMQTY ... 283
Q& A 283
Workshop. ... 283

HOUR 11: Accessing Data Outside the Web Page 285
Understanding the Screen Object........................... 285
Using the Window Object ... 286
Using the Browser Location Object.......................... 288
Using the Browser History Object... 289
Controlling External Links ... 290
Adding Pop-up BOXeS ... 294

Setting TIMers. ... 296

Contents

Part IlI: Building Richly Interactive Web Pages

HOUR 12: Enhancing User Interaction Through Animation and Other
Special Effects

Understanding jQuery Animation ...
Animating Show and Hide......................

Animating Visibility................

HOUR 13: Interacting with Web Forms
Accessing Form Elements.......................
Intelligent Form Flow Control..
Dynamically Controlling Form Element Appearance and Behavior............

Validating a Form................

HOUR 14: Creating Advanced Web Page Elements
Adding an Image Gallery ...
Implementing Tables with Sorting and Filters..
Creating a Tree VIeW ...
Using Overlay Dialogs. ...
Implementing a Graphical Equalizer Display ..

301
301
305
309
312
316
318
323
323
323

325
326
338
346
351
363
363
363

ix

Sams Teach Yourself jQuery and JavaScript in 24 Hours

Part IV: Advanced Concepts

HOUR 15: Accessing Server-Side Data via AJAX
Making AJAX EQSY
Implementing AJAX ...

HOUR 16: Interacting with External Services, Facebook, Google, Twitter,
and Flickr

Using jQuery and JavaScript to Add Facebook Social Elements to
Your Web Pages...................

Adding Google Maps to Your Web Pages.........................
Adding a Custom Google Search ...
Adding Twitter Elements to Your Web Pages..

Part V: jQuery Ul

HOUR 17: Introducing jQuery Ul
Getting Started with jQuery Ul
Applying jQuery Ul in Your Scripts.........................

HOUR 18: Using jQuery Ul Effects
Applying jQuery UL Effects.......................
Adding Effects to Class Transitions ...
Adding Effects to Element Visibility Transitions..

395
395
399
419
422
422
423

425

425
432
439
443
451
456
456
456

459
459
463
472
472
472

Contents

HOUR 19: Advanced Interactions Using jQuery Ul Interaction Widgets
Introducing jQuery Ul Interactions.......................................
Using the Drag-and-Drop Widgets........................
Resizing Elements Using the Resizable Widget ...
Applying the Selectable Widget.........................
Sorting Elements with the Sortable Widget ...

HOUR 20: Using jQuery Ul Widgets to Add Rich Interactions to Web Pages
Reviewing Widgets. ...
Adding an Expandable Accordion Element ...
Implementing Autocomplete in Form Elements
Applying jQuery Ul Buttons to Form Controls...
Creating a Calendar Input.......................
Generating Stylized Dialogs with jQuery UI...
Implementing Stylized Menus ...
Creating Progress Bars...........................
Implementing Slider Bars..........................
Adding a Value Spinner Element..........................
Creating Tabbed Panels............................
Adding Tooltips to Page Elements.........................
Creating Custom Widgets ...

Part VI: jQuery Mobile

HOUR 21: Introducing Mobile Website Development
Jumping into the Mobile World. ...
Getting Started with jQuery Mobile...........................

493
493
495
503
508
512
518
518
519

521
521
522
523
524
525
527
528
529
530
532
533
535
537
538
538
538

Xi

Xii Sams Teach Yourself jQuery and JavaScript in 24 Hours

QA 551
WOTKSNOPD. ..o 552
HOUR 22: Implementing Mobile Web Pages 553
Building Mobile Pages...................... 553
Implementing Mobile Sites with Multiple Pages....................................... 556
Creating a Navbar.................. 567
Implementing Dialogs..................... 571
SUIMIMQTY ... 576
Q& A 576
Workshop. ... 576
HOUR 23: Formatting Content in Mobile Pages 579
Adding Basic HTML. ... 579
Creating a Grid Layout...................... 581
Implementing Listviews. ... 585
Using Collapsible Blocks and Sets......................... 590
Adding Auxiliary Content to Panels ... 592
Working with Pop-ups................ 594
Building Mobile-Friendly Tables ... 595
SUIMIMQTY ... 597
Q& A 597
Workshop. ... 597
HOUR 24: Implementing Mobile Form Elements and Controls 599
Understanding Mobile Forms ... 599
Using Text Elements.................... 601
Defining Buttons. ... 603
Adding Sliders and Toggle Switches ... 604
Defining Radios and Check Boxeso 608
Implementing Select Menus........................ 610
SUIMIMQAIY ..o 612
QA 612
WOTKSNOPD. ..o 613

Index 615

About the Author

Brad Dayley is a senior software engineer with more than 20 years of experience develop-
ing enterprise applications. He has used HTML/CSS, JavaScript, and jQuery extensively to
develop a wide array of web pages, ranging from enterprise application interfaces to sophis-
ticated, rich Internet applications, to smart interfaces for mobile web services. He is the
author of Python Phrasebook and jQuery and JavaScript Phrasebook.

Acknowledgments

I'd like to take this opportunity to thank all those who made this title possible. First, thanks
to my wonderful wife and boys for giving me the inspiration and support I need. I'd never
make it far without you.

Thanks to Mark Taber for getting this title rolling in the right direction, Russell Kloepfer, for
keeping me honest with his technical review, Barbara Hacha, for turning the technical ram-
blings of my brain into a fine text, and Tonya Simpson, for managing everything on the
production end and making sure the book is the finest quality.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we're doing right, what we could do better, what areas
you'd like to see us publish in, and any other words of wisdom you're willing to pass our
way.

We welcome your comments. You can email or write to let us know what you did or didn't
like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name
and email address. We will carefully review your comments and share them with the author
and editors who worked on the book.

Email: feedback@samspublishing.com
Mail: Sams Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

This page intentionally left blank

Introduction

With billions of people using the Internet today, there is a rapidly growing trend to replace
traditional websites, where pages link to other pages with a single page, with applications that
have richly interactive elements. The main reason for this is that users have become less patient
with clicking, waiting, and then having to navigate back and forth between web pages. Instead,
they want websites to behave more like the applications they are used to on their computers
and mobile devices.

In fact, in just the next 24 hours, millions of new web pages will be added to the Internet. The
majority of these pages will be written in HTML, with CSS to style elements and with JavaScript
to provide interaction between the user and back-end services.

As you complete the 24 one-hour lessons in this book, you will gain a practical understanding
of how to incorporate JavaScript with the powerful jQuery library to provide rich user interac-
tions in your web pages. You will gain the valuable skills of adding dynamic code that allows
web pages to instantly react to mouse clicks and finger swipes, interact with back-end services to
store and retrieve data from the web server, and create robust Internet applications.

Each hour in the book provides fundamentals that are necessary to create professional web
applications. The book includes some basics on using HTML and CSS to get you started, even if
you've never used them before. You are provided with code examples that you can implement
and expand as your understanding increases. In fact, in just the first lesson in the book, you cre-
ate a dynamic web page using jQuery and JavaScript.

So pull up a chair, sit back, and enjoy the ride of programming rich Internet applications with
jQuery and JavaScript.

Beyond jQuery and JavaScript

This book covers more than jQuery and JavaScript because you need to know more than the
language structure to create truly useful web applications. The goal of this book is to give you
the fundamental skills needed to create fully functional and interactive web applications in just
24 short, easy lessons. This book covers the following key skills and technologies:

Introduction

HTML is the most current recommendation for web page creation. Every example in this
book is validated HTMLS5, the most recent recommended version.

CSS is the standard method for formatting web elements. You not only learn how to
write CSS and CSS3, but also how to dynamically modify it on the fly using jQuery and
JavaScript.

JavaScript is the best method to provide interactions in web pages without the need to
load a new page from the server. This is the standard language on which most decent web
applications are built.

jQuery, jQueryUl, and jQueryMobile are some of the most popular and robust libraries

for JavaScript. jQuery provides very quick access to web page elements and a robust set of
features for web application interaction. jQuery provides additional UI and mobile librar-

ies that provide rich UI components for traditional web applications as well as mobile web
applications.

AJAX is the standard method that web applications use to interact with web servers and
other services. The book includes several examples of using AJAX to interact with web serv-
ers, Google, Facebook, and other popular web services.

Code Examples

Most of the examples in the book provide the following elements:

>

»

HTML code—Code necessary to provide the web page framework in the browser.
CSS code—Code necessary to style the web page elements correctly.

JavaScript code—This includes both the jQuery and JavaScript code that provide interac-
tions among the user, web page elements, and web services.

Figures—Most of the examples include one or more figures that illustrate the behavior of
the code in the browser.

The examples in the book are basic to make it easier for you to learn and implement. Many of

them can be expanded and used in your own web pages. In fact, some of the exercises at the

end of each hour have you expand on the examples.

All the examples in the book have been tested for compatibility with the latest version of the
major web browsers, including Google’s Chrome, Microsoft’s Internet Explorer, and Mozilla’s

Firefox.

Q&A, Quizzes, and Exercises 3

Special Elements

As you complete each lesson, margin notes help you immediately apply what you just learned to
your own web pages.

Whenever a new term is used, it is clearly explained. No flipping back and forth to a glossary!

TIP

Tips and tricks to save you precious time are set aside in Tips so that you can spot them quickly.

NOTE

Notes highlight interesting information you should be sure not to miss.

CAUTION

When there’s something you need to watch out for, you'll be warned about it in a Caution.

Q&A, Quizzes, and Exercises

Every hour ends with a short question-and-answer session that addresses the kind of “dumb
questions” everyone wants to ask. A brief but complete quiz lets you test yourself to be sure you
understand everything presented in the hour. Finally, one or two optional exercises give you a
chance to practice your new skills before you move on.

This page intentionally left blank

This page intentionally left blank

HOUR 5

Jumping into jQuery and
JavaScript Syntax

What You’ll Learn in This Hour:

» Ways to add jQuery and JavaScript to your web pages
» Creating and manipulating arrays of objects

» Adding code logic to JavaScript

» Implementing JavaScript functions for cleaner code

Throughout the book, you'll see several examples of using jQuery and JavaScript to perform
various dynamic tasks. jQuery doesn't replace JavaScript, it enhances it by providing an abstract
layer to perform certain common tasks, such as finding elements or values, changing attributes
and properties of elements, and interacting with browser events.

In this hour, you learn the basic structure and syntax of JavaScript and how to use jQuery to
ease some of the development tasks. The purpose of this hour is to help you become familiar
with the JavaScript language syntax, which is also the jQuery language syntax.

Adding jQuery and JavaScript to a Web Page

Browsers come with JavaScript support already built in to them. That means all you need to do
is add your own JavaScript code to the web page to implement dynamic web pages. jQuery, on
the other hand, is an additional library, and you will need to add the jQuery library to your web
page before adding jQuery scripts.

Loading the jQuery Library

Because the jQuery library is a JavaScript script, you use the <script> tag to load the jQuery
into your web page. jQuery can either be downloaded to your code directory and then hosted on
your web server, or you can use the hosted versions that are available at jQuery.com. The fol-
lowing statement shows an example of each; the only difference is where jQuery is being loaded
from:

136 HOUR 5: Jumping into jQuery and JavaScript Syntax

<script src="http://code.jquery.com/jquery-latest.min.js"></script>

<script src="includes/js/jquery-latest.min.js"></script>

CAUTION

Remember that you need to place the <script> element to load the jQuery library before any script
elements that are using it. Otherwise, those libraries will not be able to link up to the jQuery code.

The jQuery library downloads and hosted links can be found at the following location:
http://jquery.com/download/

Implementing Your Own jQuery and JavaScript

jQuery code is implemented as part of JavaScript scripts. To add jQuery and JavaScript to your
web pages, first add a <script> tag that loads the jQuery library, and then add your own
<scripts> tags with your custom code.

The JavaScript code can be added inside the <script> element, or the src attribute of the
<scripts> element can point to the location of a separate JavaScript document. Either way, the
JavaScript will be loaded in the same manner.

The following is an example of a pair of <scripts> statements that load jQuery and then use it.
The document .write () function just writes text directly to the browser to be rendered:

<script src="http://code.jquery.com/jquery-latest.min.js"></script>

<script>

function writeIt () {
document .write ("jQuery Version " + $().jquery + " loaded.");

}

</scripts>

NOTE

The <script> tags do not need to be added to the <head> section of the HTML document; they
can also be added in the body. It’s useful to add simple scripts directly inline with the HTML ele-
ments that are consuming them.

