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Preface

When Dan and I set out to write this book, we didn’t want it to be a reference book or 
“yet another syntax book.” Instead, we wanted to put to good use our experience building 
cloud native solutions for Pivotal customers and nearly a lifetime of combined experience 
building software for companies of just about every size, shape, and industry.

This book starts off with a philosophical chapter, The Way of the Cloud, because we firmly 
believe that the secret to building good software has more to do with the mindset and 
discipline of the developers than it does the tooling or language.

From there, we follow The Way of the Cloud in everything we do as we gradually, in a 
test-driven and highly automated fashion, take you through a series of chapters designed 
to increase your skills building cloud native services in Go. We cover the fundamentals of 
building services; middleware; the use of tools like git, Docker, and Wercker; and cloud native 
fundamentals like environment-based configuration, service discovery, and reactive and push-
based applications. We cover patterns like Event Sourcing and CQRS, and combine everything 
in the book into a final sample that you can use as inspiration for your own projects.

Another of our strongly-held beliefs is that the act of building a piece of software should be 
as fun (or more!) as using that software. If it’s not fun, you’re doing it wrong. We wanted 
the joy we get from building services in Go to infect our readers, and hopefully you will 
have as much fun reading this book as we did writing it.
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5
Building 

Microservices in Go

“The golden rule: can you make a change to a service and deploy it by itself 
without changing anything else?” 

Sam Newman, Building Microservices 

Every service you build should be a microservice, and, as we’ve discussed earlier in the book, we 
generally disagree with using the prefix micro at all. In this chapter we’re going to be building a 
service, but this chapter is as much about the process as it is about the end result.

We’ll start by following the practice of API First, designing our service’s RESTful contract before 
we write a single line of code. Then, when it does come time to write code, we’re going to start 
by writing tests first. By writing small tests that go from failure to passing, we will gradually 
build out our service.

The sample service we’re going to build in this chapter is a server implementation of the game 
of Go. This service will be designed to enable clients of any kind to participate in matches of 
Go, from iPhones to browsers to other services.

Most importantly, this service needs a name. A service written in Go that resolves matches of 
the game of Go can be called nothing less than GoGo.

In this chapter, we’re going to cover:

 ■ API First development disciplines and practices.

 ■ Creating the scaffolding for a microservice.

 ■ Adding tests to a scaffolded service and iterating through adding code to make tests pass.

 ■ Deploying and running a microservice in the cloud.
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Designing Services API First

In this next section we’re going to design our microservice. One of the classic problems of 
software development is that what you design is rarely ever what you end up developing. There 
is always a gap between documentation, requirements, and implementation.

Thankfully, as you’ll see, there are some tools available to use for microservice develop-
ment that actually allow a situation where the design is the documentation, which can then be 
 integrated into the development process.

Designing the Matches API

The first thing that we’re going to need if we’re creating a service that hosts matches is a 
resource collection for matches. With this collection, we should be able to create a new match 
as well as list all of the matches currently being managed by the server shown in Table 5.1.

Table 5.1 The Matches API 

Resource Method Description

/matches GET Queries a list of all available matches.

/matches POST Creates and starts a new match.

/matches/{id} GET Queries the details for an individual match.

If we were building a game of Go that we were hoping to sell for real money, rather than as a 
sample, we would also implement methods to allow a UI to query things like chains and 
 liberties, concepts essential to determining legal moves in Go. 

Designing the Moves API

Once the service is set up to handle matches, we need to expose an API to let players make 
moves. This adds the following HTTP methods to the moves sub-resource as shown in Table 5.2.

Table 5.2 The Moves API 

Resource Method Description

/matches/{id}/moves GET Returns a time-ordered list of all moves taken 
 during the match.

/matches/{id}/moves POST Make a move. A move without a position is a pass.

Creating an API Blueprint

In our desire to simplify everything we do, some time ago we started to eschew complex or 
cumbersome forms of documentation. Do we really need to share monstrous document files 
that carry with them decades of backwards compatibility requirements? 
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For us, Markdown1 is the preferred form of creating documentation and doing countless other 
things. It is a simple, plain text format that requires no IDE or bloated editing tool, and it can 
be converted and processed into countless formats from PDF to web sites. As with so many 
things, the debate over which format people use for documentation has been known to spark 
massive, blood-soaked inter-office battles.

As a matter of habit, we typically create Markdown documents that we bundle along with our 
services. This allows other developers to quickly get a list of all of our service’s REST resources, 
the URI patterns, and request/response payloads. As simple as our Go code is, we still wanted 
a way to document the service contract without making someone go sifting through our 
router code.

As it turns out, there is a dialect of Markdown used specifically for documenting RESTful 
APIs: API Blueprint. You can get started reading up on this format at the API Blueprint 
website https://apiblueprint.org/. 

If you check out the GitHub repository for this chapter (https://github.com/cloudnativego/gogo-
service), you’ll see a file called apiary.apib. This file consists of Markdown that represents the 
documentation and specification of the RESTful contract supported by the GoGo service.

Listing 5.1 below shows a sample of the Markdown content. You can see how it describes REST 
resources, HTTP methods, and JSON payloads.

