
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672337796
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672337796
https://plusone.google.com/share?url=http://www.informit.com/title/9780672337796
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672337796
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672337796/Free-Sample-Chapter

Hong Kong Skyline & Harbor

The cover image, by Lee Yiu Tung, shows a portion of the
Hong Kong skyline and harbor. According to The Skyscraper
Center, Hong Kong is home to 315 buildings at least 150
meters in height: more than any other city on Earth. Nearly
three-fourths of Hong Kong’s skyscrapers are residential,
helping to explain why more residents live above the
14th floor than in any other city. Hong Kong’s tallest building,
the International Commerce Centre, is 484 meters high—
more than 40 meters taller than the tip of the Empire State
Building’s spire. At night, during good weather, visitors can
experience “A Symphony of Lights,” a light and laser show
incorporating dozens of buildings on each side of Hong
Kong’s Victoria Harbor. The Harbor itself—still named after
Britain’s Queen Victoria nearly 20 years after Hong Kong was
restored to China—holds 263 islands, as well as watercraft
ranging from cargo freighters to cruise ships, and tourist
ferries to traditional Chinese sampans and junks.

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi

Mexico City • São Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Cloud Native Go

Building Web Applications
and Microservices for the Cloud

with Go and React

Kevin Hoffman
Dan Nemeth

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corpo-
rate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016956519

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education
Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-672-33779-6

ISBN-10: 0-672-33779-7

First printing: December 2016

Editor-in-Chief

Mark Taub

Executive Editor

Greg Doench

Development Editor

Mark Renfrow

Managing Editor

Sandra Schroeder

Senior Project Editor

Lori Lyons

Project Manager

Dhayanidhi

Copy Editor

Larry Sulky

Indexer

Cheryl Lenser

Proofreader

Bavithra

Editorial Assistant

Olivia Basegio

Cover Designer

Chuti Prasertsith

Compositor

codeMantra

http://www.pearsoned.com/permissions/

❖

This book is dedicated to the A-Team. Four men, sent to
Pivotal for crimes they didn’t commit, who now roam the
countryside in search of developers in need of guidance:

innocent people who need help moving their software to the
cloud. If you need cloud apps, they will find you.

Without these brave men, the act of writing software would
have become so boring and unbearable that this book

would never have been written. In fact, the authors may have
given up their lives of service to the cloud, only to while away

their remaining days as baristas in a smelly hipster coffee shop.

The A-Team is:

Dan “Hannibal” Nemeth

Chris “Murdock” Umbel

Tom “Face” Collings

Kevin “B.A.” Hoffman

❖

Contents at a Glance

 1 The Way of the Cloud 1

 2 Getting Started 11

 3 Go Primer 17

 4 Delivering Continuously 35

 5 Building Microservices in Go 53

 6 Using Backing Services 71

 7 Creating a Data Service 95

 8 Event Sourcing and CQRS 113

 9 Building a Web Application with Go 137

 10 Security in the Cloud 151

 11 Working with WebSockets 167

 12 Building Web Views with React 177

 13 Creating UIs that Scale with Flux 195

 14 Creating a Full Application—World of FluxCraft 209

 15 Conclusion 223

 A Troubleshooting Cloud Applications 227

 Index 231

Contents

 1 The Way of the Cloud 1

The Virtues of the Way of the Cloud 2

Favor Simplicity 2

Test First, Test Everything 3

Release Early, Release Often 5

Automate Everything 6

Build Service Ecosystems 7

Why Use Go? 8

Simplicity 8

Open Source 8

Easy Automation and IDE Freedom 9

Summary 9

 2 Getting Started 11

The Right Tools for the Job 11

Setting Up Git 12

Installing Homebrew 12

Installing the Git Client 13

Installing Mercurial and Bazaar 13

Creating a GitHub Account 13

Setting Up Go 14

Configuring your Go Workspace 14

Testing Your Environment 15

Summary 16

 3 Go Primer 17

Building Hello Cloud 18

Using Basic Functions 19

Working with Structs 22

Introducing Go Interfaces 25

Adding Methods to Structs 25

Exploiting Dynamic Typing in Go with Interfaces 26

Working with Third-Party Packages 28

Creating Your Own Packages 30

vi Contents

Exporting Functions and Data 31

Creating a Package 31

Summary 34

 4 Delivering Continuously 35

Introducing Docker 36

Why use Docker? 36

Installing Docker 36

Running Docker Images 38

Continuous Integration with Wercker 39

Continuous Integration Best Practices 39

Why use Wercker? 40

Creating a Wercker Application 41

Installing the Wercker CLI 42

Creating a Wercker Configuration File 43

Running a Wercker Build 47

Deploying to DockerHub 49

Reader Exercise: Create a Full Development Pipeline 50

Advanced Challenge: Integrate Third-Party Library 52

Summary 52

 5 Building Microservices in Go 53

Designing Services API First 54

Designing the Matches API 54

Creating an API Blueprint 54

Testing and Publishing Documentation with Apiary 56

Scaffolding a Microservice 57

Building Services Test First 60

Creating a First, Failing Test 61

Testing the Location Header 64

Epic Montage—Test Iterations 65

Deploying and Running in the Cloud 68

Creating a PWS Account 68

Setting up PCF Dev 68

Pushing to Cloud Foundry 69

Summary 70

viiContents

 6 Using Backing Services 71

Designing Service Ecosystems 72

Building Dependent Services Test-First 73

Creating the Fulfillment Service 74

Creating the Catalog Service 77

Sharing Structured Data Among Services 84

Client Imports Server Package 84

Client Duplicates Server Structure 84

Client And Server Import Shared Package 85

Using Service Bindings to Externalize URLs
and Metadata 86

Discovering Services 89

Dynamic Service Discovery 90

Service Discovery with Netflix’s Eureka 90

Reader Exercise 92

Bonus Activity 93

Summary 93

 7 Creating a Data Service 95

Creating a MongoDB Match Repository 96

Why MongoDB? 96

Updating the Repository Pattern 96

Communicating with MongoDB in Go 97

Writing a MongoDB Repository Test-First 98

Integration Testing a Mongo-Backed Service 103

Integrating with a Transient MongoDB Database 103

Writing an Integration Test 106

Running in the Cloud 110

Configuring a Backing Service 110

Summary 112

 8 Event Sourcing and CQRS 113

Reality is Event Sourced 114

Idempotent 115

Isolated 115

Testable 116

viii Contents

Replayable and Recoverable 116

Big Data 117

Embracing Eventual Consistency 117

Introducing Command Query Responsibility Segregation 118

Event Sourcing Use Cases 120

Weather Monitoring 120

Connected Cars 121

Social Media Feed Processing 121

Code Sample: Managing a Drone Army 121

Creating a Command Handler Service 122

Introduction to RabbitMQ 122

Building the Command Handler Service 126

Building the Event Processor 128

Integration Testing the Event Processor 133

Creating the Query Handler Service 133

Summary 135

 9 Building a Web Application with Go 137

Serving Static Files and Assets 138

Supporting JavaScript Clients 139

Using Server-Side Templates 142

Processing Forms 145

Working with Cookies and Session State 145

Writing Cookies 146

Reading Cookies 147

Build and Deploy with Wercker 147

Summary 149

 10 Security in the Cloud 151

Securing a Web Application 151

Web Application Security Options 152

Setting up an Auth0 Account 153

Building an OAuth-Secured Web App 154

Running the SecureWeb Application 158

Securing Microservices 160

Overview of the Client Credentials Pattern 160

Securing a Microservice with Client Credentials 161

A Note on SSL 163

ixContents

A Word on Privacy and Data Security 163

Hackers Can’t Get What You Don’t Have 164

Reader Exercise 165

Summary 166

 11 Working with WebSockets 167

Demystifying WebSockets 168

How WebSockets Work 168

WebSockets vs. Server-Sent Events 169

Designing a WebSocket Server 169

On WebSockets and Cloud Nativity 170

Building a WebSocket App with a Messaging Provider 172

A Note on JavaScript Frameworks 175

Running the WebSockets Sample 175

Summary 176

 12 Building Web Views with React 177

JavaScript State of the Union 178

Why React? 178

The Virtual DOM 179

Component Composition 180

Reactive Data Flow 180

Narrow Focus 180

Ease* of Use 181

Anatomy of a React Application 181

The package.json File 181

Webpack.config.js 182

The .babelrc File 183

Understanding JSX and Webpack 183

React Components 184

Building a Simple React Application 184

What We Didn’t Like 191

Testing React Applications 192

Further Reading 192

React Websites 192

React Books 193

Other Materials 193

Summary 193

x Contents

 13 Creating UIs that Scale with Flux 195

Introducing Flux 195

Dispatcher 196

Store 196

View 197

Action 197

Source 197

Complexity in Flux 197

Building a Flux Application 198

Summary 207

 14 Creating a Full Application—World of FluxCraft 209

Introducing World of FluxCraft 210

Architectural Overview 211

Independent Scaling, Versioning, and Deployment 213

Databases are not the Integration Tier 213

One-Way Immutable Data Flow 213

The Flux GUI 214

The Go UI Host Service 215

Sample Player Move Sequence 216

Processing Commands 217

Processing Events 218

Maintaining Reality 219

Map Management 219

Automating Acceptance Tests 220

Summary 222

 15 Conclusion 223

What we Learned 223

Go Isn’t Just a Niche Language 223

How Micro Should a Microservice Be? 224

Continuous Delivery and Deployment 224

Test Everything 224

Release Early, Release Often 224

Event Sourcing, CQRS, and More Acronyms 225

Next Steps 225

 A Troubleshooting Cloud Applications 227

 Index 231

Preface

When Dan and I set out to write this book, we didn’t want it to be a reference book or
“yet another syntax book.” Instead, we wanted to put to good use our experience building
cloud native solutions for Pivotal customers and nearly a lifetime of combined experience
building software for companies of just about every size, shape, and industry.

This book starts off with a philosophical chapter, The Way of the Cloud, because we firmly
believe that the secret to building good software has more to do with the mindset and
discipline of the developers than it does the tooling or language.

From there, we follow The Way of the Cloud in everything we do as we gradually, in a
test-driven and highly automated fashion, take you through a series of chapters designed
to increase your skills building cloud native services in Go. We cover the fundamentals of
building services; middleware; the use of tools like git, Docker, and Wercker; and cloud native
fundamentals like environment-based configuration, service discovery, and reactive and push-
based applications. We cover patterns like Event Sourcing and CQRS, and combine everything
in the book into a final sample that you can use as inspiration for your own projects.

Another of our strongly-held beliefs is that the act of building a piece of software should be
as fun (or more!) as using that software. If it’s not fun, you’re doing it wrong. We wanted
the joy we get from building services in Go to infect our readers, and hopefully you will
have as much fun reading this book as we did writing it.

About the Authors

Kevin Hoffman helps enterprises bring their legacy applications onto the cloud through
modernization and building cloud native services in many different languages. He started
programming when he was 10 years old, teaching himself BASIC on a rebuilt Commodore
VIC-20. Since then, he has been addicted to the art of building software, and has spent as much
time as he can learning languages, frameworks, and patterns. He has built everything from
software that remotely controls photography drones to biometric security, ultra-low-latency
financial applications, mobile applications, and everything between. He fell in love with the Go
language while building custom components for use with Pivotal Cloud Foundry.

Kevin is the author of a popular series of fantasy books (The Sigilord Chronicles, http://amzn.
to/2fc8iES) and is eagerly awaiting the day when he will finally be able to combine his love
for building software with his love for building fictional worlds.

Dan Nemeth currently works at Pivotal as an Advisory Solutions Architect, supporting Pivotal
Cloud Foundry. He has been writing software since the days of the Commodore 64. He began
coding professionally in 1995 for a local ISP writing CGI scripts in ANSI C. Since then, he
has spent the majority of his career as an independent consultant building solutions for
industries ranging from finance to pharmaceutical, and using various languages/frameworks
that were vogue at the time. Dan has recently embraced Go as a homecoming, of sorts, and is
enthusiastically using it for all of his projects.

Should you find Dan away from his computer, he will likely be on the waters near Annapolis
either sailing or fly fishing.

Acknowledgments

This book would not have been possible without the nearly infinite patience of my family,
especially my wife. Despite me having said on numerous occasions in the past that I would
never again write a technical book, here I was, writing another tech book. They put up with
long nights, me wearing ruts into the floor pacing, and the loss of quality time in order to get
this book finished. I am more proud of this book than I am of any other I’ve worked on in
the past, and that is directly related to the invaluable support of family, friends, and a brilliant
co-author.

—Kevin Hoffman

http://amzn.to/2fc8iES
http://amzn.to/2fc8iES

5
Building

Microservices in Go

“The golden rule: can you make a change to a service and deploy it by itself
without changing anything else?”

Sam Newman, Building Microservices

Every service you build should be a microservice, and, as we’ve discussed earlier in the book, we
generally disagree with using the prefix micro at all. In this chapter we’re going to be building a
service, but this chapter is as much about the process as it is about the end result.

We’ll start by following the practice of API First, designing our service’s RESTful contract before
we write a single line of code. Then, when it does come time to write code, we’re going to start
by writing tests first. By writing small tests that go from failure to passing, we will gradually
build out our service.

The sample service we’re going to build in this chapter is a server implementation of the game
of Go. This service will be designed to enable clients of any kind to participate in matches of
Go, from iPhones to browsers to other services.

Most importantly, this service needs a name. A service written in Go that resolves matches of
the game of Go can be called nothing less than GoGo.

In this chapter, we’re going to cover:

 ■ API First development disciplines and practices.

 ■ Creating the scaffolding for a microservice.

 ■ Adding tests to a scaffolded service and iterating through adding code to make tests pass.

 ■ Deploying and running a microservice in the cloud.

54 Chapter 5 Building Microservices in Go

Designing Services API First

In this next section we’re going to design our microservice. One of the classic problems of
software development is that what you design is rarely ever what you end up developing. There
is always a gap between documentation, requirements, and implementation.

Thankfully, as you’ll see, there are some tools available to use for microservice develop-
ment that actually allow a situation where the design is the documentation, which can then be
 integrated into the development process.

Designing the Matches API

The first thing that we’re going to need if we’re creating a service that hosts matches is a
resource collection for matches. With this collection, we should be able to create a new match
as well as list all of the matches currently being managed by the server shown in Table 5.1.

Table 5.1 The Matches API

Resource Method Description

/matches GET Queries a list of all available matches.

/matches POST Creates and starts a new match.

/matches/{id} GET Queries the details for an individual match.

If we were building a game of Go that we were hoping to sell for real money, rather than as a
sample, we would also implement methods to allow a UI to query things like chains and
 liberties, concepts essential to determining legal moves in Go.

Designing the Moves API

Once the service is set up to handle matches, we need to expose an API to let players make
moves. This adds the following HTTP methods to the moves sub-resource as shown in Table 5.2.

Table 5.2 The Moves API

Resource Method Description

/matches/{id}/moves GET Returns a time-ordered list of all moves taken
 during the match.

/matches/{id}/moves POST Make a move. A move without a position is a pass.

Creating an API Blueprint

In our desire to simplify everything we do, some time ago we started to eschew complex or
cumbersome forms of documentation. Do we really need to share monstrous document files
that carry with them decades of backwards compatibility requirements?

55Designing Services API First

For us, Markdown1 is the preferred form of creating documentation and doing countless other
things. It is a simple, plain text format that requires no IDE or bloated editing tool, and it can
be converted and processed into countless formats from PDF to web sites. As with so many
things, the debate over which format people use for documentation has been known to spark
massive, blood-soaked inter-office battles.

As a matter of habit, we typically create Markdown documents that we bundle along with our
services. This allows other developers to quickly get a list of all of our service’s REST resources,
the URI patterns, and request/response payloads. As simple as our Go code is, we still wanted
a way to document the service contract without making someone go sifting through our
router code.

As it turns out, there is a dialect of Markdown used specifically for documenting RESTful
APIs: API Blueprint. You can get started reading up on this format at the API Blueprint
website https://apiblueprint.org/.

If you check out the GitHub repository for this chapter (https://github.com/cloudnativego/gogo-
service), you’ll see a file called apiary.apib. This file consists of Markdown that represents the
documentation and specification of the RESTful contract supported by the GoGo service.

Listing 5.1 below shows a sample of the Markdown content. You can see how it describes REST
resources, HTTP methods, and JSON payloads.

Listing 5.1 Sample Blueprint Markdown

Start a New Match [POST]

You can create a new match with this action. It takes information about the players
 and will set up a new game. The game will start at round 1, and it will be
 black's turn to play. Per standard Go rules, **black** plays first.