Accessing HTML Event Handlers

So after you add your JavaScript to the web page, how do you get it to execute? The answer is
that you tie it to the browser events. Each time a page or element is loaded, the user moves or
clicks the mouse or types a character, an HTML event is triggered.

http://jquery.com/download/

Adding jQuery and JavaScript to a Web Page 137

Each supported event is an attribute of the object that is receiving the event. If you set the attri-

bute value to a JavaScript function, the browser will execute your function when the event is
triggered.

For example, the following will execute the writeIt () function when the body of the HTML
page is loaded:

<body onload="writeIt()">

TRY IT YOURSELF V¥

Implementing JavaScript and jQuery

Those are the basic steps. Now it is time to try it yourself. Use the following steps to add jQuery
to your project and use it dynamically in a web page:

1.
2.
3.

In Aptana, create a source folder named hour05.
In the same folder as the hourO5 folder, add an additional directory called js.

Go to jQuery.com/download and download the latest jQuery library to that folder and name
the file jguery.min.js. The file may come up as clear text in the browser. If so, just press
Ctrl+s (Command-s on Macs) and save the file that way.

Now create a source file named hour0501.html in the hourO5 folder.

. Add the usual basic elements (html, head, body).

Inside the <head> element, add the following line to load the library you just downloaded:

06 <script src="../js/jquery.min.js"></script>

Now you can add your own <script> tag with the following code to print out the jQuery
version to the browser windows:

07 <script>

08 function writelIt ()

09 document .write ("jQuery Version " + $().jquery + " loaded.");
10 }

11 </scripts>

To have your script execute when the document is loaded, tie the writeIt () function to
the <body> onload event using the following line:

13 <body onload="writeIt()">

Save the file, shown in Listing 5.1, and view it in a web browser. The output should be
similar to Figure 5.1.

138

HOUR 5: Jumping into jQuery and JavaScript Syntax

| € | @ localhost/codejhol o
P

-..l'GnngIEP| A B~ = |- uv

jQuery Version 1.8.3 loaded.

FIGURE 5.1
The function writeIt () is executed when the body loads and writes the jQuery version to the browser.

LISTING 5.1 Very Basic Example of Loading Using jQuery in a Web Page to Print
Out Its Own Version

01 <!DOCTYPE html>

02 <html>

03 <head>

04 <title>Hour 5-1</title>

05 <meta charset="utf-8" />

06 <script src="../js/jquery.min.js"></script>
07 <scripts>

08 function writelIt () {

09 document .write ("jQuery Version " + $().jquery + " loaded.");
10 }

11 </scripts>

12 </head>

13 <body onload="writeIt()">

14 </body>

15 </html>

Accessing the DOM

One of the most important aspects of JavaScript, and especially jQuery, is the capability to

access and manipulate the DOM. Accessing the DOM is how you make the web page dynamic

by changing styles, size, position, and values of elements.

In the following sections, you learn about accessing the DOM through traditional methods via

JavaScript and the much improved methods using jQuery selectors. These sections are a brief

introduction. You will get plenty of practice as the hours roll on.

Accessing the DOM 139

Using Traditional JavaScript to Access the DOM

Traditionally, JavaScript uses the global document object to access elements in the web page.
The simplest method of accessing an element is to directly refer to it by id. For example, if
you have a paragraph with the id="question" you can access it via the following JavaScript
getElementById () function:

var g = document.getElementById("question");

<p id="question">Which method do you prefer?</p>

Another helpful JavaScript function that you can use to access the DOM elements is
getElementsByTagName (). This returns a JavaScript array of DOM elements that match the
tag name. For example, to get a list of all the <p> elements, use the following function call:

var paragraphs = document.getElementsByTagName ("p") ;

Using jQuery Selectors to Access HTML Elements

Accessing HTML elements is one of jQuery’s biggest strengths. jQuery uses selectors that are very
similar to CSS selectors to access one or more elements in the DOM, hence, the name jQuery.
jQuery returns back either a single element or an array of jQuerified objects. jQuerified means
that additional jQuery functionality has been added to the DOM obiject, allowing for much
easier manipulation.

The syntax for using jQuery selectors is $ (selector) .action(), where selector is replaced
by a valid selector and action is replaced by a jQuerified action attached to the DOM
element(s).

For example, the following command finds all paragraph elements in the HTML document and
sets the CSS font-weight property to bold:

S("p") .css('font-weight', 'bold');

TRY IT YOURSELF V¥

Using jQuery and JavaScript to Access DOM Elements

Now to solidify the concepts, you'll run through a quick example of accessing and modifying DOM
elements using both jQuery and JavaScript. Use the following steps to build the HTML document
shown in Listing 5.2:

1. Create a source file named hour0502.html in the hourO5 folder.

2. Add the usual basic elements (html, head, body).

140

HOUR 5: Jumping into jQuery and JavaScript Syntax

Inside the <head> element, add the following line to load the library you just downloaded.

06 <script src="../js/jquery.min.js"></script>

Add the following <script> element that accesses the DOM using both the JavaScript
and jQuery methods. Notice that with jQuery two actions are chained together. The first
sets the CSS font-weight property and the second changes text contained in ele-
ment. With JavaScript, you use the getElementById () method, and then you set the
innerHTML property directly in the DOM to change the text displayed in the browser.

07 <scripts>

08 function writeIt ()

09 $ ("#heading") .css ('font-weight', 'bold') .html ("jQuery") ;
10 var g = document.getElementById("question") ;

11 g.innerHTML = "I Prefer jQuery!";

12 }

13 </script>

To have your script execute when the document is loaded, tie the writeIt () function to
the <body> onload event using the following line:

15 <body onload="writeIt()">

6. Add the following <p> elements to the <body> to provide containers for the JavaScript

code to access:

16 <p id="heading">jQuery or JavaScript</p>
17 <p id="question"s>Which method do you prefer?</p>

7. Save the file and view it in a web browser. The output should be similar to Figure 5.2.

Change the content

iQuery ot TavaScript and style using jQuery. ey

“Which method do you prefer? - I Prefer jQuery!

FIGURE 5.2

The function writeIt () is executed when the body loads and changes the content and appearance of the

text.

LISTING 5.2 Very Basic Example of Using JavaScript and jQuery to Access DOM

Ele

ments

01
02
03
04

<!DOCTYPE htmls>
<html>
<head>
<title>Hour 5-2</title>

Understanding JavaScript Syntax

05 <meta charset="utf-8" />

06 <script src="../js/jquery.min.js"></scripts>

07 <scripts>

08 function writelIt ()

09 S ("#heading") .css (' font-weight', 'bold') .html ("jQuery") ;
10 var g = document.getElementById("question") ;

11 g.innerHTML = "I Prefer jQuery!";

12 }

13 </script>

14 </head>
15 <body onload="writeIt()">

16 <p id="heading">jQuery or JavaScript</p>

17 <p id="question">Which method do you prefer?</p>
18 </body>

19 </htmls>

141

Understanding JavaScript Syntax

Like any other computer language, JavaScript is based on a rigid syntax where specific words

mean different things to the browser as it interprets the script. This section is designed to walk

you through the basics of creating variables, working with data types, and using looping and

functions in JavaScript to manipulate your web pages.

Creating Variables

The first place to begin with in JavaScript is variables. Variables are a means to name data so

that you can use that name to temporarily store and access data from your JavaScript files.

Variables can point to simple data types, such as numbers or strings, or they can point to more

complex data types, such as objects.

To define a variable in JavaScript, you must use the var keyword and then give the variable a

name; for example:

var myData;

You can also assign a value to the variable in the same line. For example, the following line of

code creates a variable mysString and assigns it the value of "Some Text":

var myString = "Some Text";

This works as well as

var myString;
myString = "Some Text";

142 HOUR 5: Jumping into jQuery and JavaScript Syntax

After you have declared the variable, you can use the name to assign the variable a value and
access the value of the variable. For example, the following code stores a string into the
myString variable and then uses it when assigning the value to the newString variable:

var myString = "Some Text";

var newString = myString + "Some More Text";

Your variable names should describe the data that is stored in them so that it is easy to use them
later in your program. The only rule for creating variable names is that they must begin with a
letter, $, or , and they cannot contain spaces. Also remember that variable names are case sen-
sitive, so using myString is different from MyString.

Understanding JavaScript Data Types

JavaScript uses data types to determine how to handle data that is assigned to a variable. The
variable type will determine what operations you can perform on the variable, such as looping
or executing. The following list describes the most common types of variables that we will be
working with through the book:

» String—Stores character data as a string. The character data is specified by either single or
double quotes. All the data contained in the quotes will be assigned to the string variable.
For example:

var myString = 'Some Text';
var anotherString = “Some Other Text";

» Number—Stores the data as a numerical value. Numbers are useful in counting, calcula-
tions, and comparisons. Some examples are

var myInteger = 1;
var cost = 1.33;

» Boolean—Stores a single bit that is either true or false. Booleans are often used for flags.
For example, you might set a variable to false at the beginning of some code and then
check it on completion to see whether the code execution hit a certain spot. The following
shows an example of defining a true and a false variable:

var yes = true;

var no = false;

» Array—An indexed array is a series of separate distinct data items all stored under a sin-
gle variable name. Items in the array can be accessed by their zero-based index using the
[index]. The following is an example of creating a simple array and then accessing the
first element, which is at index O:

var arr = ["one", "two", "three"]

var first = arr[0];

Understanding JavaScript Syntax 143

» Associative Array/Objects—JavaScript does support the concept of an associative array,
meaning accessing the items in the array by a name instead of an index value. However,
a better method is to use an object literal. When you use an object literal, you can access
items in the object using object .property syntax. The following example shows how to
create and access an object literal:

var obj = {"name":"Brad", "occupation":"Hacker", "age", "Unknown"};
var name = obj.name;

» Null—At times you do not have a value to store in a variable, either because it hasn’t
been created or you are no longer using it. At this time you can set a variable to null.
That way you can check the value of the variable in your code and use it only if it is not
null.

var newVar = null;

NOTE

JavaScript is a typeless language, meaning you do not need to tell the browser what data type the
variable is; the interpreter will automatically figure out the correct data type for the variable.

Using Operators

JavaScript operators provide the capability to alter the value of a variable. You are already
familiar with the = operator because you used it several times in the book already. JavaScript
provides several operators that can be grouped into two types—arithmetic and assignment.

Arithmetic Operators

Arithmetic operators are used to perform operations between variable and direct values. Table
5.1 shows a list of the arithmetic operations along with the results that get applied.

TABLE 5.1 Table Showing JavaScript’s Arithmetic Operators as Well as Results
Based on y=4 to Begin With

Operator Description Example Resulting x Resulting y
+ Addition X=y+5 9n49n 444
xX=y+"5" "Four44"

x="Four"+y+"4"
- Subtraction X=y-2 2 4
++ Increment X=y++ 4 5

X=++y 5 5

144 HOUR 5: Jumping into jQuery and JavaScript Syntax

Operator Description Example Resulting x Resulting y
-- Decrement X=y-- 4 3
X=--y 3 3
* Multiplication x=y*4 16 4
/ Division x=10/y 2.5 4
% Modulous x=y%3 1 4
(remainder of
Division)
TIP

The + operator can also be used to add strings or strings and numbers together. This allows you to
quickly concatenate strings and add numerical data to output strings. Table 5.1 shows that when
adding a numerical value and a string value, the numerical value is converted to a string, and then
the two strings are concatenated.

Assignment Operators

Assignment operators are used to assign a value to a variable. You are probably used to the =
operator, but there are several forms that allow you to manipulate the data as you assign the
value. Table 5.2 shows a list of the assignment operations along with the results that get applied.

TABLE 5.2 JavaScript's Assignment Operators as Well as Results Based on x=10
to Begin With

Operator Example Equivalent Arithmetic Resulting x
Operators

= x=5 x=5 5

+= X+=5 X=X+5 15

_— x-=5 X=X-5 5

= X=5 X=X*5 25

/= x/=5 x=x/5 2

or
Il
X
I
i
al
»
Il
»
o
ol
o

Understanding JavaScript Syntax

Applying Comparison and Conditional Operators

145

Conditionals are a way to apply logic to your applications so that certain code will be executed

only under the correct conditions. This is done by applying comparison logic to variable values.

The following sections describe the comparisons available in JavaScript and how to apply them

in conditional statements.

Comparison Operators

A comparison operator evaluates two pieces of data and returns true if the evaluation is correct

or false if the evaluation is not correct. Comparison operators compare the value on the left of

the operator against the value on the right.