Listing 5.1 Sample Blueprint Markdown 

### Start a New Match [POST]
 
You can create a new match with this action. It takes information about the players
 and will set up a new game. The game will start at round 1, and it will be
 **black**'s turn to play. Per standard Go rules, **black** plays first.
 
+ Request (application/json)
 
        {
            "gridsize" : 19,
            "players" : [
            {
                "color" : "white",
                "name" : "bob"
            },
            {
                "color" : "black",
                "name" : "alfred"
            }
            ]
        }
 

1 Links to references on Markdown syntax can be found here: https://en.wikipedia.org/wiki/Markdown.

https://apiblueprint.org/.
https://github.com/cloudnativego/gogo-service
https://github.com/cloudnativego/gogo-service
https://en.wikipedia.org/wiki/Markdown
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+ Response 201 (application/json)
 
    + Headers
 
            Location: /matches/5a003b78-409e-4452-b456-a6f0dcee05bd
 
    + Body
 
            {
                "id" : "5a003b78-409e-4452-b456-a6f0dcee05bd",
                "started_at": "2015-08-05T08:40:51.620Z",
                "gridsize" : 19,
                "turn" : 0,
                "players" : [
                    {
                        "color" : "white",
                        "name" : "bob",
                        "score" : 10
                    },
                    {
                        "color" : "black",
                        "name" : "alfred",
                        "score" : 22
                    }
                ]
                
            }

Testing and Publishing Documentation with Apiary

In Chapter 1, The Way of the Cloud, we cautioned against relying too heavily on tools. 
Tools should make your life easier, but they should never be mandatory. The API Blueprint 
Markdown that contains the documentation and specification for our service is just a simple 
text file, however, there is a tool that can do a lot to make our lives both easier and more 
productive.

Apiary is a website that lets you interactively design your RESTful API. You can think of it as a 
WYSIWYG editor for API Blueprint Markdown syntax, but that’s just the beginning. Apiary will 
also set up mock server endpoints for you that return sample JSON payloads. This saves you the 
trouble of having to build your own mock server, and lets you remain in API First mode until 
after you’ve gone through the motions of exercising various rough drafts of your API.

In addition to exposing mock server endpoints, you can also see client code in a multitude 
of languages that exercises your API, further assisting you and your team in validating your 
API—all before you have to write a single line of server code.
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The API Blueprint document for the GoGo service is available in our GitHub repository as well 
as on Apiary for viewing at http://docs.gogame.apiary.io/. Rather than dump the entire set of 
documentation into the book, we’ll leave most of the details in the blueprint document and on 
Apiary for you to read on your own.

The purpose of this chapter isn’t to teach you how to make a game server, but to teach you the 
process of building a service in the Go language, so details like the rules of Go and actual game 
implementation will be secondary to things like Test-Driven Development and setting up a 
service scaffold, which we’ll cover next.

Scaffolding a Microservice

In a perfect world, we would start with a completely blank slate and go directly into testing. 
The problem with ideal, perfect worlds is they rarely ever exist. In our case, we want to be able 
to write tests for our RESTful endpoints.

The reality of the situation is we can’t really write a test for RESTful endpoints unless we know 
what kind of functions we’re going to be writing per endpoint. To figure this out, and to get a 
basic scaffolding for our service set up, we’re going to create two files.

The first file, main.go (Listing 5.2), contains our main function, and creates and runs a new 
server. We want to keep our main function as small as possible because the main function is 
usually notoriously hard to test in isolation.

Listing 5.2 main.go 

package main
 
import (
  "os"
  service "github.com/cloudnativego/gogo-service/service"
)
 
func main() {
  port := os.Getenv(“PORT”)
  if len(port) == 0 {
    port = "3000"
  }
 
  server := service.NewServer()
  server.Run(":" + port)
}

The code in Listing 5.2 invokes a function called NewServer. This function returns a pointer to 
a Negroni struct. Negroni is a third-party library for building routed endpoints on top of Go’s 
built-in net/http package.

http://docs.gogame.apiary.io/
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It is also important to note the bolded line of code. External configuration is crucial to your 
ability to build cloud native applications. By allowing your application to accept its bound port 
from an environment variable, you’re taking the first step toward building a service that will 
work in the cloud. We also happen to know that a number of cloud providers automatically 
inject the application port using this exact environment variable.

Listing 5.2 shows our server implementation. In this code we’re creating and configuring 
Negroni in classic mode, and we’re using Gorilla Mux for our routing library. As a rule, we treat 
any third party dependency with skepticism, and must justify the inclusion of everything that 
isn’t part of the core Go language. 

In the case of Negroni and Mux, these two play very nicely on top of Go’s stock net/http 
implementation, and are extensible pieces of middleware that don’t interfere with anything 
we might want to do in the future. Nothing there is mandatory; there is no “magic”, just some 
libraries that make our lives easier so we don’t spend so much time writing boilerplate with 
each service.

For information on Negroni, check out the GitHub repo https://github.com/codegangsta/
negroni. And for information on Gorilla Mux, check out that repo at https://github.com/
gorilla/mux. Note that these are the same URLs that we import directly in our code, which 
makes it extremely easy to track down documentation and source code for third-party packages.