+ Request (application/json)

 {
 "gridsize" : 19,
 "players" : [
 {
 "color" : "white",
 "name" : "bob"
 },
 {
 "color" : "black",
 "name" : "alfred"
 }
]
 }

1 Links to references on Markdown syntax can be found here: https://en.wikipedia.org/wiki/Markdown.

https://apiblueprint.org/.
https://github.com/cloudnativego/gogo-service
https://github.com/cloudnativego/gogo-service
https://en.wikipedia.org/wiki/Markdown

56 Chapter 5 Building Microservices in Go

+ Response 201 (application/json)

 + Headers

 Location: /matches/5a003b78-409e-4452-b456-a6f0dcee05bd

 + Body

 {
 "id" : "5a003b78-409e-4452-b456-a6f0dcee05bd",
 "started_at": "2015-08-05T08:40:51.620Z",
 "gridsize" : 19,
 "turn" : 0,
 "players" : [
 {
 "color" : "white",
 "name" : "bob",
 "score" : 10
 },
 {
 "color" : "black",
 "name" : "alfred",
 "score" : 22
 }
]

 }

Testing and Publishing Documentation with Apiary

In Chapter 1, The Way of the Cloud, we cautioned against relying too heavily on tools.
Tools should make your life easier, but they should never be mandatory. The API Blueprint
Markdown that contains the documentation and specification for our service is just a simple
text file, however, there is a tool that can do a lot to make our lives both easier and more
productive.

Apiary is a website that lets you interactively design your RESTful API. You can think of it as a
WYSIWYG editor for API Blueprint Markdown syntax, but that’s just the beginning. Apiary will
also set up mock server endpoints for you that return sample JSON payloads. This saves you the
trouble of having to build your own mock server, and lets you remain in API First mode until
after you’ve gone through the motions of exercising various rough drafts of your API.

In addition to exposing mock server endpoints, you can also see client code in a multitude
of languages that exercises your API, further assisting you and your team in validating your
API—all before you have to write a single line of server code.

57Scaffolding a Microservice

The API Blueprint document for the GoGo service is available in our GitHub repository as well
as on Apiary for viewing at http://docs.gogame.apiary.io/. Rather than dump the entire set of
documentation into the book, we’ll leave most of the details in the blueprint document and on
Apiary for you to read on your own.

The purpose of this chapter isn’t to teach you how to make a game server, but to teach you the
process of building a service in the Go language, so details like the rules of Go and actual game
implementation will be secondary to things like Test-Driven Development and setting up a
service scaffold, which we’ll cover next.

Scaffolding a Microservice

In a perfect world, we would start with a completely blank slate and go directly into testing.
The problem with ideal, perfect worlds is they rarely ever exist. In our case, we want to be able
to write tests for our RESTful endpoints.

The reality of the situation is we can’t really write a test for RESTful endpoints unless we know
what kind of functions we’re going to be writing per endpoint. To figure this out, and to get a
basic scaffolding for our service set up, we’re going to create two files.

The first file, main.go (Listing 5.2), contains our main function, and creates and runs a new
server. We want to keep our main function as small as possible because the main function is
usually notoriously hard to test in isolation.

Listing 5.2 main.go

package main

import (
 "os"
 service "github.com/cloudnativego/gogo-service/service"
)

func main() {
 port := os.Getenv(“PORT”)
 if len(port) == 0 {
 port = "3000"
 }

 server := service.NewServer()
 server.Run(":" + port)
}

The code in Listing 5.2 invokes a function called NewServer. This function returns a pointer to
a Negroni struct. Negroni is a third-party library for building routed endpoints on top of Go’s
built-in net/http package.

http://docs.gogame.apiary.io/

58 Chapter 5 Building Microservices in Go

It is also important to note the bolded line of code. External configuration is crucial to your
ability to build cloud native applications. By allowing your application to accept its bound port
from an environment variable, you’re taking the first step toward building a service that will
work in the cloud. We also happen to know that a number of cloud providers automatically
inject the application port using this exact environment variable.

Listing 5.2 shows our server implementation. In this code we’re creating and configuring
Negroni in classic mode, and we’re using Gorilla Mux for our routing library. As a rule, we treat
any third party dependency with skepticism, and must justify the inclusion of everything that
isn’t part of the core Go language.

In the case of Negroni and Mux, these two play very nicely on top of Go’s stock net/http
implementation, and are extensible pieces of middleware that don’t interfere with anything
we might want to do in the future. Nothing there is mandatory; there is no “magic”, just some
libraries that make our lives easier so we don’t spend so much time writing boilerplate with
each service.

For information on Negroni, check out the GitHub repo https://github.com/codegangsta/
negroni. And for information on Gorilla Mux, check out that repo at https://github.com/
gorilla/mux. Note that these are the same URLs that we import directly in our code, which
makes it extremely easy to track down documentation and source code for third-party packages.

Listing 5.3 shows the NewServer function referenced by our main function and some utility
functions. Note that NewServer is exported by virtue of its capitalization and functions like
initRoutes and testHandler are not.

Listing 5.3 server.go

package service

import (
 "net/http"

 "github.com/codegangsta/negroni"
 "github.com/gorilla/mux"
 "github.com/unrolled/render"
)

// NewServer configures and returns a Server.
func NewServer() *negroni.Negroni {

 formatter := render.New(render.Options{
 IndentJSON: true,
 })

 n := negroni.Classic()
 mx := mux.NewRouter()

 initRoutes(mx, formatter)

https://github.com/codegangsta/negroni
https://github.com/codegangsta/negroni
https://github.com/gorilla/mux
https://github.com/gorilla/mux

59Scaffolding a Microservice

 n.UseHandler(mx)
 return n
}

func initRoutes(mx *mux.Router, formatter *render.Render) {
 mx.HandleFunc("/test", testHandler(formatter)).Methods("GET")
}

func testHandler(formatter *render.Render) http.HandlerFunc {

 return func(w http.ResponseWriter, req *http.Request) {
 formatter.JSON(w, http.StatusOK,
 struct{ Test string }{"This is a test"})
 }
}

The most important thing to understand in this scaffolding is the testHandler function.
Unlike regular functions we’ve been using up to this point, this function returns an anonymous
function.

This anonymous function, in turn, returns a function of type http.HandlerFunc, which is
defined as follows:

type HandlerFunc func(ResponseWriter, *Request)

This type definition essentially allows us to treat any function with this signature as an HTTP
handler. You’ll find this type of pattern used throughout Go’s core packages and in many third-
party packages.

For our simple scaffolding, we return a function that places an anonymous struct onto the
response writer by invoking the formatter.JSON method (this is why we pass the formatter to
the wrapper function).

The reason this is important is because all of our RESTful endpoints for our service are going to
be wrapper functions that return functions of type http.HandlerFunc.

Before we get to writing our tests, let’s make sure that the scaffolding works and that we can
exercise our test resource. To build, we can issue the following command (your mileage may
vary with Windows):

$ go build

This builds all the Go files in the folder. Once you’ve created an executable file, we can just run
the GoGo service:

$./gogo-service
 [negroni] listening on :3000

60 Chapter 5 Building Microservices in Go

When we hit http://localhost:3000/test we get our test JSON in the browser, and we see
that because we’ve enabled the classic configuration in Negroni, we get some nice logging of
HTTP request handling:

 [negroni] Started GET /test
 [negroni] Completed 200 OK in 212.121µs

Now that we know our scaffolding works, and we have at least a functioning web server
capable of handling simple requests, it’s time to do some real Test-Driven Development.

Building Services Test First

It’s pretty easy to talk about TDD, but, despite countless blogs and books extolling its virtues,
it is still pretty rare to find people who practice it regularly. It is even rarer still to find
people who practice it without cutting corners. Cutting corners in TDD is the worst of both
worlds—you’re spending the time and effort on TDD but you’re not reaping the benefits of
code quality and functional confidence.

In this section of the chapter, we’re going to write a method for our service in test-first fashion.
If we’re doing it right, it should feel like we’re spending 95% of our time writing tests, and 5%
of our time writing code. The size of our test should be significantly larger than the size of the
code we’re testing. Some of this just comes from the fact that it takes more code to exercise all
possible paths through a function under test than it does to write the function itself. For more
details on this concept, check out the book Continuous Delivery by Jez Humble & David Farley.