The simplest way to help you understand comparisons is to provide a list with some examples.

Table 5.3 shows a list of the comparison operators along with some examples.

TABLE 5.3 JavaScript’s Comparison Operators as Well as Results Based on x=10

to Begin With
Operator Example Example Result
== Is equal to (value only) x== false
x==10 true
=== Both value and type x===10 true
are equal x==="10" false
1= Is not equal x1=5 true
l== Both value and type Xl=="10" true
are not equal 12210 false
> Is greater than X>5 true
>= Is greater than or x>=10 true
equal to
< Is less than x<5 false
<= Is less than or equal x<=10 true
to

You can chain multiple comparisons together using logical operators. Table 5.4 shows a list of

the logical operators and how to use them to chain comparisons together.

146 HOUR 5: Jumping into jQuery and JavaScript Syntax

TABLE 5.4 JavaScript’s Comparison Operators as Well as Results Based on x=10
and y=5 to Begin With

Operator Description Example Result
&& and (x==10 && y==5) true
(x==10 && y>x) false
|| or (x>=10 || y>x) true
(x<10 && y>X) false
! not 1 (x==Y) true
1 (x>y) false
mix (x>=10 && y<x || x==y) true
((x<y || %>=10) && y>=5) true
(! (x==y) && y>=10) false
If

An if statement enables you to separate code execution based on the evaluation of a compari-
son. The syntax is shown in the following lines of code where the conditional operators are in ()
parentheses and the code to execute if the conditional evaluates to true is in {} brackets:

if (x==5) {

do_something () ;

}

In addition to executing code only within the if statement block, you can specify an else block
that will get executed only if the condition is false. For example:
if (x==5) {
do_something () ;
} else {

do_something_else() ;

}

You can also chain if statements together. To do this, add a conditional statement along with
an else statement. For example:
if (x<5) {
do_something() ;
} else if(x<10) {
do_something else() ;
} else {
do nothing() ;

Understanding JavaScript Syntax 147

switch

Another type of conditional logic is the switch statement. The switch statement allows you
to evaluate an expression once and then, based on the value, execute one of many sections of
code.

The syntax for the switch statement is the following:

switch (expression) {

case value:
code to execute
break;

case value2:
code to execute
break;

default:
code to execute if not value or value2.

This is what is happening. The switch statement will evaluate the expression entirely and get a
value. The value may be a string, a number, a Boolean, or even an object. The switch value is
then compared to each value specified by the case statement. If the value matches, the code in
the case statement is executed. If no values match, the default code is executed.

NOTE

Typically, each case statement will include a break command at the end to signal a break out of the
switch statement. If no break is found, code execution will continue with the next case statement.

TRY IT YOURSELF V¥

Applying if Conditional Logic in JavaScript

To help you solidify using JavaScript conditional logic, use the following steps to build conditional
logic into the JavaScript for a dynamic web page. The final version of the HTML document is
shown in Listing 5.3:

1. Create a source file named hour0503.html in the hourO5 folder.
2. Create a folder under hourO5 named images.

3. Copy the day.png and night.png images from the website under code/hour05/images, or
substitute your own into the images folder.

4. Add the usual basic elements (html, head, body).

148 HOUR 5: Jumping into jQuery and JavaScript Syntax

n 5. Add the following <script> element that gets the hour value using the
Date () .getHours () JavaScript code. The code uses if statements to determine the
time of day and does two things: It writes a greeting onto the screen and sets the value of
the timeOfDay variable.

06 <scripts>

07 function writeIt () {

08 var hour = new Date () .getHours() ;
09 var timeOfDay;

10 if (hour>=7 && hour<12) {

11 document .write ("Good Morning!") ;
12 timeOfDay="morning";

13 } else if (hour>=12 && hour<18) ({
14 document .write ("Good Day!") ;

15 timeOfDay="day";

16 } else {

17 document .write ("Good Night!") ;
18 timeOfDay="night";

19 }

32 }

33 </script>

6. Now add the following switch statement that uses the value of timeOfDay to determine
which image to display in the web page:

20 switch (timeOfDay) {

21 case "morning":

22 case "day":

23 document .write ("")
24 break;

25 case "night":

26 document .write ("")
27 break;

28 default:

29 document .write ("")
30 break;

31 }

7. Save the file and view it in a web browser. The output should be similar to Figure 5.3,
depending on what time of day it is.

Between 7 a.m. and Noon Between Noon and 6 p.m. Between 6 p.m. and 7 a.m.

Good Moming! Good Day!

FIGURE 5.3
The function writeIt () is executed when the body loads and changes the greeting and image displayed on
the web page.

Understanding JavaScript Syntax

LISTING 5.3 Simple Example of Using Conditional Logic Inside JavaScript

149

01 <!DOCTYPE html>

02 <html>

03 <head>

04 <title>Hour 5-3</title>

05 <meta charset="utf-8" />

06 <script>

07 function writelIt ()

08 var hour = new Date () .getHours() ;
09 var timeOfDay;

10 if (hour>=7 && hour<12) {

11 document .write ("Good Morning!") ;
12 timeOfDay="morning" ;

13 } else if (hour>=12 && hour<18) {
14 document .write ("Good Day!") ;

15 timeOfDay="day" ;

16 } else {

17 document .write ("Good Night!") ;
18 timeOfDay="night";

19 }

20 switch (timeOfDay) {

21 case "morning":

22 case "day":

23 document .write ("")
24 break;

25 case "night":

26 document .write ("")
27 break;

28 default:

29 document .write ("")
30 break;

31 }

32 }

33 </scripts>

34 </head>

35 <body onload="writeIt()">

36 </body>

37 </html>

Implementing Looping

Looping is a means to execute the same segment of code multiple times. This is extremely use-

ful when you need to perform the same tasks on a set of DOM obijects, or if you are dynamically

creating a list of items.

150 HOUR 5: Jumping into jQuery and JavaScript Syntax

JavaScript provides functionality to perform for and while loops. The following sections
describe how to implement loops in your JavaScript.

while Loops

The most basic type of looping in JavaScript is the while loop. A while loop tests an expression
and continues to execute the code contained in its {} brackets until the expression evaluates to
false.

For example, the following while loop executes until the value of i is equal to 5:

var i = 1;

while (i<5){
document .write ("Iteration " + 1 + "
");
i++;

The resulting output to the browser is as follows:

Iteration 1
Iteration
Iteration

W N

Iteration

do/while Loops

Another type of while loop is the do/while loop. This is useful if you always want to execute
the code in the loop at least once and the expression cannot be tested until the code has exe-
cuted at least once.

For example, the following do/while loop executes until the value of day is equal to
Wednesday:

var days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"];
var i=0;
dof
var day=days[i++];
document .write("It's " + day + "<brs>");
} while (day != "Wednesday") ;

The resulting output to the browser is

It's Monday
It's Tuesday
It's Wednesday

Understanding JavaScript Syntax 151

for Loops

The JavaScript for loop allows you to execute code a specific number of times by using a for
statement that combines three statements into one using the following syntax:

for (statement 1; statement 2; statement 3;){
code to be executed;

}

The for statement uses those three statements as follows when executing the loop:

> statement 1—Executed before the loop begins and not again. This is used to initialize vari-
ables that will be used in the loop as conditionals.

> statement 2—Expression that is evaluated before each iteration of the loop. If the expres-
sion evaluates to true, the loop is executed; otherwise, the for loop execution ends.

> statement 3—Executed each iteration after the code in the loop has executed. This is typi-
cally used to increment a counter that is used in statement 2.

To illustrate a for loop, check out the following example. The example not only illustrates a
basic for loop, it also illustrates the capability to nest one loop inside another:
for (var x=1; x<=3; x++){

for (var y=1; y<=3; y++){
document .write(x + " X " + y + " =" + (x*y) + "
");

}
}

The resulting output to the web browser is as follows:

>

w W w N NN R R

X X X M X X
W N R WD R WN R
It
VW aW o RN W N R

for/in Loops

Another type of for loop is the for/in loop. The for/in loop executes on any data type that
can be iterated on. For the most part, you will use the for/in loop on arrays and objects. The
following example illustrates the syntax and behavior of the for/in loop in a simple array:

var days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"];
for (var idx in days) {

152 HOUR 5: Jumping into jQuery and JavaScript Syntax

document .write ("It's " + days([idx] + "
");

Notice that the variable idx is adjusted each iteration through the loop from the beginning
array index to the last. The resulting output is

It's Monday

It's Tuesday

It's Wednesday

It's Thursday

It's Friday

Interrupting Loops
When working with loops, at times you need to interrupt the execution of code inside the code
itself without waiting for the next iteration. There are two ways to do this using the break and

continue keywords.

The break keyword stops execution of the for or while loop completely. The continue key-
word, on the other hand, stops execution of the code inside the loop and continues on with the
next iteration. Consider the following examples:

Using a break if the day is Wednesday:

var days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"];
for (var idx in days) {
if (days[idx] == "Wednesday")
break;

document .write ("It's " + days[idx] + "
");

When the value is Wednesday, loop execution stops completely:

It's Monday
It's Tuesday

Using a continue if the day is Wednesday:

var days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"];
for (var idx in days) {
if (days([idx] == "Wednesday")
continue;

document .write ("It's " + days([idx] + "
");

Notice that the write is not executed for Wednesday because of the continue; however, the
loop execution did complete:

It's Monday

Understanding JavaScript Syntax 153

It's Tuesday
It's Thursday
It's Friday

Creating Functions

One of the most important parts of JavaScript is making code that is reusable by other code. To
do this, you combine your code into functions that perform specific tasks. A function is a series
of code statements combined in a single block and given a name. The code in the block can then
be executed by referencing that name.

Defining Functions

Functions are defined using the keyword function followed by a function name that describes
the use of the function, list of zero or more arguments in () parentheses, and a block of one or
more code statements in {} brackets. For example, the following is a function definition that
writes “Hello World” to the browser.

function myFunction () {
document .write ("Hello World") ;

}

To execute the code in myFunction (), all you need to do is add the following line to the main
JavaScript or inside another function:

myFunction() ;

Passing Variables to Functions

Frequently, you will need to pass specific values to functions that they will use when executing
their code. Values are passed in comma-delimited form to the function. The function definition
will need a list of variable names in the () parentheses that match the number being passed in.
For example, the following function accepts two arguments, a name and city, and uses them to
build the output string:

function greeting(name, city) {

document .write ("Hello " + name) ;

document .write(". How is the weather in " + city);

To call the greeting () function, we need to pass in a name value and a city value. The value
can be a direct value or a previously defined variable. To illustrate this, the following code will
execute the greeting () function with a name variable and a direct string for the city:

var name = "Brad";
greeting (name, "Florence") ;

154 HOUR 5: Jumping into jQuery and JavaScript Syntax

Returning Values from Functions

Often, functions will need to return a value to the calling code. Adding a return keyword fol-
lowed by a variable or value will return that value from the function. For example, the following
code calls a function to format a string, assigns the value returned from the function to a vari-
able, and then writes the value to the browser:
function formatGreeting(name, city){

var retStr = "";

retStr += "Hello " + name + "
";

retStr += "Welcome to " + city + "I";

return retStr;

}

var greeting = formatGreeting("Brad", "Rome") ;
document .write (greeting) ;

You can include more than one return statement in the function. When the function encoun-
ters a return statement, code execution of the function is stopped immediately. If the return
statement contains a value to return, that value is returned. The following example shows a
function that tests the input and returns immediately if it is zero:
function myFunc (value) {
if (value == 0)
return;

code to execute if value nonzero;

}

V¥ TRY IT YOURSELF

Creating JavaScript Functions

To help solidify functions, use the following steps to integrate some functions into a JavaScript
application. The following steps take you through the process of creating a function, calling it to
execute code, and then handling the results returned:

1. Create a source file named hour0504.html in the hourO5 folder.

2. Add the usual basic elements (html, head, body).

3. Add a <script> tag to the <head> element to house the JavaScript.
4

. Insert the following object literal definition at the beginning of the script. The object will
have planet names for attributes, and each planet name is a reference to an array of

moons.
07 var moonData = {"Earth":["Luna"],
08 "Jupiter": ["Io", "Europa'l,

09 "Saturn": ["Titan", "Rhea"],

Understanding JavaScript Syntax 155

10 "Mars": ["Phobos"] }; n

5. Add the following function that will be called by the onload event. In this function you use
a nested for/in loop to iterate through the moonData object attributes. The outer loop
gets the planet name and the inner loop loops through the index of the moon array.