Listing 5.3 shows the NewServer function referenced by our main function and some utility 
functions. Note that NewServer is exported by virtue of its capitalization and functions like 
initRoutes and testHandler are not.

Listing 5.3 server.go 

package service
 
import (
 "net/http"
 
 "github.com/codegangsta/negroni"
 "github.com/gorilla/mux"
 "github.com/unrolled/render"
)
 
// NewServer configures and returns a Server.
func NewServer() *negroni.Negroni {
 
 formatter := render.New(render.Options{
  IndentJSON: true,
 })
 
 n := negroni.Classic()
 mx := mux.NewRouter()
 
 initRoutes(mx, formatter)
 

https://github.com/codegangsta/negroni
https://github.com/codegangsta/negroni
https://github.com/gorilla/mux
https://github.com/gorilla/mux
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 n.UseHandler(mx)
 return n
}
 
func initRoutes(mx *mux.Router, formatter *render.Render) {
 mx.HandleFunc("/test", testHandler(formatter)).Methods("GET")
}
 
func testHandler(formatter *render.Render) http.HandlerFunc {
 
 return func(w http.ResponseWriter, req *http.Request) {
  formatter.JSON(w, http.StatusOK, 
                  struct{ Test string }{"This is a test"})
 }
}

The most important thing to understand in this scaffolding is the testHandler function. 
Unlike regular functions we’ve been using up to this point, this function returns an anonymous 
function.

This anonymous function, in turn, returns a function of type http.HandlerFunc, which is 
defined as follows:

type HandlerFunc func(ResponseWriter, *Request)

This type definition essentially allows us to treat any function with this signature as an HTTP 
handler. You’ll find this type of pattern used throughout Go’s core packages and in many third-
party packages.

For our simple scaffolding, we return a function that places an anonymous struct onto the 
response writer by invoking the formatter.JSON method (this is why we pass the formatter to 
the wrapper function).

The reason this is important is because all of our RESTful endpoints for our service are going to 
be wrapper functions that return functions of type http.HandlerFunc.

Before we get to writing our tests, let’s make sure that the scaffolding works and that we can 
exercise our test resource. To build, we can issue the following command (your mileage may 
vary with Windows):

$ go build

This builds all the Go files in the folder. Once you’ve created an executable file, we can just run 
the GoGo service:

$ ./gogo-service
 [negroni] listening on :3000
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When we hit http://localhost:3000/test we get our test JSON in the browser, and we see 
that because we’ve enabled the classic configuration in Negroni, we get some nice logging of 
HTTP request handling:

 [negroni] Started GET /test
 [negroni] Completed 200 OK in 212.121µs

Now that we know our scaffolding works, and we have at least a functioning web server 
capable of handling simple requests, it’s time to do some real Test-Driven Development.

Building Services Test First

It’s pretty easy to talk about TDD, but, despite countless blogs and books extolling its virtues, 
it is still pretty rare to find people who practice it regularly. It is even rarer still to find 
people who practice it without cutting corners. Cutting corners in TDD is the worst of both 
worlds—you’re spending the time and effort on TDD but you’re not reaping the benefits of 
code quality and functional confidence.

In this section of the chapter, we’re going to write a method for our service in test-first fashion. 
If we’re doing it right, it should feel like we’re spending 95% of our time writing tests, and 5% 
of our time writing code. The size of our test should be significantly larger than the size of the 
code we’re testing. Some of this just comes from the fact that it takes more code to exercise all 
possible paths through a function under test than it does to write the function itself. For more 
details on this concept, check out the book Continuous Delivery by Jez Humble & David Farley.

Many organizations view the effort to write tests as wasteful, claiming that it does not add 
value and actually increases time-to-market. There are a number of problems with this 
myopic claim. 

It is true that TDD will, indeed, slow initial development. However, let’s consider a new defini-
tion of the term development:

development(n) : The period where the features of the application are being added 
without the so-called burden of a running version of it in production.

Dan Nemeth 

With this definition in mind when we look at the entire life cycle of an application, only for a 
very small portion of that time is the application ever in this state of “development”.  

Investment in testing will pay dividends throughout the entire life cycle of the application, but 
especially in production where:

 ■ Uptime is a must.

 ■ Satisfying change/feature requests is urgent.

 ■ Debugging is costly, difficult, and oftentimes approaching impossible.

http://localhost:3000/test
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To get started on our own TDD journey of service creation, let’s create a file called 
handlers_test.go (shown in Listing 5.4). This file is going to test functions written in the 
handlers.go file. If your favorite text editor has a side-by-side or split-screen mode, this would 
be a great time to use it.

We’re going to be writing a test for the HTTP handler invoked when someone POSTs a request 
to start a new match. If we check back with our Apiary documentation, we’ll see that one 
of the requirements is that this function return an HTTP status code of 201 (Created) when 
successful.

Let’s write a test for this. We’ll call the function TestCreateMatch and, as with all Go unit 
tests using the basic unit testing package, it will take as a parameter a pointer to a testing.T 
struct.