Many organizations view the effort to write tests as wasteful, claiming that it does not add
value and actually increases time-to-market. There are a number of problems with this
myopic claim.

It is true that TDD will, indeed, slow initial development. However, let’s consider a new defini-
tion of the term development:

development(n) : The period where the features of the application are being added
without the so-called burden of a running version of it in production.

Dan Nemeth

With this definition in mind when we look at the entire life cycle of an application, only for a
very small portion of that time is the application ever in this state of “development”.

Investment in testing will pay dividends throughout the entire life cycle of the application, but
especially in production where:

 ■ Uptime is a must.

 ■ Satisfying change/feature requests is urgent.

 ■ Debugging is costly, difficult, and oftentimes approaching impossible.

http://localhost:3000/test

61Building Services Test First

To get started on our own TDD journey of service creation, let’s create a file called
handlers_test.go (shown in Listing 5.4). This file is going to test functions written in the
handlers.go file. If your favorite text editor has a side-by-side or split-screen mode, this would
be a great time to use it.

We’re going to be writing a test for the HTTP handler invoked when someone POSTs a request
to start a new match. If we check back with our Apiary documentation, we’ll see that one
of the requirements is that this function return an HTTP status code of 201 (Created) when
successful.

Let’s write a test for this. We’ll call the function TestCreateMatch and, as with all Go unit
tests using the basic unit testing package, it will take as a parameter a pointer to a testing.T
struct.

Creating a First, Failing Test

In order to test our server’s ability to create matches, we need to invoke the HTTP handler. We
could invoke this manually by fabricating all of the various components of the HTTP pipeline,
including the request and response streams, headers, etc. Thankfully, though, Go provides us
with a test HTTP server. This doesn’t open up a socket, but it does all the other work we need it
to do, which lets us invoke HTTP handlers.

There is a lot going on here, so let’s look at the full listing (Listing 5.4) for the test file in our
first iteration, which, in keeping with TDD ideology, is a failing test.

Listing 5.4 handlers_test.go

package main

import (
 "bytes"
 "fmt"
 "io/ioutil"
 "net/http"
 "net/http/httptest"
 "testing"

 "github.com/unrolled/render"
)

var (
 formatter = render.New(render.Options{
 IndentJSON: true,
 })
)

62 Chapter 5 Building Microservices in Go

func TestCreateMatch(t *testing.T) {
 client := &http.Client{}
 server := httptest.NewServer(
 http.HandlerFunc(createMatchHandler(formatter)))
 defer server.Close()

 body := []byte("{\n \"gridsize\": 19,\n \"players\": [\n {\n

\"color\": \"white\",\n \"name\": \"bob\"\n },\n {\n
\"color\": \"black\",\n \"name\": \"alfred\"\n }\n]\n}")

 req, err := http.NewRequest("POST",
 server.URL, bytes.NewBuffer(body))
 if err != nil {
 t.Errorf("Error in creating POST request for createMatchHandler: %v",
 err)
 }
 req.Header.Add("Content-Type", "application/json")

 res, err := client.Do(req)
 if err != nil {
 t.Errorf("Error in POST to createMatchHandler: %v", err)
 }

 defer res.Body.Close()

 payload, err := ioutil.ReadAll(res.Body)
 if err != nil {
 t.Errorf("Error reading response body: %v", err)
 }

 if res.StatusCode != http.StatusCreated {
 t.Errorf("Expected response status 201, received %s",
 res.Status)
 }

 fmt.Printf("Payload: %s", string(payload))
}

Here’s another reason why we like Apiary so much: if you go to the documentation for the
create match functionality and click on that method, you’ll see that it can actually generate
sample client code in Go. Much of that generated code is used in the preceding test method in
Listing 5.3.

The first thing we do is call httptest.NewServer, which creates an HTTP server listening at a
custom URL that will serve up the supplied method. After that, we are using most of Apiary’s
sample client code to invoke this method.

63Building Services Test First

We have two main assertions here:

 ■ We do not receive any errors when executing the request and reading the response bytes

 ■ The response status code is 201 (Created).

If we were to try and run the test above, we would get a compilation failure. This is true TDD,
because we haven’t even written the method we’re testing (createMatchHandler doesn’t exist
yet). To get the test to compile, we can add a copy of our original scaffold test method to our
handlers.go file as shown in Listing 5.5:

Listing 5.5 handlers.go

package main

import (
 "net/http"

 "github.com/unrolled/render"
)

func createMatchHandler(formatter *render.Render) http.HandlerFunc {
 return func(w http.ResponseWriter, req *http.Request) {
 formatter.JSON(w,
 http.StatusOK,
 struct{ Test string }{"This is a test"})
 }
}

Now we can see what happens when we try and test this. First, to test we issue the following
command:

$ go test -v $(glide novendor)

We should see the following output:

Expected response status 201, received 200 OK

Now we’ve written our first failing test! At this point, some of you may be starting to doubt
these methods. If so, please bear with us; we promise that by the end of the chapter you will
have seen the light.

Let’s make this failing test a passing one. To make it pass, all we do is make the HTTP handler
return a status of 201. We don’t write the full implementation, we don’t add complex logic.
The only thing we do is make the test pass. It is vitally important to the process that we only
write the minimum code necessary to make the test pass. If we write code that isn’t necessary for
the test to pass, we’re no longer in test-first mode.

64 Chapter 5 Building Microservices in Go

To make the test pass, change the formatter line in handlers.go to as follows:

formatter.JSON(w, http.StatusCreated, struct{ Test string }{"This is a test"})

We just changed the second parameter to http.StatusCreated. Now when we run our test,
we should see something similar to the following output:

$ go test -v $(glide novendor)
=== RUN TestCreateMatch
--- PASS: TestCreateMatch (0.00s)
PASS
ok github.com/cloudnativego/gogo-service 0.011s

Testing the Location Header

The next thing that we know our service needs to do in response to a create match request
(as stated in our Apiary documentation) is to set the Location header in the HTTP response. By
convention, when a RESTful service creates something, the Location header should be set to
the URL of the newly created thing.

As usual, we start with a failing test condition and then we make it pass.

Let’s add the following assertion to our test:

if _, ok := res.Header["Location"]; !ok {
 t.Error("Location header is not set")
}

Now if we run our test again, we will fail with the above error message. To make the test pass,
modify the createMatchHandler method in handlers.go to look like this:

func createMatchHandler(formatter *render.Render) http.HandlerFunc {
 return func(w http.ResponseWriter, req *http.Request) {
 w.Header().Add("Location", "some value")
 formatter.JSON(w, http.StatusCreated,
 struct{ Test string }{"This is a test"})
 }
}

Note that we didn’t add a real value to that location. Instead, we just added some value. Next,
we’ll add a failing condition that tests that we get a valid location header that contains the
matches resource and is long enough so that we know it also includes the GUID for the
newly created match. We’ll modify our previous test for the location header so the code looks
like this:

 loc, headerOk := res.Header["Location"]
 if !headerOk {
 t.Error("Location header is not set")
 } else {
 if !strings.Contains(loc[0], "/matches/") {
 t.Errorf("Location header should contain '/matches/'")
 }

65Building Services Test First

 if len(loc[0]) != len(fakeMatchLocationResult) {
 t.Errorf("Location value does not contain guid of new match")
 }
 }
}

We’ve also added a constant to the test called fakeMatchLocationResult, which is just a
string that we also pulled off of Apiary representing a test value for the location header. We’ll
use this for test assertions and fakes. This is defined as follows:

const (
 fakeMatchLocationResult = "/matches/5a003b78-409e-4452-b456-a6f0dcee05bd"
)

Epic Montage—Test Iterations

Since we have limited space in this book, we don’t want to dump the code for every
single change we made during every iteration where we went from red (failing) to green
(passing) light in our testing.

Instead, we’ll describe what we did in each TDD pass we made:

 ■ Wrote a failing test.

 ■ Made the failing test pass.

 ■ Checked in the results.

If you want to examine the history so you can sift through the changes we made line-by-line,
check out the commit history in GitHub. Look for commits labelled “TDD GoGo service Pass n”
where n is the testing iteration number.

We’ve summarized the approaches we took for each failed test and what the resolution was
to make the test pass in the following list of steps, so cue up your favorite Hollywood hacker
movie montage background music and read on:

1. TDD Pass 1. We created the initial setup required to host a test HTTP server that invokes
our HTTP handler method (the method under test). This test initially failed because of
compilation failure—the method being tested did not yet exist. We got the test to pass by
dumping the test resource code into the createMatchHandler method.