11 function writelIt ()

12 for (planet in moonData) {

13 var moons = moonData[planet];

14 for (moonIdx in moons) {

15 var moon = moons [moonIdx] ;

16 var listItem = makeListItem(planet, moon) ;
17 document .write (listItem) ;

18 }

19 }

20 }

6. Notice that on line 16 of the writeIt () function is a call to makeListItem(). That
function needs to return a value that can be used in line 17 to write to the document. Add
the following code to create the function. The function takes two arguments: a name and a
value, then generates an HTML string to create a <11i> element and returns the string.

21 function makeListItem(name, value) {

22 var itemStr = "" + name + ": " + value + "";
23 return itemStr;

24 }

7. Save the file, shown in Listing 5.4, and open it in a web browser. You should see the
results shown in Figure 5.4. You have just created two JavaScript functions: one that takes
no arguments and does not return a value and the other that takes two arguments and
returns a formatted HTML string containing the argument strings.

e Earth: Tuna

¢ Jupiter: To

¢ Jupiter: Europa
* Saturn: Tian

o Saturn: Rhea
* Mars: Phobos

FIGURE 5.4
The function writeIt () is executed, which iterates through the moonData object and makes calls to the
makeListItem () function to format the planet and moon names as an HTML <1i> element.

LISTING 5.4 Simple Example of Using Conditional Logic Inside JavaScript

01 <!DOCTYPE html>
02 <html>

156 HOUR 5: Jumping into jQuery and JavaScript Syntax

03 <head>

04 <title>Hour 5-4</title>

05 <meta charset="utf-8" />

06 <script>

07 var moonData = {"Earth":["Luna"],

08 "Jupiter": ["Io", "Europa"l],
09 "Saturn": ["Titan", "Rhea"],
10 "Mars": ["Phobos"] };

11 function writeIt () {

12 for (planet in moonData) {

13 var moons = moonData [planet] ;

14 for (moonIdx in moons) {

15 var moon = moons [moonIdx] ;

16 var listItem = makeListItem(planet, moon) ;
17 document .write(listItem) ;

18 }

19 }

20 }

21 function makeListItem (name, value){

22 var itemStr = "<1li>" + name + ": " + value + "</1li>";
23 return itemStr;

24 }

25 </script>

26 </head>

27 <body onload="writeIt()">
28 </body>

29 </html>

Understanding Variable Scope

After you start adding conditions, functions, and loops to your JavaScript applications, you need
to understand variable scoping. Variable scope is simply this: “what is the value of a specific
variable name at the current line of code being executed."

JavaScript enables you to define both a global and a local version of the variable. The global
version is defined in the main JavaScript, and local versions are defined inside functions. When
you define a local version in a function, a new variable is created in memory. Within that
function, you will be referencing the local version. Outside that function, you will be referencing
the global version.

To understand variable scoping a bit better, consider the following code:

01 <scripts>
02 var myvVar = 1;
03 function writeIt () {

Understanding JavaScript Syntax 157

04 var myVar = 2;

05 document .write (myVar) ;
06 writeMore () ;

07 }

08 function writeMore () {

09 document .write (myVar) ;
10 }

11 </scripts>

The global variable myVar is defined on line 2. Then on line 4, a local version is defined within
the writeIt () function. So, line 5 will write 2 to the document. Then in line 6, writeMore ()
is called. Because there is no local version of myVar defined in writeMore (), the value of the
global myVar is written in line 9.

Adding Error Handling

An important part of JavaScript coding is adding error handling for instances where there may
be problems. By default, if a code exception occurs because of a problem in your JavaScript, the
script fails and does not finish loading. This is not usually the desired behavior.

Try/Catch Blocks

To prevent your code from totally bombing out, use try/catch blocks that can handle problems
inside your code. If JavaScript encounters an error when executing code in a try/catch block, it
will jump down and execute the catch portion instead of stopping the entire script. If no error
occurs, all of the try will be executed and none of the catch.

For example, the following try/catch block will execute any code that replaces your code
here. If an error occurs executing that code, the error message followed by the string
": happened when loading the script" will be written to the document:
try {
your_code_here

} catch (err) {
document .write (err.message + ": happened when loading the script");

}

Throw Your Own Errors

You can also throw your own errors using a throw statement. The following code illustrates how
to add throws to a function to throw an error, even if a script error does not occur:

01 <scripts>

02 function sgrRoot (x) {
03 try {
04 if (x=="") throw "Can't Square Root Nothing";

05 if (isNaN(x)) throw "Can't Square Root Strings";

158 HOUR 5: Jumping into jQuery and JavaScript Syntax

06 if (x<0) throw "Sorry No Imagination";
07 return "sqgrt ("+x+") = " + Math.sgrt (x);
08 } catch(err) {

09 return err;

10 }

1}

12 function writeIt ()

13 document .write (sgrRoot ("four") + "
");
14 document .write (sgqrRoot ("") + "<brs>");

15 document .write (sgqrRoot ("4") + "
");

16 document .write (sgrRoot ("-4") + "
");
17 }

18 </scripts>

The function sqgrRoot () accepts a single argument x. It then tests x to verify that it is a positive
number and returns a string with the square root of x. If x is not a positive number, the appro-
priate error is thrown and returned to writeIt ().

Using finally

Another valuable tool in exception handling is the finally keyword. A £inally keyword

can be added to the end of a try/catch block. After the try/catch blocks are executed, the
finally block is always executed. It doesn’t matter if an error occurs and is caught or if the try
block is fully executed.

Following is an example of using a £inally block inside a web page:

function testTryCatch (value) {
try {
if (value < 0){
throw "too small";
} else if (value > 10)({
throw "too big";
}
your_code_here
} catch (err) {
document .write ("The number was " + err.message");
} finally {
document .write ("This is always written.");

Workshop 159

Summary

In this hour, you learned the basics of adding jQuery and JavaScript to web pages. The basic
data types that are used in JavaScript and, consequently, jQuery, were described. You learned
some of the basic syntax of applying conditional logic to JavaScript applications. You also
learned how to compartmentalize your JavaScript applications into functions that can be reused
in other locations. Finally, you learned some ways to handle JavaScript errors in your script
before the browser receives an exception.

Q&A

Q. When should you use a regular expression in string operations?

A. That depends on your understanding of regular expressions. Those who use regular expres-
sions frequently and understand the syntax well would almost always rather use a regular
expression because they are so versatile. If you are not very familiar with regular expres-
sions, it takes time to figure out the syntax, and so you will want to use them only when
you need to. The bottom line is that if you need to manipulate strings frequently, it is abso-
lutely worth it to learn regular expressions.

Q. Can | load more than one version of jQuery at a time?

A. Sure, but there really isn’t a valid reason to do that. The one that gets loaded last will over-
write the functionality of the previous one. Any functions from the first one that were not
overwritten may be completely unpredictable because of the mismatch in libraries. The best
bet is to develop and test against a specific version and update to a newer version only
when there is added functionality that you want to add to your web page.

Workshop

The workshop consists of a set of questions and answers designed to solidify your understanding
of the material covered in this hour. Try to answer the questions before looking at the answers.

Quiz

What is the difference between == and === in JavaScript?

B

What is the difference between the break and continue keywords?

When should you use a £inally block?

P W N

What is the resulting value when you add a string “1” to a number 1, ("1"+1)?

160 HOUR 5: Jumping into jQuery and JavaScript Syntax

Quiz Answers
1. == compares only the relative value; === compares the value and the type.

2. break will stop executing the loop entirely, whereas continue will only stop executing the
current iteration and then move on to the next.

3. When you have code that needs to be executed even if a problem occurs in the try block.

4. The string “11” because the number is converted to a string and then concatenated.

Exercises

1. Open hour0504.html and modify it to create a table instead of a list. You will need to add
code to the writeIt () function that writes the <table> open tag before iterating through
the planets and then the closing tag after iterating through the planets. Then modify the
makeListItem () function to return a string in the form of

<tr><tdsplanent</td><td>moon</td></tr>

2. Modify hour0503.html to include some additional times with different messages and
images. For example, between 8 and 9 you could add the message “go to work” with a
car icon, between 5 and 6 you could add the message “time to go home” with a home
icon. You will need to add some additional cases to the switch statement and set the
timeOfDay value accordingly.

This page intentionally left blank

Index

A DOM (Document Object
Model), 137-141
<a> element, 78 example, 140-141
abort event, 228 finding objects by class
name, 189

abort() method, 421
abs() method, 176
ACCEPT header, 10 finding objects by tag

. i name, 189-190
accept option (droppable widget),
499 with jQuery selectors,

139, 201-203
sample project, 191-192

finding objects by ID, 189

accept rule (form validation), 354
accessing
browser values, 260-266
data outside the web page,

with traditional JavaScript,
139

form elements, 326

285, 295
. . attributes, 326-327
browser history object,
289 button inputs, 330
browser location object, check box inputs, 328
285 file inputs, 330-331
cookies, 291-294 hidden inputs, 331
external links, controlling, radio inputs, 328-329

290 select inputs, 329-330
pop-up boxes, 294-296 text input elements,
screen object, 285-286 327-328
timers, 296-299 server-side data with AJAX,
window object, 285-288 406-408

asynchronous

communication, 397

616 accessing

AJAX (Asynchronous JavaScript
and XML)

compared to page .ajaxSetup() method, 419

requests, 395-396 .ajaxStart() method, 419

cross-domain requests,
397-398

GET requests, 398-399

global event handlers, 419

global setup, 396-419

implementing from
JavaScript, 399-401

implementing from jQuery,
401-404

low-level AJAX requests,
handling, 420-422

overview, 395
POST requests, 398-399
request handling, 397

response data, handling,
405, 408414

response data types, 399

server data, updating,
415-419

accordian widget, 522
accounts (Google), creating, 439
active option (tabs widget), 534

activeClass option (droppable
widget), 499

.add() method, 211

.addClass() method, 188,
271, 482

addEventListener() method,
232-236

addFBsdk() function, 427,
431-432

addltem() function, 378
adjValues() function, 390
.after() method, 270

asynchronous communication,
397

bypassing, 562

compared to page requests,
395-396

cross-domain requests,
397-398

DOM insertion, 560-562
GET requests, 398-399
global event handlers, 419
global setup, 396-419

implementing from JavaScript,
399-401

implementing from jQuery,
401-404

login requests, handling,
405-408

low-level AJAX requests,
handling, 420-422

overview, 16-17, 395
POST requests, 398-399
request handling, 397

response data, handling, 405,
408-414

JSON response data,
408-411

XML/HTML response data,
handling, 412-414

response data types, 399
simple example, 16-17

updating server data with,
415-419

.ajax() method, 397, 420-421
.ajaxComplete() method, 419
.ajaxError() method, 419
.ajaxSend() method, 419