Creating a First, Failing Test

In order to test our server’s ability to create matches, we need to invoke the HTTP handler. We 
could invoke this manually by fabricating all of the various components of the HTTP pipeline, 
including the request and response streams, headers, etc. Thankfully, though, Go provides us 
with a test HTTP server. This doesn’t open up a socket, but it does all the other work we need it 
to do, which lets us invoke HTTP handlers.

There is a lot going on here, so let’s look at the full listing (Listing 5.4) for the test file in our 
first iteration, which, in keeping with TDD ideology, is a failing test.

Listing 5.4 handlers_test.go 

package main
 
import (
 "bytes"
 "fmt"
 "io/ioutil"
 "net/http"
 "net/http/httptest"
 "testing"
 
 "github.com/unrolled/render"
)
 
var (
 formatter = render.New(render.Options{
  IndentJSON: true,
 })
)
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func TestCreateMatch(t *testing.T) {
 client := &http.Client{}
 server := httptest.NewServer(
            http.HandlerFunc(createMatchHandler(formatter)))
 defer server.Close()
 
  body := []byte("{\n  \"gridsize\": 19,\n  \"players\": [\n    {\n      

\"color\": \"white\",\n      \"name\": \"bob\"\n    },\n    {\n      
\"color\": \"black\",\n      \"name\": \"alfred\"\n    }\n  ]\n}")

 
 req, err := http.NewRequest("POST", 
                server.URL, bytes.NewBuffer(body))
 if err != nil {
  t.Errorf("Error in creating POST request for createMatchHandler: %v",
                 err)
 }
 req.Header.Add("Content-Type", "application/json")
 
 res, err := client.Do(req)
 if err != nil {
  t.Errorf("Error in POST to createMatchHandler: %v", err)
 }
 
 defer res.Body.Close()
 
 payload, err := ioutil.ReadAll(res.Body)
 if err != nil {
  t.Errorf("Error reading response body: %v", err)
 }
 
 if res.StatusCode != http.StatusCreated {
  t.Errorf("Expected response status 201, received %s", 
                        res.Status)
 }
 
 fmt.Printf("Payload: %s", string(payload))
}

Here’s another reason why we like Apiary so much: if you go to the documentation for the 
create match functionality and click on that method, you’ll see that it can actually generate 
sample client code in Go. Much of that generated code is used in the preceding test method in 
Listing 5.3.

The first thing we do is call httptest.NewServer, which creates an HTTP server listening at a 
custom URL that will serve up the supplied method. After that, we are using most of Apiary’s 
sample client code to invoke this method.
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We have two main assertions here: 

 ■ We do not receive any errors when executing the request and reading the response bytes

 ■ The response status code is 201 (Created).

If we were to try and run the test above, we would get a compilation failure. This is true TDD, 
because we haven’t even written the method we’re testing (createMatchHandler doesn’t exist 
yet). To get the test to compile, we can add a copy of our original scaffold test method to our 
handlers.go file as shown in Listing 5.5:

Listing 5.5 handlers.go 

package main
 
import (
 "net/http"
 
 "github.com/unrolled/render"
)
 
func createMatchHandler(formatter *render.Render) http.HandlerFunc {
 return func(w http.ResponseWriter, req *http.Request) {
  formatter.JSON(w, 
                  http.StatusOK,
                  struct{ Test string }{"This is a test"})
 }
}

Now we can see what happens when we try and test this. First, to test we issue the following 
command:

$ go test -v $(glide novendor)

We should see the following output:

Expected response status 201, received 200 OK

Now we’ve written our first failing test! At this point, some of you may be starting to doubt 
these methods. If so, please bear with us; we promise that by the end of the chapter you will 
have seen the light.

Let’s make this failing test a passing one. To make it pass, all we do is make the HTTP handler 
return a status of 201. We don’t write the full implementation, we don’t add complex logic. 
The only thing we do is make the test pass. It is vitally important to the process that we only 
write the minimum code necessary to make the test pass. If we write code that isn’t necessary for 
the test to pass, we’re no longer in test-first mode.
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To make the test pass, change the formatter line in handlers.go to as follows:

formatter.JSON(w, http.StatusCreated, struct{ Test string }{"This is a test"})

We just changed the second parameter to http.StatusCreated. Now when we run our test, 
we should see something similar to the following output:

$ go test -v $(glide novendor)
=== RUN   TestCreateMatch
--- PASS: TestCreateMatch (0.00s)
PASS
ok   github.com/cloudnativego/gogo-service 0.011s

Testing the Location Header

The next thing that we know our service needs to do in response to a create match request 
(as stated in our Apiary documentation) is to set the Location header in the HTTP response. By 
convention, when a RESTful service creates something, the Location header should be set to 
the URL of the newly created thing.

As usual, we start with a failing test condition and then we make it pass.