2. TDD Pass 2. Added an assertion that the result included a Location header in the HTTP
response. This test initially failed, so we added a placeholder value in the location header.

3. TDD Pass 3. Added an assertion that the Location header was actually a properly
formatted URL pointing at a match identified by a GUID. The test initially failed, so we
made it pass by generating a new GUID and setting a proper location header.

4. TDD Pass 4. Added an assertion that the ID of the match in the response payload matched
the GUID in the location header. This test initially failed and, to make it pass, we had to
add code that un-marshaled the response payload in the test. This meant we actually had
to create a struct that represented the response payload on the server. We stopped returning
“this is a test” in the handler and now actually return a real response object.

66 Chapter 5 Building Microservices in Go

5. TDD Pass 5. Added an assertion that the repository used by the handler function
has been updated to include the newly created match. To do this, we had to create a
repository interface and an in-memory repository implementation.

6. TDD Pass 6. Added an assertion that the grid size in the service response was the same
as the grid size in the match added to the repository. This forced us to create a new struct
for the response, and to make several updates. We also updated another library,
gogo-engine, which contains minimal Go game resolution logic that should remain
mostly isolated from the service.

7. TDD Pass 7. Added assertions to test that the players we submitted in the new match
request are the ones we got back in the service JSON reply and they are also reflected
accordingly in the repository.

8. TDD Pass 8. Added assertions to test that if we send something other than JSON, or we
fail to send reasonable values for a new match request, the server responds with a Bad
Request code. These assertions fail, so we went into the handler and added tests for JSON
un-marshaling failures as well as invalid request objects. Go is pretty carefree about JSON
de-serialization, so we catch most of our “bad request” inputs by checking for omitted or
default values in the de-serialized struct.

Let’s take a breather and look at where things stand after this set of iterations. Listing 5.6 shows
the one handler that we have been developing using TDD, iterating through successive test
failures which are then made to pass by writing code. To clarify, we never write code unless it
is in service of making a test pass. This essentially guarantees us the maximum amount of test
 coverage and confidence possible.

This is a really hard line for many developers and organizations to take, but we think it’s worth
it and have seen the benefits exhibited by real applications deployed in the cloud.

Listing 5.6 handlers.go (after 8 TDD iterations)

package service

import (
 "encoding/json"
 "io/ioutil"
 "net/http"

 "github.com/cloudnativego/gogo-engine"
 "github.com/unrolled/render"
)

func createMatchHandler(formatter *render.Render, repo matchRepository)
 http.HandlerFunc {
 return func(w http.ResponseWriter, req *http.Request) {
 payload, _ := ioutil.ReadAll(req.Body)
 var newMatchRequest newMatchRequest

67Building Services Test First

 err := json.Unmarshal(payload, &newMatchRequest)
 if err != nil {
 formatter.Text(w, http.StatusBadRequest,
 "Failed to parse create match request")
 return
 }
 if !newMatchRequest.isValid() {
 formatter.Text(w, http.StatusBadRequest,
 "Invalid new match request")
 return
 }

 newMatch := gogo.NewMatch(newMatchRequest.GridSize,
 newMatchRequest.PlayerBlack, newMatchRequest.PlayerWhite)
 repo.addMatch(newMatch)
 w.Header().Add("Location", "/matches/"+newMatch.ID)
 formatter.JSON(w, http.StatusCreated,
 &newMatchResponse{ID: newMatch.ID,
 GridSize: newMatch.GridSize,
 PlayerBlack: newMatchRequest.PlayerBlack,
 PlayerWhite: newMatchRequest.PlayerWhite})
 }
}

While Go’s formatting guidelines generally call for an 8-character tab, we’ve condensed some of
that to make the listing a little more readable here.

We have about 20 lines of code in a single function, and we have about 120 lines of code in the
two test methods that exercise that code. This is exactly the type of ratio we want. Before we
even open a single HTTP test tool to play with our service, we want to have 100% confidence
and know exactly how our service should behave.

Based on the tests that we’ve written thus far, and the code in Listing 5.6, can you spot any
testing gaps? Can you see any scenarios or edge cases that might trip up our code that we have
not yet accounted for in testing?

There are two glaring gaps that we see:

1. This service is not stateless. If it goes down, we lose all of our in-progress games. This is a
known issue, and we’re willing to let it slide because we have a crystal ball, and we know
that Chapter 7 will address data persistence.

2. There are a number of abuse scenarios against which we are not guarding. Most notably,
there is nothing to stop someone from rapidly creating game after game until we exceed
our memory capacity and the service crashes. This particular abuse vector is a side-
effect of us storing games in memory and us violating a cardinal rule of cloud native:
statelessness. We’re not going to write tests for this either because, as mentioned in #1,
these conditions are temporary and writing DDoS-guarding code is a rabbit hole we want
to avoid in this book.

68 Chapter 5 Building Microservices in Go

We’ll correct some of these as we progress throughout the book, but others, like guard-
ing against all of the edge cases, are really going to be your responsibility as you build
 production-grade services.

Deploying and Running in the Cloud

Now that we’ve used Go to build a microservice while following the way of the cloud, we can put
that effort to good use and deploy our work to the cloud. The first thing we’re going to need
is a cloud. While there are a number of options available to us, in this book we favor Cloud
Foundry’s PCF Dev and Pivotal Web Services (PWS) as deployment targets because they’re both
extremely easy to get started with and PWS has a free trial that does not require a credit card to
get started.

Creating a PWS Account

Head over to http://run.pivotal.io/ to create an account with Pivotal Web Services. Pivotal Web
Services is platform powered by Cloud Foundry that lets you deploy your applications in their
cloud and take advantage of a number of free and paid services in their marketplace.

Once you’ve created an account and logged in, you will see the dashboard for your organiza-
tion. An organization is a logical unit of security and deployment. You can invite other people
to join your organization so you can collaborate on cloud projects, or you can keep all that
cloudy goodness to yourself.

On the home page or dashboard for your organization, you will see a box giving you
some helpful information, including links pointing you to the Cloud Foundry CLI. This is a
 command-line interface that you can use to push and configure your applications in any cloud
foundry (not just PWS).

Download and install the CF CLI and make sure it works by running a few test commands such
as cf apps or cf spaces to verify that you’re connected and working. Remember that you
have 60 days to play in the PWS sandbox without ever having to supply a credit card, so make
sure you take full advantage of it.

For information on what you can do with the CF CLI, check out the documentation
here http://docs.run.pivotal.io/devguide/cf-cli/.

Setting up PCF Dev

If you’re more adventurous, or you simply like to tinker, then PCF Dev is the tool for you.
Essentially, PCF Dev is a stripped-down version of Cloud Foundry that provides application
developers all of the infrastructure necessary to deploy an application into a CF deployment,
but without all of the production-level stuff that would normally prevent you from running
a cloud on your laptop.

http://run.pivotal.io/
http://docs.run.pivotal.io/devguide/cf-cli/.

69Deploying and Running in the Cloud

PCF Dev utilizes a virtual machine infrastructure (you can choose between VMware or
VirtualBox) and a tool called vagrant to spin up a single, self-contained virtual machine that
will play host to PCF Dev and your applications.

You can use PCF Dev to test how well your application behaves in the cloud without having
to push to PWS. We’ve found it invaluable for testing things like service bindings and doing
testing that falls somewhere between automated integration testing and full acceptance testing.

At the time this book is being written, PCF Dev is still in its early stages and, as a result, the
instructions for installing and configuring the various releases are likely to change.

To get set up with PCF Dev, go to https://docs.pivotal.io/pcf-dev/.

The beauty of PCF Dev is that once you have the pre-requisites installed, you can simply
issue the start command and everything you need will be brought up for you on your
local virtualization infrastructure. For example, on OS X, you start your foundation with
the ./start-osx script.

Using the exact same Cloud Foundry CLI that you used to communicate with your PWS cloud,
you can retarget that CLI to your new MicroPCF installation:

$ cf api api.local.pcfdev.io --skip-ssl-validation
Setting api endpoint to api.local.pcfdev.io...
OK

API endpoint: https://api.local.pcfdev.io (API version: 2.44.0)
Not logged in. Use 'cf login' to log in.