.ajaxStop() method, 419
.ajaxSuccess() method, 419
alert() method, 287, 295
alsoResize option (resizable
widget), 504
altKey property (events), 225
.always() method, 405, 422
analyzing network traffic, 59-62
.andSelf() method, 211
animations

adding to form elements,
346-351

animation queues, 302

CSS settings, animating,
301-303

delaying, 304

effects, 488-490

.hide() method, 305
moving elements, 318-322

element position changes
on nonstatic elements,
319

element position changes
on static elements, 319

paper airplane app,
319-322

overview, 301

.promise() method, 305

resize animations, 316-318

.show() method, 305-306

sliding animation, 312
dynamic menu sample

project, 314-316

.slideDown() method, 312
.slideToggle() method, 312

.slideUp() method, 312
width and height, 312
stopping, 302-304
visibility
fade animation to
implement image
selection effect, 311
.fadeln() method, 309
.fadeOut() method, 309
.fadeTo() method, 310
.fadeToggle() method, 309
.append() method, 268
appendChild() method, 187, 267
.appendTo() method, 268
appendTo option (selectable
widget), 508
Aptana Studio
configuring, 19-20
installing, 18-19
arithmetic operators, 143
Array object, 166-174
adding/removing items, 171

checking whether array
contains an item, 171

combining, 169
converting to strings, 171
iterating through, 169
methods, 169-170
overview, 166-169
sample project, 173-174
arrays, 142, 166
aspectRatio option (resizable
widget), 504
assign() method, 285
assignment operators, 143
associative arrays, 143

asynchronous communication, 397

Asynchronous JavaScript and
XML. See AJAX (Asynchronous
JavaScript and XML)

at option (.position() method),
467

.attr() method, 188, 327

attribute jQuery selectors,
193-195

<audio> element, 94

AUTHORIZATION header, 11

autocomplete widget, 523-524

autoHide option (resizable
widget), 504

availHeight property (screen
object), 285

availWidth property (screen
object), 285

axis option
draggable widget, 495
sortable widget, 513

back button, 557

background-attachment property
(CsSs), 111

background-color property (CSS),
111

background-image property (CSS),
111

background-position property
(CsSs), 111

background-repeat property (CSS),
111

background-size property (CSS),
111

browsers 617

backgrounds, applying with CSS,
111

basic jQuery selectors, 193-194
.before() method, 270

bind() method, 236

blind effect, 476

block elements, 73-75

blur event, 228

.blur() method, 287, 339
blurring form elements, 339
<body> element, 66

Boolean data type, 142

border attribute (table elements),
80

border-color property (CSS), 117

border-radius property (CSS), 117

border-style property (CSS), 117

border-width property (CSS), 117

borders, applying with CSS,
117121

bounce effect, 476

box model, 122-123

box-shadow property (CSS), 117

break keyword, 152

browser development tools, 21-22
Firebug on Firefox, 21-22

Internet Explorer developer
tools, 22-23

JavaScript console in Chrome,
22

browser values, accessing,
260-266

browsers. See also browser
development tools

browser window, 7
events, 7

history object, 289

How can we make this index more useful? Email us at indexes@samspublishing.com

618 browsers

Internet Explorer developer
tools, 22-23

location object, 285
overview, 6
buildData() function, 372
<button> element, 83
button inputs, 330
.button() method, 524
button property (events), 225
buttonlmage option (datepicker
widget), 525
buttonlmageOnly option
(datepicker widget), 525
buttons
Follow button, 445
jQuery Ul buttons, 524-525
Like button, 427
in mobile forms, 603
navbars, 567-571
navigation buttons
back button, 557
creating, 556
positioning, 557
Send button, 428
Tweet button, 444

buttons option (dialog widget),
527

.buttonset() method, 524
bypassing AJAX, 562

C

calendar input, creating, 525-526
callbacks, 251
callback mechanism, 251-252
deferred objects, 252

cancel option (mouse interaction
widget), 494

cancelable property (events), 225

<canvas> element, 91-93

<caption> element, 80-83

Cascading Style Sheets. See CSS
(Cascading Style Sheets)

ceil() method, 176

center attribute (mapOptions),
433

center_changes event, 434

chaining jQuery object operations,
205-206

change event, 228
change option (slider widget), 531

changeCheckbox() function, 347,
349

.changePage() method, 557-558
changeRadio() function, 347, 349
changing classes, 270

charAt() method, 165

charCode property (events), 225
charCodeAt() method, 165

check box inputs, 328, 608
checkStatus() method, 296

childNodes attribute (DOM
objects), 187

.children() method, 208

Chrome JavaScript console, 22

class attribute, 73, 187

class name, finding DOM objects
by, 189

class transitions, 482-484

classes. See specific classes

className attribute, 260

clearInterval() method, 287, 296

clearTimeout() method, 287, 296
click event, 229

click() method, 187-188
client-side scripts, 14

clientX property (events), 225
clientY property (events), 225
clip effect, 476

close() method, 287

closed property (window object),
287

.closest() method, 209
<col> element, 80-83
<colgroup> element, 80-83

collapsible blocks and sets,
590-592

collapsible option
accordian widget, 522
tabs widget, 534
collision option (.position()
method), 467
color property (CSS), 103-105

colorDepth property (screen
object), 285

colspan attribute (table elements),
80

columntogglemode (tables), 596
combining

arrays, 169

strings, 164-166
comment fields, 428
compare() function, 373
comparison operators

if, 146

switch, 147

table of, 145

complete option (.animate()
method), 302

concat() method, 164-166,
169-170

conditional logic, 148-149
configuring
Aptana Studio, 19-20

browser development tools,
21-22

Firebug on Firefox, 21-22

Internet Explorer developer
tools, 22-23

JavaScript console in
Chrome, 22

jQuery Mobile default settings,
548

confirm() method, 287, 295
confirmation pop-ups, 295
connectTo option (sortable
widget), 513
container elements, 75-78
containment option
draggable widget, 495
resizable widget, 503
content jQuery selectors, 193-196

content option (tooltips widget),
535

content size, setting with CSS,
123

CONTENT-LENGTH header, 11
CONTENT-TYPE header, 11
.contents() method, 208
continue keyword, 152
continueNotify() function, 298
controls attribute (Map), 434
converting
arrays to strings, 171
objects, 188-189
COOKIE header, 11

cookies, 291-294

cos() method, 176

create event, 494
createElement() method, 267
createEvent() method, 241
createPopup() method, 287
createTextNode() method, 267

creditcard rule (form validation),
354

cross-domain requests, 397-398
CSS (Cascading Style Sheets), 9
adding, 27-30
to headers, 99
to HTML body, 99

animating CSS settings,
301-303

applying, 97-98
debugging, 46

with Firebug CSS
inspector, 46

with Firebug Layout
inspector, 47-52

with Firebug Style
inspector, 47

defining in HTML elements,
99-100

design properties
applying, 111-116
backgrounds, 111
borders, 117-121
color, 103-105
cursor, 121

getting and setting,
257-258

opacity, 121-122
text styles, 106-110
visibility, 122

cursor option 619

graphical equalizer display,
385-389

layout properties, 122
box model, 122-123
content size, 123
element flow, 124-125

getting and setting,
257-258

laying out web page
components with,
127-130

margins, 124
overflow, 126
padding, 123
positioning, 125-126
z-index, 126, 277-282
loading from file, 98
overview, 97
preparing for dynamic design,
130
selectors, 102-104
sparkline graphics, 389-392
syntax, 100-102
css files, 544
CSS inspector (Firebug), 46
.css() method, 188, 258, 277
ctrlkey property (events), 225

culture option (spinner widget),
533

currentTarget property (events),
225

cursor option

CSS (Cascading Style Sheets),
121

draggable widget, 495
sortable widget, 513

How can we make this index more useful? Email us at indexes@samspublishing.com

620 custom events

custom events, 249
in JavaScript, 249-250
in jQuery, 250
custom Google searches, 439-443
custom widgets, 537-538
custom-defined objects
adding methods to, 177-178
defining objects, 177

prototyping object patterns,
178179

sample project, 180-181

data attributes
mobile web pages, 545
Twitter controls, 444-445
.data() method, 331
data property (events), 225
:data() selector, 465
data types

AJAX response data types,
399

JavaScript, 142-143
data-add-back-btn attribute, 546
data-align attribute, 445
data-close-btn attribute, 546
data-collapsed attribute, 546
data-collapsed-icon attribute, 546
data-corners attribute, 600
data-count attribute, 444
data-counturl attribute, 444
data-direction attribute, 546
data-hashtags attribute, 444
data-icon attribute, 546, 600

data-iconpos attribute, 546, 600
data-lang attribute, 444-445
data-mini attribute, 546, 600
data-position attribute, 555-556
data-rel attribute, 546
data-related attribute, 444
data-role attribute, 546, 600
data-show-count attribute, 445

data-show-screen-name attribute,
445

data-size attribute, 444-445
data-text attribute, 444
data-theme attribute, 546, 600
data-title attribute, 546
data-transition attribute, 546
data-type attribute, 600
data-url attribute, 444
data-via attribute, 444
data-width attribute, 445
Date object, 174-175
date rule (form validation), 354
dateFormat option (datepicker
widget), 526
datelSO rule (form validation),
354
datepicker widget, 525-526
dblclick event, 228
debugging
CSS (Cascading Style Sheets),
46
with Firebug CSS
inspector, 46
with Firebug Layout
inspector, 47-52
with Firebug Style
inspector, 47
HTML elements, 40

Firebug DOM inspector,
44-45

with Firebug HTML
inspector, 40-44
JavaScript, 35-39, 53-59
jQuery, 59
network traffic analysis, 59-62
overview, 35
deferred objects, 252
.delay() method, 304
delay option (mouse interaction
widget), 494
delay timers, 296
delaying animations, 304

delegateTarget property (events),
225

design properties (CSS)
applying, 111-116
backgrounds, 111
borders, 117-121
color, 103-105
cursor, 121
opacity, 121-122
text styles, 106-110
visibility, 122
destroy() method, 494
.detach() method, 269
development environment
characteristics, 17-18

development web server,
24-25

IDEs, 18-20
dialogs
adding to mobile web pages,
571576

dialog widget, 527-528
overlay dialogs, 381-385

digits rule (form validation), 354
directory structure, 26-27
disable() method, 494

disabled attribute (form
elements), 84

disabling
form elements, 339
mobile forms, 600
dispatchEvent() method, 241

displayCookies() function,
292-293

displayTime() function, 298

distance option (mouse
interaction widget), 494

dividers, 586-587
do/while loops, 150
<IDOCTYPE> element, 66-67

Document Object Model. See
DOM (Document Object Model)

DOM (Document Object Model),
6-7
accessing, 137-141
example, 140-141
with jQuery selectors, 139

with traditional JavaScript,
139

editing with Firebug DOM
inspector, 44-45
event handlers, 236-241
events
adding in JavaScript,
232-236
assigning in HTML,
231-232
filtering DOM elements in
jQuery objects, 206-207

objects

accessing, 189-192,
201-203

attributes, 187

converting to/from jQuery,
188-189

determining whether an
object is DOM or jQuery,
188

finding by ID, 189
methods, 187
overview, 185-187

traversing with jQuery objects,
207-209
DOM inspector (Firebug), 44-45
.done() method, 405, 422
downloading
jQuery Mobile library, 543-544
jQuery Ul, 459
drag event, 496
drag-and-drop widgets
apply to web pages, 501-503
draggable widget, 495-498
droppable widget, 499-503
draggable widget, 495-498
dragstart event, 496
dragstop event, 496
drop effect, 476
drop event, 500
dropactivate event, 500
dropout event, 500
dropover event, 500
droppable widget, 499-503
dynamic menus, 314-316
dynamic scripts, writing, 30-32

error event 621

E method, 176
.each() method, 211-217
easing

applying to class transitions,
482-484

easing functions, 477-478

easing option (.animate()
method), 303

editing DOM (Document Object
Model), 44-45

.effect() method, 478-482
effects, 475
adding
to animations, 488-490

to class transitions,
482-484

to element visibility
transitions, 485-487

to jQuery objects, 478-482
easing functions, 477-478
table of, 476-477

element() method, 356
elements. See specific elements
<ellipse> element, 87

email rule (form validation), 354
embedded timelines, 446-447
embedded tweets, 445-446
.empty() method, 269

.end() method, 212

.eq() method, 207

equalizer display, 385-389

equalTo rule (form validation),
354

error event, 228

How can we make this index more useful? Email us at indexes@samspublishing.com

622 error handling

error handling
finally keyword, 158
throwing errors, 157-158
try/catch blocks, 157

errorPlacement attribute
(Validation object), 358

escape codes, 164

event handlers, 136-137,
230-231

adding in JavaScript, 232-236

applying in jQuery, 236-241

assigning in HTML, 231-232
event option (tabs widget), 534
eventPhase property (events), 225
events

browser events, 7

callbacks, 251

callback mechanism,
251-252

deferred objects, 252
custom events, 249
in JavaScript, 249-250
in jQuery, 250
draggable widget, 496
droppable widget, 499
event handlers, 230-231
adding in JavaScript,
232-236
applying in jQuery,
236-241
assigning in HTML,
231-232
event objects, 225-227
event process, 223-224
event types, 227-229
global event handlers, 419

for initialization

JavaScript onload event,

229-230

jQuery initialization code,

230
Map object, 434
overview, 223
resizable widget, 505
selectable widget, 509

sortable widget, 506-512

triggering manually

in JavaScript, 241-245

with jQuery, 246-249
exp() method, 176
explode effect, 476

external links, controlling, 290

F

Facebook social elements, adding,

425-426
comment fields, 428
Facebook API, 426-427
Like button, 427
sample project, 430-432
Send button, 428
fade animation, 311
fade effect, 476
fade() function, 274
.fadeln() method, 309
.fadeOut() method, 309
.fadeTo() method, 310
.fadeToggle() method, 309
.fail() method, 405, 422
fb-like class, 427
fb-send class, 428