Let’s add the following assertion to our test:

if _, ok := res.Header["Location"]; !ok {
  t.Error("Location header is not set")
}

Now if we run our test again, we will fail with the above error message. To make the test pass, 
modify the createMatchHandler method in handlers.go to look like this:

func createMatchHandler(formatter *render.Render) http.HandlerFunc {
 return func(w http.ResponseWriter, req *http.Request) {
  w.Header().Add("Location", "some value")
  formatter.JSON(w, http.StatusCreated, 
                        struct{ Test string }{"This is a test"})
 }
}

Note that we didn’t add a real value to that location. Instead, we just added some value. Next, 
we’ll add a failing condition that tests that we get a valid location header that contains the 
matches resource and is long enough so that we know it also includes the GUID for the 
newly created match. We’ll modify our previous test for the location header so the code looks 
like this:

        loc, headerOk := res.Header["Location"]
 if !headerOk {
  t.Error("Location header is not set")
 } else {
  if !strings.Contains(loc[0], "/matches/") {
   t.Errorf("Location header should contain '/matches/'")
  }
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  if len(loc[0]) != len(fakeMatchLocationResult) {
   t.Errorf("Location value does not contain guid of new match")
  }
 }
}

We’ve also added a constant to the test called fakeMatchLocationResult, which is just a 
string that we also pulled off of Apiary representing a test value for the location header. We’ll 
use this for test assertions and fakes. This is defined as follows:

const (
   fakeMatchLocationResult = "/matches/5a003b78-409e-4452-b456-a6f0dcee05bd"
)

Epic Montage—Test Iterations

Since we have limited space in this book, we don’t want to dump the code for every 
single change we made during every iteration where we went from red (failing) to green 
(passing) light in our testing.

Instead, we’ll describe what we did in each TDD pass we made:

 ■ Wrote a failing test.

 ■ Made the failing test pass.

 ■ Checked in the results.

If you want to examine the history so you can sift through the changes we made line-by-line, 
check out the commit history in GitHub. Look for commits labelled “TDD GoGo service Pass n” 
where n is the testing iteration number. 

We’ve summarized the approaches we took for each failed test and what the resolution was 
to make the test pass in the following list of steps, so cue up your favorite Hollywood hacker 
movie montage background music and read on:

1. TDD Pass 1. We created the initial setup required to host a test HTTP server that invokes 
our HTTP handler method (the method under test). This test initially failed because of 
compilation failure—the method being tested did not yet exist. We got the test to pass by 
dumping the test resource code into the createMatchHandler method.

2. TDD Pass 2. Added an assertion that the result included a Location header in the HTTP 
response. This test initially failed, so we added a placeholder value in the location header.

3. TDD Pass 3. Added an assertion that the Location header was actually a properly 
formatted URL pointing at a match identified by a GUID. The test initially failed, so we 
made it pass by generating a new GUID and setting a proper location header.

4. TDD Pass 4. Added an assertion that the ID of the match in the response payload matched 
the GUID in the location header. This test initially failed and, to make it pass, we had to 
add code that un-marshaled the response payload in the test. This meant we actually had 
to create a struct that represented the response payload on the server. We stopped returning 
“this is a test” in the handler and now actually return a real response object.
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5. TDD Pass 5. Added an assertion that the repository used by the handler function 
has been updated to include the newly created match. To do this, we had to create a 
repository interface and an in-memory repository implementation. 

6. TDD Pass 6. Added an assertion that the grid size in the service response was the same 
as the grid size in the match added to the repository. This forced us to create a new struct 
for the response, and to make several updates. We also updated another library, 
gogo-engine, which contains minimal Go game resolution logic that should remain 
mostly isolated from the service.

7. TDD Pass 7. Added assertions to test that the players we submitted in the new match 
request are the ones we got back in the service JSON reply and they are also reflected 
accordingly in the repository.

8. TDD Pass 8. Added assertions to test that if we send something other than JSON, or we 
fail to send reasonable values for a new match request, the server responds with a Bad 
Request code. These assertions fail, so we went into the handler and added tests for JSON 
un-marshaling failures as well as invalid request objects. Go is pretty carefree about JSON 
de-serialization, so we catch most of our “bad request” inputs by checking for omitted or 
default values in the de-serialized struct.

Let’s take a breather and look at where things stand after this set of iterations. Listing 5.6 shows 
the one handler that we have been developing using TDD, iterating through successive test 
failures which are then made to pass by writing code. To clarify, we never write code unless it 
is in service of making a test pass. This essentially guarantees us the maximum amount of test 
 coverage and confidence possible.

This is a really hard line for many developers and organizations to take, but we think it’s worth 
it and have seen the benefits exhibited by real applications deployed in the cloud.