Make sure you login as the instructions indicate (the default username and password are admin
and admin), and you can then issue standard Cloud Foundry CLI commands to communicate
with your newly started local, private CF deployment:

$ cf apps
Getting apps in org local.pcfdev.io-org / space kev as admin...
OK

Pushing to Cloud Foundry

Now that you’ve got the CF CLI installed and you can choose whether your CLI is targeting
the PWS cloud or your local PCF Dev installation, you can push your application and run it in
the cloud.

While you can manually supply all of the various options that you need to push your
 application to the cloud, it’s easier (and more compatible with the CD pipeline work we’ll be
doing later in the book) to create a manifest file, like the one in Listing 5.7.

https://docs.pivotal.io/pcf-dev/.

70 Chapter 5 Building Microservices in Go

Listing 5.7 manifest.yml

applications:
- path: .
 memory: 512MB
 instances: 1
 name: your-app-name
 disk_quota: 1024M
 command: your-app-binary-name
 buildpack: https://github.com/cloudfoundry/go-buildpack.git

With this manifest file in the main directory of your application, you can simply type the
following command and your application will be deployed in the cloud.

$ cf push

As we’ll also illustrate later in the book, you can even configure your Wercker pipeline to
 automatically deploy your application to the Cloud Foundry of your choice at the end of a
successful build for continuous delivery.

A Note on the Go Buildpack

Buildpacks are designed to merge your application code with the underlying requirements
 necessary to run your app. The Java buildpack contains the JDK and the JRE, the Node
 buildpack contains node, etc. While the Go buildpack might suffice for tinkering, it is far too
easy to violate the “single immutable artifact” rule with it. It’s also possible that someone
will commit a change to the buildpack that breaks your code or pipeline. As you’ll see later in
the book, when we deploy real apps, we are going to favor deploying our Docker images to the
cloud directly from Docker Hub. The choice of buildback vs. Docker is entirely up to you and
your organization and often boils down to simple personal preference.

Summary

In this chapter we illustrated the basics of building microservices in Go. We took a look at the
code you need in order to set up basic routes and handlers, but more importantly, we showed
you how to build this code test-first.

Further, we walked you through getting your code deployed into the cloud. The rest of the
book is going to get more technical and explore more in-depth topics, so you may want to
take a moment to review any of the content of this chapter you didn’t quite understand before
continuing on.

This would also be a great time to tinker a bit and create your own hello world services,
deploy them to PWS and play with starting, stopping, and scaling your applications. You may
also want to browse the marketplace in PWS to get an idea of the types of incredibly powerful
services, including databases, message queues, and monitoring, that are available to the
 applications you deploy there.

Index

Numbers
401 Unauthorized, 161

403 Forbidden, 161

A
acceptance testing in World of FluxCraft

example, 220–222

accounts (PWS), creating, 68

actions (Flux), 197

agents, 229

anchors for methods, structs as, 25–26

API Blueprint, creating, 54–56

API First, 53

documentation

creating, 54–56

testing and publishing, 56–57

Matches API, designing, 54

Moves API, designing, 54

API keys, 160

API secrets, 160

Apiary, 56–57

client code generation, 81

create match functionality, 62

APM (application performance monitoring)

tools, 228–229

App.jsx

Flux application (listing 13.1), 199

React application (listing 12.4), 187–189

232 applications

applications

Flux

actions, 197

building sample application,
198–207

dispatcher, 196

source, 197

stores, 196–197

views, 197

pushing to Cloud Foundry, 69–70

React

.babelrc file, 183

building sample application,
184–191

bundles, 183

components, 184

package.json file, 181–182

testing, 192

webpack.config.js file, 182–183

running, 19

troubleshooting

with debugger, 229–230

log streams, 227–228

performance monitoring, 228–229

in Wercker

creating, 41–42

deploying to Docker Hub, 49–50

World of FluxCraft example, 210–211

acceptance testing, 220–222

application architecture, 211–213

command processor, 217–218

command services, 215

databases as integration tier, 213

event processor, 218–219

Flux GUI in, 214–215

map management, 219–220

one-way reactive data flow,
213–214

player movement sequences, 216

reality service, 219

scaling, versioning, deploying, 213

assets/templates/index.html (listing 11.1),

172–173

Auth0 accounts, creating, 153–154

automation

with Go, 9

in “the way of the cloud”, 6–7

B
.babelrc file, 183

backing services, configuring,

110–112

basic-functions.go (listing 3.2), 20–21

bazaar, installing, 13

best practices, CI (continuous integration),

39–40

big data in Event Sourcing, 117

Boot2Docker, 36

bound resources, 89

buildpacks, 70, 111

builds (Wercker)

running, 47–49

for web applications, 147–149

bundles, 183

C
Carmack, John, 35

case sensitivity in naming conventions, 31

Cask, installing, 13

catalog service, creating, 77–83

cfmgo driver, 98

cgroups, 36

chains, 54

channels, 129–130

choosing tools, 11–12

233data services

CI (continuous integration), 39, 224.