<fieldset> element, 83
file inputs, 330-331
files
css files, 544
js files, 544
loading CSS styles from, 98
naming, 27
filter() method, 207

filter option (selectable widget),
508

filterColumn() function, 372
filtered jQuery selectors, 193-199
filters in tables, 371-377
finally keyword, 158
find() method, 209
finding DOM objects
by class name, 189
by ID, 189
sample project, 191-192
by tag name, 189-190
Firebug
CSS inspector, 46
DOM inspector, 44-45
HTML inspector, 40-44
installing, 21-22
JavaScript console, 35-39
JavaScript debugger, 53-59
Layout inspector, 47-52
Style inspector, 47
traffic analyzer, 59-62
fireEvent() method, 243
first() method, 207
fixed headers/footers, 555-556
Flickr images, adding, 451-456
flip() function, 279, 281
floor() method, 176

flow control, 338

controlling submit and reset,
340

disabling elements, 339

focusing and blurring form
elements, 339

hiding and showing elements,
339

sample project, 341-345
focus event, 228
focus() method, 288, 339, 464
:focusable() selector, 465
focusin event, 228

focusing and blurring form
elements, 339

focusout event, 228
fold effect, 476
folders, Images, 544
Follow button, 445
font property (CSS), 106
footers, fixed, 555-556
for loops, 151, 169
for/in loops, 151-152, 169
form elements, 83-84
form jQuery selectors, 193-198
form() method, 356
<form> element, 83
forms
adding to web pages, 83-86

autocomplete widget, 523-
524

flow control, 338

controlling submit and
reset, 340

disabling elements, 339

getRandomArray() function

focusing and blurring form
elements, 339

hiding and showing
elements, 339

sample project, 341-345
form elements, 83-84, 326
animations, 346-351
attributes, 326-327
button inputs, 330
check box inputs, 328
disabling, 339
file inputs, 330-331
focusing and blurring, 339
hidden inputs, 331
hiding and showing, 339
radio inputs, 328-329
sample project, 334-338
select inputs, 329-330

text input elements,
327-328

mobile forms, 599
buttons, 603
data attributes, 599
disabling, 600
labels, 600
radio and check box
groups, 608
refreshing, 601
select menus, 610-612
sliders, 604-608
submitting, 601
text elements, 601
toggle switches, 604-608
overview, 325
serializing form data, 332-333
validating, 351

jQuery validation plug-in,
352

manually, 351-352

sample project, 359-363

simple jQuery validation
with HTML, 352-354

validation messages,
356-358

validation rules, 354
fromCharCode() method, 165

functions. See also specific
functions

defining, 153, 155-156
passing variables to, 153

returning values from, 154

generating tables, 84
geometric shapes, 87
.get() method, 401

GET requests, 11, 398-399

getAlIResponseHeaders() method,
422

getAttribute() method, 187
getCenter() method, 434
getCookie() function, 291, 293

getElementByld() function, 139,
189

getElementsByClass() method,
189

getElementsByTagName()
method, 189-190

.getJSON() method, 401, 451
getMapTypeld() method, 434
getRandomArray() function, 390

How can we make this index more useful? Email us at indexes@samspublishing.com

623

624 getResponseHeader() method

getResponseHeader() method,
422

.getScript() method, 401
getTilt() method, 434
getTrip() method, 418
getZoom() method, 434

ghost option (resizable widget),
504

global event handlers, 419
Globalize jQuery plug-in, 533
Google accounts, creating, 439
Google Maps, adding, 432-439
Google search, adding, 439-443

graphical equalizer display,
385-389
graphics. See also animations
adding with element,
78-79
canvas, 91-93

fade animation to implement
image selection effect, 311

Flickr images, adding,
451-456

geometric shapes, 87

image gallery, 365-370

paths, 88-91

scalable vector graphics
adding to web pages, 87
<svg> element, 87

sparkline graphics, 389-392

greedy option (droppable widget),
499

grid layout, 581-585
groups_pool feed, 451

H hoverClass option (droppable
widget), 499
handles option (resizable widget), ~ href property (location object),
504 285
.has() method, 207 HTML (Hypertext Markup

hash property (location object), Language). See also CSS
285 (Cascading Style Sheets);

HTML5

. . . adding, 29, 579-580
header option (accordian widget),
522 debugging

with Firebug DOM
inspector, 44-45
with Firebug HTML
inspector, 40-44

<head> element, 66, 68, 99

headers
fixed headers, 555-556
HTTP headers, 10-11

headers attribute (table
elements

<a>, 78
attributes, 73

elements), 81
height() method, 188, 259

height property (screen object),
285 <audio>, 94

block versus inline
elements, 73-75

<body>, 66
<button>, 83

helper option
draggable widget, 495
resizable widget, 503
sortable widget, 513

hidden inputs, 331

hide and show animations, 306

.hide() method, 188, 271272,

<caption>, 80-83
<col>, 80-83
<colgroup>, 80-83

components of, 67

305, 339, 485
hiding container elements, 75-78
form elements, 339 defining CSS styles in,
99-100
labels, 600

<IDOCTYPE>, 66-67
<fieldset>, 83

hierarchy jQuery selectors, 193
highlight effect, 476

. . <form>, 83
history object, 289

.) <head>, 66, 68, 99

host property (location object),]

285 , 78-79
<input>, 83
<label>, 83

<legend>, 83

hosthame property (location
object), 285

, 79

<link>, 72
<meta>, 69-70
<noscript>, 71-72
, 79
<option>, 83
<script>, 70-71, 136
<select>, 83
<style>, 70
<table>, 80
<tbody>, 80-83
<td>, 80-83
<textarea>, 83
<tfoot>, 80-83
<th>, 80-83
<thead>, 80-83
<title>, 68-69
<tr>, 80-83

, 79

event handers, assigning,
231-232

overview, 8, 65-66
structure, 66-68

XML/HTML response data,
handling, 412-414

.html() method, 188, 267, 269
HTML5, 8
<canvas>, 91-93
<ellipse>, 87
<path>, 88-91
<polygon>, 87
<svg>, 87
<video>, 94
HTTP (Hypertext Transfer Protocol)
GET requests, 11
headers, 10-11

overview, 10
POST requests, 11
Hypertext Markup Language.
See HTML (Hypertext Markup
Language)
Hypertext Transfer Protocol.
See HTTP (Hypertext Transfer
Protocol)

id attribute, 73, 187
IDEs, installing, 18-20
IDs
finding DOM objects by, 189
unique IDs, 463-464
if operator, 146
image elements, 78-79
image gallery, 365-370
images. See graphics
images folder, 544
 element, 78-79
inc() function, 529

indexOf() method, 165-166,
170171

initialization
jQuery initialization code, 230
page load events, 229-230
inline elements, 73-75
innerHeight() method, 259

innerHeight property (window
object), 286

innerHTML attribute (DOM
objects), 187

innerWidth() method, 259

JavaScript 625

innerWidth property (window
object), 286

<input> element, 83

installing
Aptana Studio, 18-19
development web server, 24-25
Firebug, 21-22
IDEs, 18-20
XAAMP stack, 24-25

instances of objects, creating, 161

interactive tables with sorting and
filters, 371-377

interation widgets. See widgets

Internet Explorer developer tools,
22-23

interrupting loops, 152-153

.is() method, 212, 328

isDefaultPrevented() method, 227

islmmediatePropagationStopped()
method, 227

isNaN() function, 163

isPropagationStopped() method,
227

items option
sortable widget, 513
tooltips widget, 535
iterating through arrays, 169

J

JavaScript
accessing DOM with, 137-141
adding to web pages,
136-138
browser values, accessing,
260-266

How can we make this index more useful? Email us at indexes@samspublishing.com

JavaScript

cookies, 291-294
data types, 142-143
debugging
with JavaScript console,
35-39

with JavaScript debugger,
53-59

overview, 35
development environment

browser development
tools, 21-22

characteristics, 17-18

development web server,
24-25

IDEs, 18-20
error handling
error handlers, 232-236
finally keyword, 158
throwing errors, 157-158
try/catch blocks, 157
events
custom events, 249-250
event objects, 225-227
event process, 223-224
event types, 227-229

triggering manually,
241-245

executing with event handlers,
136-137

external links, controlling, 290

forms. See forms

functions
defining, 153, 155-156
passing variables to, 153
returning values from, 154

image gallery, adding,
365-370

implementing AJAX from,
399-401

interactive tables with sorting
and filters, 371-377

loops, 149-150
do/while loops, 150
for loops, 151, 169
for/in loops, 151-152,
169
interrupting, 152-153
while loops, 150

methods. See individual
methods

objects. See objects
operators, 143
arithmetic operators, 143
assignment operators, 144

comparison operators,
145-149

conditional logic, 148-149
overlay dialogs, 381-385
overview, 14
page elements

accessing, 262-266

adding, 267

class name, 260

classes, changing, 270

CSS properties, 257-258

manipulating dynamically,
273-276

mouse position, 255-256
position, 259-260

rearranging dynamically,
277-282

removing, 268-269
size, 258
values, 256-257

visibility, 271-272
page load events for
initialization, 229-230
pop-ups, 294-296
confirmation pop-ups, 295
notification pop-ups, 295
prompts, 295-296
simple example, 14
sparkline graphics, 389-392
timers, 296
delay timers, 296
reoccurring timers, 296
sample project, 298-299
tree views, 377-381

Twitter JavaScript API library,
443-444

variables
creating, 141-142
passing to functions, 153
scope, 156-157
JavaScript console (Chrome), 22
JavaScript debugger (Firebug),
53-59
join() method, 170, 171
jQuery. See also jQuery Mobile;
jQuery Ul
accessing DOM with, 137-141
adding to web pages, 136-138
animations
animation queues, 302

CSS settings, animating,
301-303

delaying, 304

moving elements, 318-322
overview, 301

.promise() method, 305

resize animations, 316-318

show and hide animations,
305-308

sliding animation, 312-316
stopping, 302-304

browser values, accessing,
260-266

debugging, 35, 55
development environment

browser development
tools, 21-22

characteristics, 17-18

development web server,
24-25

IDEs, 18-20

event handlers, applying,
236-241

events
custom events, 250
event objects, 225-227
event process, 223-224
event types, 227-229

triggering manually,
246-249

forms. See forms

graphical equalizer display,
385-389

image gallery, 365-370

implementing AJAX from,
401-404

initialization code, 230

interactive tables with sorting
and filters, 371-377

loading, 135-136
methods. See individual methods
objects, 213-217
adding effects to, 478-482
chaining jQuery object
operations, 205-206

converting to/from DOM,
188-189

deferred objects, 252

determining whether an
object is DOM or jQuery,
188

filtering jQuery object
results, 206-207

manipulating DOM
elements with, 211-217

overview, 186-188

traversing DOM with,
207-209, 217-220

overlay dialogs, 381-385

overview, 14

page elements
accessing, 262-266
adding, 267-268
class name, 260
classes, changing, 270
CSS properties, 257-258
inserting, 270

manipulating dynamically,
273276

mouse position, 255-256
position, 259-260

rearranging dynamically,
277-282

removing, 268-269

replacing, 269-270

size, 258

values, 257

visibility, 271-272
selectors

attribute selectors,
194-195

basic selectors, 193-194

jQuery Mobile 627

content selectors, 195-196
filtered selectors, 198-199
form selectors, 197-198
hierarchy selectors, 196
overview, 193
sample project, 201-203
visibility selectors, 198

sparkline graphics, 389-392

tree views, 377-381

jQuery Mobile

advantages of, 543

data attributes, 545

default settings, 548

downloading jQuery Mobile
library, 543-544

events, 547

methods. See individual
methods

mobile forms, 599
buttons, 603
data attributes, 599
disabling, 600
labels, 600
radio and check box
groups, 608
refreshing, 601
select menus, 610-612
sliders, 604-608
submitting, 601
text elements, 601
toggle switches, 604-608
mobile web pages, 553

basic HTML, adding,
579-580

building, 549-551,
564-567

bypassing AJAX, 562

How can we make this index more useful? Email us at indexes@samspublishing.com

628 jQuery Mobile

challenges of, 541-542
changing with jQuery code,
557-559

collapsible blocks and
sets, 590-592

dialogs, 571-576

fixed headers/footers,
555-556

grid layout, 581-585
linking, 559-562
listviews, 585-590
navbars, 567-571

navigation buttons,
556-557

page anatomy, 553-554
page transitions, 562
panels, 592
pop-ups, 594
size, 542
tables, 595-597
ThemeRoller, 544
viewport meta tag, 548
jQuery Ul
adding to projects, 461-463
buttons, 524-525
downloading, 459
effects, 475

adding to animations,
488-490

adding to class transitions,
482-484

adding to element visibility
transitions, 485-487

adding to jQuery objects,
478-482

easing functions, 477-478

table of, 476-477

methods. See individual
methods

overview, 459

positioning elements with,
468-472

selectors
:data(), 465
:focusable(), 465
tabbable(), 465
applying, 467-468
ThemeRoller, 460-461
unique IDs, 463-464
widgets, 493, 521
accordian widget, 522
attribute values, 522

autocomplete widget,
523-524

custom widgets, 537-538

datepicker widget,
525-526

dialog widget, 527-528
draggable widget, 495-498
droppable widget, 499-503

jQuery.widget factory,
493-494

menu widget, 528-529

methods and events,
493-494

mouse interaction widget,
494

options, 521-522

progress bar widget,
529-530

resizable widget, 503-507

selectable widget,
508-512

slider widget, 530-532

sortable widget, 512-518
spinner widget, 532-533
tabs widget, 533-535
tooltips widget, 535-537
jQuery.widget factory, 493-494
jAXHR object, 421-422
js files, 544