Listing 5.6 handlers.go (after 8 TDD iterations) 

package service
 
import (
 "encoding/json"
 "io/ioutil"
 "net/http"
 
 "github.com/cloudnativego/gogo-engine"
 "github.com/unrolled/render"
)
 
func createMatchHandler(formatter *render.Render, repo matchRepository)
     http.HandlerFunc {
 return func(w http.ResponseWriter, req *http.Request) {
   payload, _ := ioutil.ReadAll(req.Body)
   var newMatchRequest newMatchRequest
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   err := json.Unmarshal(payload, &newMatchRequest)
   if err != nil {
     formatter.Text(w, http.StatusBadRequest, 
              "Failed to parse create match request")
     return
    }
    if !newMatchRequest.isValid() {
      formatter.Text(w, http.StatusBadRequest,
               "Invalid new match request")
      return
    }
 
    newMatch := gogo.NewMatch(newMatchRequest.GridSize,
             newMatchRequest.PlayerBlack, newMatchRequest.PlayerWhite)
    repo.addMatch(newMatch)
    w.Header().Add("Location", "/matches/"+newMatch.ID)
    formatter.JSON(w, http.StatusCreated,
              &newMatchResponse{ID: newMatch.ID, 
                        GridSize: newMatch.GridSize,
   PlayerBlack: newMatchRequest.PlayerBlack, 
                        PlayerWhite: newMatchRequest.PlayerWhite})
 }
}

While Go’s formatting guidelines generally call for an 8-character tab, we’ve condensed some of 
that to make the listing a little more readable here.

We have about 20 lines of code in a single function, and we have about 120 lines of code in the 
two test methods that exercise that code. This is exactly the type of ratio we want. Before we 
even open a single HTTP test tool to play with our service, we want to have 100% confidence 
and know exactly how our service should behave.

Based on the tests that we’ve written thus far, and the code in Listing 5.6, can you spot any 
testing gaps? Can you see any scenarios or edge cases that might trip up our code that we have 
not yet accounted for in testing?

There are two glaring gaps that we see:

1. This service is not stateless. If it goes down, we lose all of our in-progress games. This is a 
known issue, and we’re willing to let it slide because we have a crystal ball, and we know 
that Chapter 7 will address data persistence.

2. There are a number of abuse scenarios against which we are not guarding. Most notably, 
there is nothing to stop someone from rapidly creating game after game until we exceed 
our memory capacity and the service crashes. This particular abuse vector is a  side-
effect of us storing games in memory and us violating a cardinal rule of cloud native: 
statelessness. We’re not going to write tests for this either because, as mentioned in #1, 
these conditions are temporary and writing DDoS-guarding code is a rabbit hole we want 
to avoid in this book.
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We’ll correct some of these as we progress throughout the book, but others, like guard-
ing against all of the edge cases, are really going to be your responsibility as you build 
 production-grade services.

Deploying and Running in the Cloud

Now that we’ve used Go to build a microservice while following the way of the cloud, we can put 
that effort to good use and deploy our work to the cloud. The first thing we’re going to need 
is a cloud. While there are a number of options available to us, in this book we favor Cloud 
Foundry’s PCF Dev and Pivotal Web Services (PWS) as deployment targets because they’re both 
extremely easy to get started with and PWS has a free trial that does not require a credit card to 
get started.

Creating a PWS Account

Head over to http://run.pivotal.io/ to create an account with Pivotal Web Services. Pivotal Web 
Services is platform powered by Cloud Foundry that lets you deploy your applications in their 
cloud and take advantage of a number of free and paid services in their marketplace.

Once you’ve created an account and logged in, you will see the dashboard for your organiza-
tion. An organization is a logical unit of security and deployment. You can invite other people 
to join your organization so you can collaborate on cloud projects, or you can keep all that 
cloudy goodness to yourself.

On the home page or dashboard for your organization, you will see a box giving you 
some helpful information, including links pointing you to the Cloud Foundry CLI. This is a 
 command-line interface that you can use to push and configure your applications in any cloud 
foundry (not just PWS).

Download and install the CF CLI and make sure it works by running a few test commands such 
as cf apps or cf spaces to verify that you’re connected and working. Remember that you 
have 60 days to play in the PWS sandbox without ever having to supply a credit card, so make 
sure you take full advantage of it.

For information on what you can do with the CF CLI, check out the documentation 
here http://docs.run.pivotal.io/devguide/cf-cli/. 

Setting up PCF Dev

If you’re more adventurous, or you simply like to tinker, then PCF Dev is the tool for you. 
Essentially, PCF Dev is a stripped-down version of Cloud Foundry that provides application 
developers all of the infrastructure necessary to deploy an application into a CF deployment, 
but without all of the production-level stuff that would normally prevent you from running 
a cloud on your laptop.

http://run.pivotal.io/
http://docs.run.pivotal.io/devguide/cf-cli/.
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PCF Dev utilizes a virtual machine infrastructure (you can choose between VMware or 
VirtualBox) and a tool called vagrant to spin up a single, self-contained virtual machine that 
will play host to PCF Dev and your applications.

You can use PCF Dev to test how well your application behaves in the cloud without having 
to push to PWS. We’ve found it invaluable for testing things like service bindings and doing 
testing that falls somewhere between automated integration testing and full acceptance testing.

At the time this book is being written, PCF Dev is still in its early stages and, as a result, the 
instructions for installing and configuring the various releases are likely to change.

To get set up with PCF Dev, go to https://docs.pivotal.io/pcf-dev/. 

The beauty of PCF Dev is that once you have the pre-requisites installed, you can simply 
issue the start command and everything you need will be brought up for you on your 
local  virtualization infrastructure. For example, on OS X, you start your foundation with 
the ./start-osx script.