See also Wercker

best practices, 39–40

pipeline creation example, 50–52

classic mode (Negroni), 58

CLI for Wercker, installing, 42–43

client code generation in Apiary, 81

client credentials pattern, 160–163

client services

duplicating server structure, 84–85

importing server package, 84

importing shared package, 85–86

cloud architecture, WebSockets in,

170–172

Cloud Foundry CLI, 68, 69–70

Cochran, Tom, 71

command handler service, creating,

122–126

command handlers (listing 8.2), 127

command processor in World of FluxCraft

example, 217–218

Command Query Responsibility Segregation

(CQRS), 118–120

drone army example, 121–122

command handler service, creating,
122–126

event processor, building, 128–133

integration testing, 133

query handler service, creating,
133–134

command services in World of FluxCraft

example, 215

commands, 119

comments, 32

communication with MongoDB, 97–98

complexity in Flux, 197–198

component composition in React, 180, 184

confidence from testing, 3–5, 224

configuration file for Wercker, creating,

43–47

configuring

backing services, 110–112

Go workspace, 14–15

connected cars use case, 121

consumeEvents() (listing 8.5), 132

continuous integration (CI), 39, 224. See
also Wercker

best practices, 39–40

pipeline creation example, 50–52

Conway’s Law, 86

cookies, 145–146

reading, 147

writing, 146–147

CQRS (Command Query Responsibility

Segregation), 118–120

drone army example, 121–122

command handler service, creating,
122–126

event processor, building, 128–133

integration testing, 133

query handler service, creating,
133–134

create match functionality (Apiary), 62

CSS, backgrounds in, 214–215

currying, 22

custom-package-consumer.go

(listing 3.7), 33

D
data security, 163–164

data services

as integration tier, 133, 213

MongoDB

advantages of, 96

communication with, 97–98

integration testing, 103–110

234 data services

Docker Hub, deploying Wercker applications,

49–50

documentation

comments, 32

creating with API Blueprint, 54–56

testing and publishing with Apiary,
56–57

DOM, virtual, 179

drone army example, 121–122

command handler, creating, 122–126

event processor, building, 128–133

integration testing, 133

query handler service, creating,
133–134

duck typing with interfaces, 26–28

duplicating server structure, 84–85

dynamic service discovery, 90

dynamic typing with interfaces, 26–28, 81

E
Einstein, Albert, 113, 227

Eureka, 90–92

event processors

building, 128–133

integration testing, 133

in World of FluxCraft example, 218–219

Event Sourcing

big data in, 117

CQRS in, 118–120

drone army example, 121–122

command handler service, creating,
122–128

event processor, building, 128–133

integration testing, 133

query handler service, creating,
133–134

eventual consistency in, 117–118

real-world testing, 110–112

repository unit testing, 98–103

repository pattern, updating, 96–97

debugger, troubleshooting with, 229–230

deleting Docker images, 39

dependencies. See service ecosystems

deploying

automatic deployment, 224

microservices to cloud, 68

creating PWS account, 68

pushing to Cloud Foundry, 69–70

setting up PCF Dev, 68–69

Wercker applications to Docker Hub,
49–50

World of FluxCraft example
application, 213

dequeueEvents() (listing 8.4), 130–131

designing

microservices

creating documentation, 54–56

Matches API, 54

Moves API, 54

testing and publishing
documentation, 56–57

service ecosystems, 72–73

WebSocket servers, 169–170

Dijkstra, Edsger W.167

directory structure in Go, 14–15

discovering services, 89

dynamic service discovery, 90

with Eureka, 90–92

dispatcher (Flux), 196

Docker, 36

advantages of, 36

deleting images, 39

installing, 36–38

running images, 38–39

235GUIs

Fowler, Martin, 95

fulfillment service, creating, 74–77

fulfillment-client.go (listing 6.6), 81–82

functions, 19–22

exporting, 31

HTTP handlers, 59

main, 18–19

multiple return values in, 20–21

G
game scripts, 221

Git, installing, 12

client installation, 13

GitHub account creation, 13–14

GitHub accounts, creating, 13–14

Glide, 46–47

Go

advantages of, 8

automation, 9

open source, 8

simplicity, 8

buildpacks, 70

installing, 14

workspace

configuring, 14–15

testing, 15–16

Go Playground, 19

randomization in, 20

GoGo, 53

go-package-consumer.go (listing 3.4),

29–30

goroutines, 125, 221

go-structs.go (listing 3.3), 23–24

GUIs

with Flux. See Flux

with React. See React

as idempotent, 115

as isolated, 115–116

reality as, 114–115

as replayable and recoverable, 116–117

testing in, 116

use cases

connected cars, 121

social media feed processing, 121

weather monitoring, 120

event store, 119

eventual consistency in Event Sourcing,

117–118

exchanges, 125

exercises. See reader exercises

exporting functions, 31

externalizing URLs, 86–89

F
failing tests, creating, 61–64

fakes/fake.go (listing 7.2), 101–103

fargo.go (listing 6.8), 91–92

Flux

advantages of, 195–196

application architecture

actions, 197

building sample application,
198–207

dispatcher, 196

source, 197

stores, 196–197

views, 197

complexity in, 197–198

World of FluxCraft GUI, 214–215

FluxCraft. See World of FluxCraft example

application

fmt package, 18

form processing in web applications, 145

236 handlers_test.go

init function, 144

installing

bazaar, 13

Cask, 13

Docker, 36–38

Git, 12

client installation, 13

GitHub account creation, 13–14

Go, 14

Homebrew, 12–13

mercurial, 13

Wercker CLI, 42–43

Xcode command line utilities, 12

integrating third-party packages, 52

integration testing

event processors, 133

MongoDB data services, 103

with transient database, 103–105

writing tests, 106–110

integrations/_test/integration_test.go

(listing 7.3), 106–108

interfaces, 25

dynamic typing with, 26–28, 81

isolated, Event Sourcing as, 115–116

J
JavaScript clients, supporting, 139–142

JavaScript frameworks, 175

choices of, 178

Flux. See Flux

React. See React

K
keywords

range, 22

return, 19

struct, 23

type, 23

H
handlers_test.go

catalog service (listing 6.3), 78–79

first, failing test (listing 5.4), 61–62

fulfillment service (listing 6.1), 74–75

handlers.go

after 8 TDD iterations (listing 5.6),
66–67

catalog service (listing 6.4), 79–81

first, failing test (listing 5.5), 63

fulfillment service (listing 6.2), 76–77

web applications (listing 9.4), 141

health checks, 90

heartbeats, 90

Heilmann, Chris, 177

“hello, cloud” example, 18–19

hello-cloud.go (listing 3.1), 18

hello.js (listing 9.3), 140

Hoare, C.A.R., 137

Homebrew

Docker installation, 37

installing, 12–13

HTTP connections, upgrading, 168–169

HTTP handlers, 59

I
IDE recommendations, 9

idempotent, Event Sourcing as, 115

images (Docker)