JSON response data, handling,
408-411

JSONP (JSON with Padding), 398

K

keydown event, 228
keypress event, 228, 352
keyup event, 228

keywords. See specific keywords

L

<label> element, 83
labels, 600
Jlast() method, 207
lastindexOf() method, 165, 170
Layout inspector (Firebug), 47-52
layout properties, 122
box model, 122-123
content size, 123
element flow, 124-125
laying out web page
components with, 127-130
margins, 124
overflow, 126
padding, 123

positioning, 125-126
zindex, 126, 277-282
layouts, grid, 581-585
<legend> element, 83
letter-spacing property (CSS), 106
 element, 79
Like button, adding, 427
line-height property (CSS), 107
lineTo() function, 92
<link> element, 72
linking mobile web pages,
559-562
links
adding with <a> element, 78
external links, controlling, 290
link elements, 78
lists, 585-590

adding to mobile web pages,
588-590

adding to web pages, 79
basic lists, 585
dividers, 586-587
list elements, 79
nested lists, 586
searchable lists, 587
split-button lists, 586
LN10() method, 176
load event, 228
.load() method, 230, 401
loading
CSS styles, 98
jQuery library, 135-136
.loadPage() method, 557
local hash, 559-556
location object, 285

login requests, handling with
AJAX, 405-408

loops, 149-150
do/while loops, 150
for loops, 151, 169
for/in loops, 151-152, 169
interrupting, 152-153
while loops, 150

low-level AJAX requests, handling,
420-422

manually validating forms,
351-352

Map() function, 433-434

.map() method, 212-217

Map object, 434

mapOptions object, 433-434

Maps (Google), adding, 432-439

mapTypeld attribute
(mapOptions), 433

maptypeid_changed event, 434

margins, adding with CSS, 124

match() method, 165

Math object, 175-176

max() method, 176

max option (slider widget), 531

max rule (form validation), 355

maxlength rule (form validation),
355

media elements, 94
memory flag (callbacks), 251
menu widget, 528-529

mobile web pages 629

menus
dynamic menus, 314-316
menu widget, 528-529
in mobile forms, 610-612
messages, validation, 356-358
<meta> element, 69-70
metaKey property (events), 225

methods. See also individual
methods

accessing, 162

adding to JavaScript objects,
177-178

assigning to objects, 162
min() method, 176
min rule (form validation), 354

minlength rule (form validation),
355

mobile forms, 599. See also
mobile web pages

buttons, 603

data attributes, 599
disabling, 600
labels, 600

radio and check box groups,
608

refreshing, 601

select menus, 610-612
sliders, 604-608
submitting, 601

text elements, 601
toggle switches, 604-608

mobile web pages. See also
jQuery Mobile; mobile forms

basic HTML, adding, 579-580
building, 549-551, 564-567
bypassing AJAX, 562
challenges of, 541-542

How can we make this index more useful? Email us at indexes@samspublishing.com

630 mobile web pages

changing with jQuery code,
557-559

collapsible blocks and sets,
590-592

dialogs, 571-576

fixed headers/footers,
555-556

grid layout, 581-585
linking, 559-562
listviews, 585-590
adding, 588-590
basic lists, 585
dividers, 586-587
nested lists, 586
searchable lists, 587
split-button lists, 586
navbars, 567-571
navigation buttons, 556-557
back button, 557
creating, 556
positioning, 557
overview, 541, 553
page anatomy, 553-554
page transitions, 562
panels, 592
pop-ups, 594
size, 542
tables, 595-597
mobileinit handler, 548, 611
modal option (dialog widget), 527
mouse cursor types, 121
mouse interaction widget, 494
mouse position, getting, 255-256
mousedown event, 228
mouseenter event, 228

mouseleave event, 228

mousemove event, 228
mouseout event, 228
mouseover event, 228
mouseup event, 228
move() function, 278, 281
moveBy() method, 288
moveTo() method, 92, 288
moving elements, 318-322

element position changes on
nonstatic elements, 319

element position changes on
static elements, 319

paper airplane app, 319-322

my option (.position() method),
469

name attribute
form elements, 84
window object, 287
naming files, 27
navbars, 567-571
navigation buttons, 556-557
back button, 557
creating, 556
positioning, 557
nested lists, 586
network traffic analysis, 59-62
.next() method, 209
.nextAll() method, 209
.nextUntil() method, 209
<noscript> element, 71-72
.not() method, 207
notification pop-ups, 295

null data type, 143
number data type, 142
Number object, 163

number rule (form validation),
355

numberFormat option (spinner
widget), 533
numberOfinvalids() method, 356

numberofMonths option
(datepicker widget), 526

o

objects, 143
Array, 166-174

adding/removing items,
171

checking whether array
contains an item, 171

combining, 169

converting to strings, 171

iterating through, 169

methods, 169-170

overview, 166-169

sample project, 173-174
browser

history object, 289

location object, 285
converting type of, 188-189
creating

instances, 161

JavaScript objects, 177,
180-181

Date, 174-175
deferred objects, 252
determining type of, 188

DOM objects

accessing, 189-192,
201-203

attributes, 187
finding by ID, 189
methods, 187
overview, 185-187
event objects, 225-227
jQuery objects
adding effects to, 478-482
chaining jQuery object
operations, 205-206

manipulating DOM
elements with, 213-217

methods, 188, 207, 209,
213-217

overview, 186-188

traversing DOM with,
206-209, 217-220

jaXHR, 421-422
Map, 434
mapOptions, 433-434
Math, 175-176
methods, 162
adding, 177-178
assigning, 162
Number, 163
overview, 161
properties, 162

prototyping object patterns,
178179

RegExp, 175

screen, 285-286

String, 164-166
combining, 164-166
converting arrays to, 171

escape codes, 164

methods, 164-165
replacing words in, 166
sample project, 167-166

searching for substrings,
166

splitting into arrays, 166
Validator, 356-357
window, 285
methods, 285-288
properties, 285-287
XMLHttpRequest, 399
of option (.position() method), 469
off() method, 236-237
.offsetParent() method, 209
 element, 79
on() method, 236-237
once flag (callbacks), 251
onload event, 229-230

onreadystatechange event
handler, 400

onSelect option (datepicker
widget), 525
opacity property

CSS (Cascading Style Sheets),
121-122

draggable widget, 495
sortable widget, 513
open() method, 288, 400

opener property (window object),
286

operators, 143
arithmetic operators, 143
assignment operators, 144
comparison operators
if, 146
switch, 147

page elements 631

table of, 145
conditional logic, 148-149
option() method, 494
<option> element, 83

orientation option (slider widget),
531

outerHeight() method, 259

outerHeight property (window
object), 286

outerHTML attribute (DOM
objects), 187

outerWidth() method, 259

outerWidth property (window
object), 287

overflow property (CSS), 126
overlay dialogs, 381-385

P

padding, applying with CSS, 123
page elements. See also HTML
(Hypertext Markup Language)

accessing, 262-266
adding

in JavaScript, 267

in jQuery, 267-268
classes, changing, 271
className attribute, 260
collapsible elements, 590-592

CSS properties, setting,
257-258

element flow, 124-125

element visibility transitions,
485-487

graphical equalizer display,
385-389

How can we make this index more useful? Email us at indexes@samspublishing.com

632 page elements

image gallery, 365-370
inserting, 270

manipulating dynamically,
273-276

mouse position, getting,
255-256

overlay dialogs, 381-385
position
getting and setting,
258-260
positioning with jQuery Ul,
468-472

rearranging dynamically,
277-282

removing, 268-269
replacing, 269-270
resizing, 258, 503-507
sparkline graphics, 389-392
tables
adding to mobile web
pages, 595-597
adding to web pages,
79-83

generating, 84

interactive tables with
sorting and filters,
371-377
tree views, 377-381
values
getting/setting in
JavaScript, 256-257
getting/setting in jQuery,
257
visibility, 271-272
page requests, 395-396

page transitions in mobile web
pages, 562

pageXOffset property (window
object), 287

pageYOffset property (window
object), 287

panBy() method, 434
panels, 592

panTo() method, 434

paper airplane app, 319-322
.parent() method, 209

parent property (window object),
287

parentNode attribute (DOM
objects), 187

.parents() method, 210
.parentsUntil() method, 210

passing variables to functions,
153

<path> element, 88-91

pathname property (location
object), 285

paths, 88-91
photos_public feed, 451
PI() method, 176

pixelDepth property (screen
object), 286

placeholder option (sortable
widget), 513

placing validation messages,
357-358

plug-ins, jQuery validation, 352

<polygon> element, 87

pop() method, 170

.popup() method, 594

pop-ups, 294-296, 594
confirmation pop-ups, 295
notification pop-ups, 295
prompts, 295-296

port property (location object),
285

.position() method, 258, 468

position option (tooltips widget),
536
positioning
HTML elements from CSS,
125-126
navigation buttons, 557

page elements, 258-260,
468-472

.post() method, 401

POST requests, 11, 398-399
pow() method, 176

.prev() method, 210
.prevAll() method, 210

.preventDefault() method, 227,
340

.prevUntil() method, 210
print() method, 288
progress bar widget, 529-530
projects

creating, 28

CSS (Cascading Style Sheets),
adding, 27-30

directory structure, 26-27
dynamic scripts, writing,
30-32
file naming, 27
.promise() method, 305
prompt() method, 288, 295-296
prompts, 295-296
.prop() method, 327
properties (CSS)
design properties
applying, 111-116
backgrounds, 111

borders, 117-121
color, 103-105
cursor, 121
opacity, 121-122
text styles, 106-110
visibility, 122
getting and setting, 257-258
layout properties, 122
box model, 122-123
content size, 123
element flow, 124-125
margins, 124
overflow, 126
padding, 123
positioning, 125-126
z-index, 126
z-index, 277-282
properties (object)
accessing, 162
location object, 285
screen object, 285-286
window object, 285-287

protocol property (location object),
285

prototyping object patterns,
178179

puff effect, 476
pulsate effect, 476
push() method, 170

Q

querySelectorAll() method, 207

queue option (.animate() method),
303

queues, animation, 302

radio buttons in mobile forms,
608

randint() function, 372
range option (slider widget), 531
range rule (form validation), 355

rangelength rule (form validation),
355

.ready() method, 230

readyState attribute (jgXHR
object), 422

rearranging page elements,
277-282

reflow mode (tables), 596

refreshing forms, 601

RegExp object, 175

relatedTarget property (events),
225

reload() method, 285

remote rule (form validation), 355

.remove() method, 269

removeAttr() method, 328

.removeClass() method, 271, 482

removeElement() method, 268

removeEventListener() function,
233

.removeUniqueld() method, 464
removing
items from arrays, 171
page elements, 268-269
unique IDs, 463-464
renderSpark() function, 390

reoccurring timers, 296

response data, handling

replace() method, 165-166, 285
.replaceAll() method, 270
.replaceWith() method, 270
replacing
page elements, 269-270
words in strings, 166
requests

cross-domain requests,
397-398

GET requests, 11, 398-399
login requests, 405-408

low-level AJAX requests,
420-422

POST requests, 11, 398-399
request handling (AJAX), 397
sending from jQuery, 402-404

required rule (form validation),
355

reset event, 228, 340
.reset() method, 340
resetForm() method, 356
resizable elements, 506-507
resizable widget, 503-507
resize animations, 316-318
resize event, 229, 504
resize() function, 278, 281
resizeBy() method, 288
resizestart event, 505
resizestop event, 505
resizeTo() method, 288
resizing elements, 503-507
.resolve() method, 252