Using the exact same Cloud Foundry CLI that you used to communicate with your PWS cloud, 
you can retarget that CLI to your new MicroPCF installation:

$ cf api api.local.pcfdev.io --skip-ssl-validation
Setting api endpoint to api.local.pcfdev.io...
OK
                   
API endpoint:   https://api.local.pcfdev.io (API version: 2.44.0)   
Not logged in. Use 'cf login' to log in.

Make sure you login as the instructions indicate (the default username and password are admin 
and admin), and you can then issue standard Cloud Foundry CLI commands to communicate 
with your newly started local, private CF deployment:

$ cf apps
Getting apps in org local.pcfdev.io-org / space kev as admin...
OK

Pushing to Cloud Foundry

Now that you’ve got the CF CLI installed and you can choose whether your CLI is targeting 
the PWS cloud or your local PCF Dev installation, you can push your application and run it in 
the cloud.

While you can manually supply all of the various options that you need to push your 
 application to the cloud, it’s easier (and more compatible with the CD pipeline work we’ll be 
doing later in the book) to create a manifest file, like the one in Listing 5.7.

https://docs.pivotal.io/pcf-dev/.
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Listing 5.7 manifest.yml 

applications:
- path: .
  memory: 512MB
  instances: 1
  name: your-app-name
  disk_quota: 1024M
  command: your-app-binary-name
  buildpack: https://github.com/cloudfoundry/go-buildpack.git

With this manifest file in the main directory of your application, you can simply type the 
following command and your application will be deployed in the cloud.

$ cf push

As we’ll also illustrate later in the book, you can even configure your Wercker pipeline to 
 automatically deploy your application to the Cloud Foundry of your choice at the end of a 
successful build for continuous delivery.

 

A Note on the Go Buildpack

Buildpacks are designed to merge your application code with the underlying requirements 
 necessary to run your app. The Java buildpack contains the JDK and the JRE, the Node 
 buildpack contains node, etc. While the Go buildpack might suffice for tinkering, it is far too 
easy to violate the “single immutable artifact” rule with it. It’s also possible that someone 
will commit a change to the buildpack that breaks your code or pipeline. As you’ll see later in 
the book, when we deploy real apps, we are going to favor deploying our Docker images to the 
cloud directly from Docker Hub. The choice of buildback vs. Docker is entirely up to you and 
your organization and often boils down to simple personal preference.  

Summary

In this chapter we illustrated the basics of building microservices in Go. We took a look at the 
code you need in order to set up basic routes and handlers, but more importantly, we showed 
you how to build this code test-first.

Further, we walked you through getting your code deployed into the cloud. The rest of the 
book is going to get more technical and explore more in-depth topics, so you may want to 
take a moment to review any of the content of this chapter you didn’t quite understand before 
continuing on. 

This would also be a great time to tinker a bit and create your own hello world services, 
deploy them to PWS and play with starting, stopping, and scaling your applications. You may 
also want to browse the marketplace in PWS to get an idea of the types of incredibly  powerful 
services, including databases, message queues, and monitoring, that are available to the 
 applications you deploy there.



Index

Numbers
401 Unauthorized, 161

403 Forbidden, 161

A
acceptance testing in World of FluxCraft 

example, 220–222

accounts (PWS), creating, 68

actions (Flux), 197

agents, 229

anchors for methods, structs as, 25–26

API Blueprint, creating, 54–56

API First, 53

documentation

creating, 54–56

testing and publishing, 56–57

Matches API, designing, 54

Moves API, designing, 54

API keys, 160

API secrets, 160

Apiary, 56–57

client code generation, 81

create match functionality, 62

APM (application performance monitoring) 

tools, 228–229

App.jsx

Flux application (listing 13.1), 199

React application (listing 12.4), 187–189



232 applications

applications

Flux

actions, 197

building sample application, 
198–207

dispatcher, 196

source, 197

stores, 196–197

views, 197

pushing to Cloud Foundry, 69–70

React

.babelrc file, 183

building sample application, 
184–191

bundles, 183

components, 184

package.json file, 181–182

testing, 192

webpack.config.js file, 182–183

running, 19

troubleshooting

with debugger, 229–230

log streams, 227–228

performance monitoring, 228–229

in Wercker

creating, 41–42

deploying to Docker Hub, 49–50

World of FluxCraft example, 210–211

acceptance testing, 220–222

application architecture, 211–213

command processor, 217–218

command services, 215

databases as integration tier, 213

event processor, 218–219

Flux GUI in, 214–215

map management, 219–220

one-way reactive data flow, 
213–214

player movement sequences, 216

reality service, 219

scaling, versioning, deploying, 213

assets/templates/index.html (listing 11.1), 

172–173

Auth0 accounts, creating, 153–154

automation

with Go, 9

in “the way of the cloud”, 6–7

B
.babelrc file, 183

backing services, configuring, 

110–112

basic-functions.go (listing 3.2), 20–21

bazaar, installing, 13

best practices, CI (continuous integration), 

39–40

big data in Event Sourcing, 117

Boot2Docker, 36

bound resources, 89

buildpacks, 70, 111

builds (Wercker)

running, 47–49

for web applications, 147–149

bundles, 183

C
Carmack, John, 35

case sensitivity in naming conventions, 31

Cask, installing, 13

catalog service, creating, 77–83

cfmgo driver, 98

cgroups, 36

chains, 54

channels, 129–130

choosing tools, 11–12



233data services

CI (continuous integration), 39, 224. 