deleting, 39

running, 38–39

importing

server package, 84

shared packages, 85–86

index.html

listing 9.2, JavaScript client support, 140

listing 9.6, server-side templates, 144

237Maimon, Moshe ben

main.go, 57

manifest.yml, 70

mongorepository_test.go, 99–101

NewServer() for event processor, 129

npcs/npcs.go, 32–33

npcs/types.go, 31–32

OutbreakActions.js, 200–201

OutbreakReport.jsx

Flux application, 204–206

React application, 185–186

Outbreaks.jsx, 187

OutbreakSource.js, 201–202

OutbreakStore.js, 202–203

package.json file, 182

sample Blueprint Markdown, 55–56

send.go, 123–124

server/broadcast_handler.go, 174

server.go

scaffolding microservices, 58–59

server-side templates, 143–144

user-provided services, 87–88

web application static files, 138–139

server/home_handler.go, 157

server/middleware.go

client credentials pattern, 162–163

OAuth-secured applications, 156

server/server.go

client credentials pattern, 161–162

OAuth-secured applications, 154–155

server/user_handler.go, 158

wercker.yml, 44–45

Location header, testing, 64–65

log streams, 227–228

M
Macs, installing Homebrew, 12–13

Maimon, Moshe ben, 195

L
Lao Tzu, 1

learning systems, 121

level editors, 220

liberties, 54

listings

App.jsx

Flux application, 199

React application, 187–189

assets/templates/index.html, 172–173

basic-functions.go, 20–21

command handlers, 127

consumeEvents(), 132

custom-package-consumer.go, 33

dequeueEvents(), 130–131

fakes/fake.go, 101–103

fargo.go, 91–92

fulfillment-client.go, 81–82

go-package-consumer.go, 29–30

go-structs.go, 23–24

handlers_test.go

catalog service, 78–79

first, failing test, 61–62

fulfillment service, 74–75

handlers.go

after 8 TDD iterations, 66–67

catalog service, 79–81

first, failing test, 63

fulfillment service, 76–77

web applications, 141

hello-cloud.go, 18

hello.js, 140

index.html

JavaScript client support, 140

server-side templates, 144

integrations/_test/integration_test.go,
106–108

238 main function

model sharing, 84

client duplicates server structure,
84–85

client imports server package, 84

importing shared package, 85–86

MongoDB

advantages of, 96

communication with, 97–98

integration testing, 103

with transient database, 103–105

writing tests, 106–110

as integration tier, 133

real-world testing, 110–112

repository unit testing, 98–103

mongorepository_test.go (listing 7.1),

99–101

monitoring performance, 228–229

monoliths, 7

Moves API, designing, 54

multiple return values in functions, 20–21

N
namespaces, 36

naming conventions, case sensitivity, 31

Negroni, 57–58

Netflix Eureka, 90–92

New Relic, 229

Newman, Sam, 53, 223

NewServer() for event processor

(listing 8.3), 129

npcs/npcs.go (listing 3.6), 32–33

npcs/types.go (listing 3.5), 31–32

O
OAuth

Auth0 accounts, creating, 153–154

web applications, building, 154–158

main function, 18–19

main package, 30

main.go (listing 5.2), 57

manifest files, 69–70

manifest.yml (listing 5.7), 70

map designers, 220

map management in World of FluxCraft

example, 219–220

map service, 212

Markdown, 54–56

marketplace, 110

master branch, 50

Matches API, designing, 54

mercurial, installing, 13

message queues, 119, 122–126

messaging providers, building WebSockets

with, 172–175

methods, structs as anchors for, 25–26

mgo driver, 97–98

microservices, 7–8, 224. See also services,

discovering

deploying to cloud, 68

creating PWS account, 68

pushing to Cloud Foundry, 69–70

setting up PCF Dev, 68–69

designing

creating documentation, 54–56

Matches API, 54

Moves API, 54

testing and publishing
 documentation, 56–57

scaffolding, 57–60

security, 160

client credentials pattern, 160–163

TDD (Test-Driven Development), 60–61

first, failing test, 61–64

Location header testing, 64–65

test iterations, 65–68

239reality service in World of FluxCraft example

Q
queries, 119

query handler services, creating, 133–134

R
RabbitMQ, 122–126

rand package, 19

randomization in Go Playground, 20

range keyword, 22

React

advantages of, 178–179

component composition, 180

ease of use, 181

narrow focus, 180–181

one-way reactive data flow, 180

virtual DOM, 179

application architecture

.babelrc file, 183

building sample application,
184–191

bundles, 183

components, 184

package.json file, 181–182

testing applications, 192

webpack.config.js file, 182–183

disadvantages of, 191–192

resources for information, 192–193

React Native, 179

reactive data flow, 180, 213–214

reader exercises

service ecosystems, 92–93

web application security, 165–166

reading cookies, 147

README files, 29

reality, as event-sourced, 114–115

reality service in World of FluxCraft

example, 219

Odersky, Martin, 17

one-way reactive data flow, 180, 213–214

open source, Go as, 8

OutbreakActions.js (listing 13.2), 200–201

OutbreakReport.jsx

Flux application (listing 13.5), 204–206

React application (listing 12.2), 185–186

Outbreaks.jsx (listing 12.3), 187

OutbreakSource.js (listing 13.3), 201–202

OutbreakStore.js (listing 13.4), 202–203

P
package.json file, 181–182

packages

creating, 30

example, 31–33

exporting functions, 31

fmt, 18

init function, 144

main, 30

rand, 19

third-party packages

accessing, 28–30

integrating, 52

PCF Dev, setting up, 68–69

performance monitoring, 228–229

pipelines, 43–47, 50–52

Pivotal Web Services (PWS) accounts,

creating, 68

pointers to structs, creating, 23

privacy, 163–164

publishing documentation, 56–57

publish-subscribe messaging, 172–175

PubNub, 172

pushing applications to Cloud Foundry, 69–70

PWS (Pivotal Web Services) accounts,

creating, 68

240 real-world testing for MongoDB repository

send.go (listing 8.1), 123–124

server/broadcast_handler.go (listing 11.2),

174

server.go

scaffolding microservices (listing 5.3),
58–59

server-side templates (listing 9.5),
143–144

user-provided services (listing 6.7),
87–88

web application static files (listing 9.1),
138–139

server/home_handler.go (listing 10.3), 157

server/middleware.go

client credentials pattern (listing 10.6),
162–163

OAuth-secured applications
(listing 10.2), 156

servers

designing WebSocket servers, 169–170

duplicating structure, 84–85

importing, 84

importing shared package, 85–86

server-sent events (SSEs), WebSockets

versus, 169

server/server.go

client credentials pattern (listing 10.5),
161–162

OAuth-secured applications (listing 10.1),
154–155

server-side templates, 142–144

server/user_handler.go (listing 10.4), 158

service bindings, externalizing configuration,

86–89

service ecosystems

designing, 72–73

discovering services, 89

dynamic service discovery, 90

with Eureka, 90–92

real-world testing for MongoDB repository,

110–112

recoverable, Event Sourcing as, 116–117

registration, 90

release schedules

fear of releasing, 224–225

in “the way of the cloud”, 5–6

replayable, Event Sourcing as, 116–117

repository pattern

unit testing, 98–103

updating, 96–97

return keyword, 19

runes, 18–19

running

applications, 19

Docker images, 38–39

secure web applications, 158–160

WebSockets sample application,
175–176

Wercker builds, 47–49

S
scaffolding microservices, 57–60

scaling World of FluxCraft example

application, 213

scope, case sensitivity and, 31

security

data security, 163–164

for microservices, 160

client credentials pattern, 160–163

SSL, 163

for web applications, 151–153

Auth0 accounts, 153–154

OAuth-secured apps, building,
154–158

reader exercises, 165–166

running apps, 158–160

241testing

SSL, 163

static files, serving in web applications,

138–139

stores (Flux), 196–197

strings, Unicode in, 18–19

struct keyword, 23

structs, 22–25

as method anchors, 25–26

structured data sharing, 84

client duplicates server structure, 84–85

client imports server package, 84

importing shared package, 85–86

SurviveJS, 179, 192

T
tasks, 129

TDD (Test-Driven Development), 60–61.

See also testing

for microservices

first, failing test, creating, 61–64

Location header testing, 64–65

test iterations, 65–68

for MongoDB repository

integration testing, 103–110

real-world testing, 110–112

unit testing, 98–103

for service ecosystems, 73–74

catalog service, creating, 77–83

fulfillment service, creating, 74–77

Tesla connected cars use case, 121

test iterations, 65–68

Test-Driven Development. See TDD

(Test-Driven Development)

testing. See also TDD (Test-Driven

Development)

acceptance testing, 220–222

confidence in, 3–5, 224

externalizing configuration, 86–89

model sharing in, 84

client duplicates server structure,
84–85

client imports server package, 84

importing shared package, 85–86

reader exercise, 92–93

TDD (Test-Driven Development), 73–74

catalog service, creating, 77–83

fulfillment service, creating, 74–77

in “the way of the cloud”, 7–8

services, discovering, 89. See also

microservices

dynamic service discovery, 90

with Eureka, 90–92

serving static files in web applications,

138–139

session state management, 145–146

reading cookies, 147

in security applications, 156

writing cookies, 146–147

sessions, 97

shared packages, importing, 85–86

sharing structured data, 84

client duplicates server structure, 84–85

client imports server package, 84

importing shared package, 85–86

simplicity

of Go, 8

in “the way of the cloud”, 2–3

Sinclair, Robbie, 151

social media feed processing use case, 121

source (Flux), 197

sprites, 214

SRP (Single Responsibility Principle), 7

SSEs (server-sent events), WebSockets

versus, 169

242 testing

V
vagrant, 69

versioning World of FluxCraft example

application, 213

views (Flux), 197

virtual DOM, 179

virtues of “the way of the cloud”, 2

automation, 6–7

release schedules, 5–6

service ecosystems, 7–8

simplicity, 2–3

testing, 3–5

W
“the way of the cloud”, 1–2

virtues of, 2

automation, 6–7

release schedules, 5–6

service ecosystems, 7–8

simplicity, 2–3

testing, 3–5

weather monitoring use case, 120

web applications

building with Wercker, 147–149

cookies, 145–146

reading, 147

writing, 146–147

form processing, 145

security, 151–153

Auth0 accounts, 153–154

OAuth-secured apps, building,
154–158

reader exercises, 165–166

running apps, 158–160

server-side templates, 142–144

serving static files, 138–139

supporting JavaScript clients, 139–142

documentation, 56–57

in Event Sourcing, 116

Go workspace, 15–16

Location header, 64–65

React applications, 192

in “the way of the cloud”, 3–5

third-party packages

accessing, 28–30

integrating, 52

time in Event Sourcing, 116

Toolbox (Docker), 36

tools, choosing, 11–12

troubleshooting applications

with debugger, 229–230

log streams, 227–228

performance monitoring, 228–229

Twain, Mark, 11

type keyword, 23

types.go files, 31

typing with interfaces, 26–28, 81

U
Unicode in strings, 18–19

unit testing. See TDD (Test-Driven

Development)

updating repository pattern, 96–97

upgrading HTTP connections,

168–169

URLs, externalizing, 86–89

use cases for Event Sourcing

connected cars, 121

social media feed processing, 121

weather monitoring, 120

user interfaces

with Flux. See Flux

with React. See React

user-provided services, 86

243YAML

pipeline creation example, 50–52

running builds, 47–49

wercker.yml (listing 4.1), 44–45

will-it-blend typing, 26–28, 81

workflows, 43

workspace (Go)

configuring, 14–15

testing, 15–16

World of FluxCraft example application,

210–211

acceptance testing, 220–222

application architecture, 211–213

command processor, 217–218

command services, 215

databases as integration tier, 213

event processor, 218–219

Flux GUI in, 214–215

map management, 219–220

one-way reactive data flow, 213–214

player movement sequences, 216

reality service, 219

scaling, versioning, deploying, 213

writing cookies, 146–147

X
Xcode command line utilities, installing, 12

Y
YAML, 43

WebSockets

building with messaging providers,
172–175

in cloud architecture, 170–172

running sample application,
175–176

server design, 169–170

SSEs (server-sent events) versus, 169

upgrading HTTP connections,
168–169

uses for, 168

webpack.config.js file, 182–183

WebSockets

building with messaging providers,
172–175

in cloud architecture, 170–172

running sample application, 175–176

server design, 169–170

SSEs (server-sent events) versus, 169

upgrading HTTP connections,
168–169

uses for, 168

Wercker, 39

advantages of, 40

applications

creating, 41–42

deploying to Docker Hub, 49–50

web applications, 147–149

CLI installation, 42–43

configuration file, creating, 43–47

	Cover
	Title Page
	Copyright Page
	About the Authors
	Acknowledgments
	Contents
	5 Building Microservices in Go
	Designing Services API First
	Designing the Matches API
	Creating an API Blueprint
	Testing and Publishing Documentation with Apiary

	Scaffolding a Microservice
	Building Services Test First
	Creating a First, Failing Test
	Testing the Location Header
	Epic Montage—Test Iterations

	Deploying and Running in the Cloud
	Creating a PWS Account
	Setting up PCF Dev
	Pushing to Cloud Foundry

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