response attribute
(XMLHttpRequest object), 400

response data, handling
AJAX, 405, 408-414

How can we make this index more useful? Email us at indexes@samspublishing.com

633

634 response data, handling

JSON response data, 408-411

XML/HTML response data,
412-414

response data types, 399

responseText attribute
(XMLHttpRequest object), 400

results property (events), 225
return keyword, 154
reverse() method, 170

revert option (draggable widget),
495

round() method, 176

rowspan attribute (table
elements), 81

rules, validation, 354

S

scalable vector graphics
adding to web pages, 87
canvas, 91-93
geometric shapes, 87
paths, 88-91
scale effect, 477
scope of variables, 156-157
screen object, 285-286
screenX property
events, 225
window object, 287
screenY property
events, 225
window object, 287
<script> element, 70-71, 136
scripts

client-side scripts, 14

debugging
CSS (Cascading Style
Sheets), 46-52

HTML elements, 40-45
JavaScript, 53-59
with JavaScript console,
35-39
jQuery, 59
network traffic analysis,
59-62
overview, 35
dynamic scripts, writing,
30-32
overview, 12
server-side scripts, 12-13
scroll event, 229

scroll option (sortable widget),
513

scrollBy() method, 288

.scrollParent() method, 464

scrollTo() method, 288

search (Google), adding to web
pages, 439-443

search() method, 165

search property (location object),
285

searchable lists, 587
searching strings, 166
select event, 229
select inputs, 329-330

select menus in mobile forms,
610-612

<select> element, 83
selectable sets, 510-512
selectable widget, 508-512

selectableselected event, 508

selectableselecting event, 508
selectablestart event, 508
selectablestop event, 509
selectableunselect event, 509
selectableunselected event, 509
selectors
CSS (Cascading Style Sheets),
102-104
jQuery
:data(), 465
:focusable(), 465
tabbable(), 465
accessing DOM with, 139
applying, 467-468
attribute selectors,
194-195
basic selectors, 193-194

content selectors,
195-196

filtered selectors, 198-199
form selectors, 197-198
hierarchy selectors, 196
overview, 193
sample project, 201-203
visibility selectors, 198
self property (window object), 287
Send button, 428
send() method, 400

sending AJAX requests from
jQuery, 402-404

sendRating() method, 418
.serialize() method, 332
.serializeArray() method, 333
serializing form data, 332-333

servers. See web servers

server-side data, accessing with
AJAX

asynchronous communication,
397

compared to page requests,
395-396

cross-domain requests,
397-398

GET requests, 398-399
global event handlers, 419
global setup, 396-419
from JavaScript, 399-401
from jQuery, 401-404

login requests, handling,
405-408

low-level AJAX requests,
handling, 420-422

overview, 395
POST requests, 398-399
request handling, 397

response data, handling, 405,
408-414

JSON response data,
408411

XML/HTML response data,
handling, 412-414

response data types, 399

server data, updating,
416-419

server-side scripts, 12-13
SET-COOKIE header, 11
setAttribute() method, 187
setCenter() method, 434
setCookie() function, 291, 293
setDoc() function, 274
setDocNav() function, 273

setimages() function, 454

setinterval() method, 288, 296
setList() method, 418
setMapTypeld() method, 434

setRequestHandler attribute
(XMLHttpRequest object), 400

setRequestHeader() method, 422

setTimeout() method, 288, 296,
529

setTitle() method, 434

setTrip() method, 418
setZoom() method, 434

shake effect, 477

shift() method, 170

shiftKey property (events), 225
show and hide animations, 306

.show() method, 188, 271-272,
305-306, 339, 485

showButtonPanel option
(datepicker widget), 526

showErrors() method, 356
showOn option (datepicker
widget), 525
.siblings() method, 210
sin() method, 176
size
of mobile web pages, 542
of page elements, 258
size effect, 477
.slice() method, 165, 170, 207
slide effect, 477
slide option (slider widget), 531
.slideDown() method, 312
sliders
in mobile forms, 604-608
slider bars, 530-532
slider widget, 530-532

sortable widget 635

slider-based image gallery,
365-370

.slideToggle() method, 312
.slideUp() method, 312
sliding animation, 312-316

dynamic menu sample project,
314-316

.slideDown() method, 312

.slideToggle() method, 312

.slideUp() method, 312

width and height, 312
social media

Facebook social elements,
425-426

comment fields, 428
Facebook API, 426-427
Like button, 427
sample project, 430-432
Send button, 428
Flickr images, 451-456
Google Maps, 432-439
Google search, 439-443
Twitter controls, 443

embedded timelines,
446-447

embedded tweets,
445-446

Follow button, 445
sample project, 449-451
Tweet button, 444
sort event, 514
sort() method, 170
sortable elements, 515-518
sortable widget, 512-518
events, 506-512
options, 513

How can we make this index more useful? Email us at indexes@samspublishing.com

636 sortable widget

sortable elements, 515-518

Twitter controls, adding,
443-444

sortactivate event, 514
sortbeforeStop event, 514
sortchange event, 514
sortColumn() function, 373
sorting in tables, 371-377
sortout event, 514
sortover event, 514
sortreceive event, 514
sortremove event, 514
sortstart event, 514
sortstop event, 514
sortupdate event, 514
sparkline graphics, 389-392
specialEasing option (.animate()
method), 303
spinner widget, 532-533
spinners, 532-533
splice() method, 170
split() method, 165
split-button lists, 586
splitting strings into arrays, 166
sqrRoot() function, 158
sqrt() method, 176
stack() function, 279, 281

stack option (draggable widget),
495

statements. See specific
statements

status attribute
joXHR object, 422
XMLHttpRequest object, 399

statusText attribute (jgXHR
object), 422

step option
.animate() method, 302
spinner widget, 533
.stop() method, 302-304

stopImmediatePropagation()
method, 227

stopOnFalse flag (callbacks), 251
stopping animations, 302-304
stopPropagation() method, 227
string data type, 142
String object, 164-166
combining, 164-166
converting arrays to, 171
escape codes, 164
methods, 164-165
replacing words in, 166
sample project, 166-167
searching for substrings, 166
splitting into arrays, 166
style attribute, 73, 187
Style inspector (Firebug), 47
<style> element, 70

styles. See CSS (Cascading Style
Sheets)

stylized dialogs, 527-528
stylized menus, 528-529
submission (forms), 340
submit event, 229
submitting forms, 601
substr() method, 165
substring() method, 165
substrings, searching for, 166
SVC graphics. See scalable vector
graphics
switch operator, 147

.switchClass() method, 482

T

:tabbable() selector, 465
tabbed panels, 533-535
table elements, 79-83
<table> element, 80
tables

adding to mobile web pages,
595-597

adding to web pages, 79-83
generating, 84

interactive tables with sorting
and filters, 371-377

<table> element, 80
tabs widget, 533-535

tag name, finding DOM objects
by, 189-190

target property (events), 225
<tbody> element, 80-83
<td> element, 80-83

text elements in mobile forms,
601

text input elements, 327-328

text styles, applying with CSS,
106-110

text-align property (CSS), 106
<textarea> element, 83

text-decoration property (CSS),
107

text-indent property (CSS), 107
text-overflow property (CSS), 107
text-transform property (CSS), 107
<tfoot> element, 80-83

<th> element, 80-83

<thead>, 80-83

ThemeRoller, 460-461, 544
throw statement, 157-158

throwing errors, 157-158
tile() function, 279, 281
tilt_changed event, 434
timelines, embedded, 446-447
timers, 296
delay timers, 296
reoccurring timers, 296
sample project, 298-299
timeStamp property (events), 225
<title> element, 68-69
toExponential() method, 163
toFixed() method, 163
.toggle() method, 306, 485

toggle switches in mobile forms,
604-608

.toggleClass() method, 271, 482
toggleltem() function, 378-379
tolerance option
droppable widget, 499
selectable widget, 508
sortable widget, 513
toLowerCase() method, 165
.tooltip() method, 535
tooltips widget, 535-537
top property (window object), 287
toPrecision() method, 163
toString() method, 163, 170
toUpperCase() method, 165
<tr> elements, 80-83
traffic analyzer (Firebug), 59-62
transfer effect, 477
transitions
class transitions, 482-484

mobile web page transitions,
562

traversing DOM with jQuery
objects, 207-209, 217-220

tree views, 377-381
trigger() method, 246
triggering events manually
in JavaScript, 241-245
with jQuery, 246-249
try/catch blocks, 157
Tweet button, 444
tweets. See Twitter controls,
adding
Twitter controls, adding, 443
embedded timelines, 446-447
embedded tweets, 445-446
Follow button, 445
sample project, 449-451
Tweet button, 444

Twitter JavaScript API library,
443-444

Twitter JavaScript API library,
443-444

twitter-timeline class, 447
twitter-tweet class, 446

type property (events), 225

.ui-dialog-contain class, 572
.ui-progressbar-value class, 529
.ui-selecting class, 508
.ui-sortable-helper class, 513
 element, 79

Uniform Resource Locators.
See URLs (Uniform Resource
Locators)

unique flag (callbacks), 251

valueOf() method 637

unique IDs, 463-464
.uniqueld() method, 463-464
unload event, 229

unshift() method, 170
updateAddr() function, 341

updateEqualizer() function,
386-388

updatelmages() function,
454-455

updating server data with AJAX,
415-419

url rule (form validation), 355

URLs (Uniform Resource
Locators), 7

using option (.position() method),
467

'/

.val() method, 185, 327
.validate() method, 352
validating forms, 351
jQuery validation plug-in, 352
manually, 351-352
sample project, 359-363
simple jQuery validation with
HTML, 352-354
validation messages, 356-358
validation rules, 354
Validator object, 356-357
value attribute
DOM objects, 187
form elements, 84
value option (slider widget), 531
valueOf() method, 163, 165, 170

How can we make this index more useful? Email us at indexes@samspublishing.com

638 values

values
assiging to objects, 162
getting and setting
in JavaScript, 256-257
in jQuery, 257
returning from functions, 154
var keyword, 141
variables
creating, 141-142
passing to functions, 153
scope, 156-157

vector graphics. See scalable
vector graphics

<video> element, 94
viewport meta tag, 548
views, tree, 377-381
visibility
animations
fade animation to
implement image
selection effect, 311
.fadeln() method, 309
.fadeOut() method, 309
.fadeTo() method, 310
.fadeToggle() method, 309
toggling, 271-272
visibility jQuery selectors, 193
visibility property (CSS), 122
visibility transitions, 485-487

w

web browsers. See browsers

web development projects. See
projects

web forms. See forms

web servers

development web server,
installing, 24-25

overview, 6

server data, updating with
AJAX, 415-419

XAAMP stack, installing, 24-25
which property (events), 225
while loops, 150
widget() method, 494
widgets, 493, 521

accordian widget, 522

attribute values, 522

autocomplete widget,
523-524

custom widgets, 537-538
datepicker widget, 525-526
dialog widget, 527-528
draggable widget, 495-498
droppable widget, 499-503
jQuery.widget factory, 493-494
menu widget, 528-529
methods and events, 493-494
mouse interaction widget, 494
options, 521
progress bar widget, 529-530
resizable widget, 503-507
selectable widget, 508-512
slider widget, 530-532
sortable widget, 512-518

events, 506-512

options, 513

sortable elements,

implementing, 515-518

spinner widget, 532-533
tabs widget, 533-535
tooltips widget, 535-537

width() method, 188, 259

width property (screen object),
286

window object, 285
methods, 285-288
properties, 285-287

windows (browser), 7

within option (.position() method),
467

word-spacing property (CSS), 107
writing dynamic scripts, 30-32

X-Y-Z

XAAMP stack, installing, 24-25

XML/HTML response data,
handling, 412-414

XMLHttpRequest object, 399

.zIndex() method, 464
z-index property, 277
CSS (Cascading Style Sheets),
126
draggable widget, 495
sortable widget, 513
zoom attribute (mapObject), 433

zoom_changed event, 434

	Table of Contents
	Introduction
	Beyond jQuery and JavaScript
	Code Examples
	Special Elements
	Q&A, Quizzes, and Exercises

	HOUR 5: Jumping into jQuery and JavaScript Syntax
	Adding jQuery and JavaScript to a Web Page
	Accessing the DOM
	Understanding JavaScript Syntax
	Summary
	Q&A
	Workshop

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