See also Wercker

best practices, 39–40

pipeline creation example, 50–52

classic mode (Negroni), 58

CLI for Wercker, installing, 42–43

client code generation in Apiary, 81

client credentials pattern, 160–163

client services

duplicating server structure, 84–85

importing server package, 84

importing shared package, 85–86

cloud architecture, WebSockets in, 

170–172

Cloud Foundry CLI, 68, 69–70

Cochran, Tom, 71

command handler service, creating, 

122–126

command handlers (listing 8.2), 127

command processor in World of FluxCraft 

example, 217–218

Command Query Responsibility Segregation 

(CQRS), 118–120

drone army example, 121–122

command handler service, creating, 
122–126

event processor, building, 128–133

integration testing, 133

query handler service, creating, 
133–134

command services in World of FluxCraft 

example, 215

commands, 119

comments, 32

communication with MongoDB, 97–98

complexity in Flux, 197–198

component composition in React, 180, 184

confidence from testing, 3–5, 224

configuration file for Wercker, creating, 

43–47

configuring

backing services, 110–112

Go workspace, 14–15

connected cars use case, 121

consumeEvents() (listing 8.5), 132

continuous integration (CI), 39, 224. See 
also Wercker

best practices, 39–40

pipeline creation example, 50–52

Conway’s Law, 86

cookies, 145–146

reading, 147

writing, 146–147

CQRS (Command Query Responsibility 

Segregation), 118–120

drone army example, 121–122

command handler service, creating, 
122–126

event processor, building, 128–133

integration testing, 133

query handler service, creating, 
133–134

create match functionality (Apiary), 62

CSS, backgrounds in, 214–215

currying, 22

custom-package-consumer.go 

(listing 3.7), 33

D
data security, 163–164

data services

as integration tier, 133, 213

MongoDB

advantages of, 96

communication with, 97–98

integration testing, 103–110



234 data services

Docker Hub, deploying Wercker applications, 

49–50

documentation

comments, 32

creating with API Blueprint, 54–56

testing and publishing with Apiary, 
56–57

DOM, virtual, 179

drone army example, 121–122

command handler, creating, 122–126

event processor, building, 128–133

integration testing, 133

query handler service, creating, 
133–134

duck typing with interfaces, 26–28

duplicating server structure, 84–85

dynamic service discovery, 90

dynamic typing with interfaces, 26–28, 81

E
Einstein, Albert, 113, 227

Eureka, 90–92

event processors

building, 128–133

integration testing, 133

in World of FluxCraft example, 218–219

Event Sourcing

big data in, 117

CQRS in, 118–120

drone army example, 121–122

command handler service, creating, 
122–128

event processor, building, 128–133

integration testing, 133

query handler service, creating, 
133–134

eventual consistency in, 117–118

real-world testing, 110–112

repository unit testing, 98–103

repository pattern, updating, 96–97

debugger, troubleshooting with, 229–230

deleting Docker images, 39

dependencies. See service ecosystems

deploying

automatic deployment, 224

microservices to cloud, 68

creating PWS account, 68

pushing to Cloud Foundry, 69–70

setting up PCF Dev, 68–69

Wercker applications to Docker Hub, 
49–50

World of FluxCraft example 
application, 213

dequeueEvents() (listing 8.4), 130–131

designing

microservices

creating documentation, 54–56

Matches API, 54

Moves API, 54

testing and publishing 
documentation, 56–57

service ecosystems, 72–73

WebSocket servers, 169–170

Dijkstra, Edsger W.167

directory structure in Go, 14–15

discovering services, 89

dynamic service discovery, 90

with Eureka, 90–92

dispatcher (Flux), 196

Docker, 36

advantages of, 36

deleting images, 39

installing, 36–38

running images, 38–39



235GUIs

Fowler, Martin, 95

fulfillment service, creating, 74–77

fulfillment-client.go (listing 6.6), 81–82

functions, 19–22

exporting, 31

HTTP handlers, 59

main, 18–19

multiple return values in, 20–21

G
game scripts, 221

Git, installing, 12

client installation, 13

GitHub account creation, 13–14

GitHub accounts, creating, 13–14

Glide, 46–47

Go
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open source, 8
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buildpacks, 70

installing, 14

workspace

configuring, 14–15
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J
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user-provided services, 87–88

web application static files, 138–139

server/home_handler.go, 157

server/middleware.go

client credentials pattern, 162–163
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model sharing, 84
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84–85
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writing tests, 106–110

as integration tier, 133
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open source, Go as, 8

OutbreakActions.js (listing 13.2), 200–201
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web application static files (listing 9.1), 
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server/home_handler.go (listing 10.3), 157

server/middleware.go
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with Eureka, 90–92

serving static files in web applications, 

138–139

session state management, 145–146

reading cookies, 147
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