
Glossary
Welcome to the glossary. I hope you find it useful. Some of the definitions have
attached code samples that you can find in the sample code for the book in the glos-
sary folder.

Application
An application performs something a user wants to do, whether playing a game or
writing a book. Originally, an application was a single piece of software you copied
onto your device. However, today, you can also use applications from within your web
browser. The browser creates a sandbox, a safe environment for an application to run
in. The sandbox provides all the services that the application requires and strictly con-
trols access to the underlying computer. The application itself might comprise multi-
ple cooperating pieces of software that work together to provide the user experience.
And the application might use cloud components to do this.

Application Programming Interface (API)
A set of functions or methods is exposed by a piece of software to allow other soft-
ware to use its facilities. The facilities could be a single action (for example, a mathe-
matical calculation such as the sine of a value) or a more complex transaction (or, for
example, loading a text file).

Argument
An argument is a value given to a function call. Within the function, the matching
parameter value is replaced by the argument supplied in the call.

doAddition (3,4);

In the statement above, the arguments are the values 3 and 4, which are passed into
the doAddition function.

function doAddition(p1, p2) {

 let result = p1 + p2;

 alert("Result:" + result);

}

2	 Glossary

When the function is called, each argument is mapped onto the corresponding
parameter in the function body. If an argument is not supplied, the value of the
matching parameter will be set to undefined. Excess arguments are ignored if a call
has more arguments than the receiving function has parameters.

Assign
The assignment operator (=) takes the result of an expression and assigns this to a
variable.

let age = 21;

The assignment above assigns the value of 21 to the newly created variable age.

Asynchronous
There are two ways you can get your car serviced. You can drive to the garage, hand
over the keys, sit in the reception area, and wait until the service is complete. When
the car is finished, you drive it back home. This is the synchronous approach to car
maintenance. You must wait until the car is ready before getting on with your life. You
are synchronized to the speed at which the garage works.

The alternative is to use an asynchronous approach, where you drop off the car at the
garage and take a taxi home. The garage calls you when the car is ready, and you get
another taxi back to the garage and pick the car up. In this case, you can get on with
your life while the car is being serviced.

JavaScript was built for the asynchronous approach to life. At no point should we find
a JavaScript program waiting for something. A JavaScript program will not ask the file
system to open a file and then hang around, waiting for the file to open. A JavaScript
program will ask to open the file and provide a function to be called when the file is
ready. That way, the program can do something else while the file system fetches the
file from storage. The ease with which you can create and deploy anonymous func-
tions in JavaScript makes it a natural candidate for asynchronous working.

Note that asynchronous operation is not without its complications. If the operating
system can’t find a file, there needs to be a way that a request can generate events
that mean, “I couldn’t find this,” to which the program asking for the file can respond.

JavaScript provides the Promise to help manage asynchronous operations. A Promise
represents an asynchronous task that is being performed.

	 Glossary	 3

Attribute
HTML pages contain elements that describe things to be rendered by the browser.
Each type of element is associated with a particular set of attributes. An attribute adds
extra information to an element. The HTML below uses the button element to create
an on-screen button for the user to click. The button contains the text “Throw dice”
and has an id attribute set to dicebutton.

<button id="diceButton">Throw dice</button>

The id attribute can be used in a JavaScript program to locate an element in a
document. The getElementById method provided by the Document Object Model
(DOM) can search for an element in the document with a particular id attribute. The
statement below would create a variable called diceButton, which refers to the DOM
object representing the button.

let diceButton = document.getElementById("diceButton");

A JavaScript program can create new attributes for an element using the setAttri-
bute function. The statements above use the id attribute to locate a button and then
add a name attribute to the button: "Rob".

diceButton.setAttribute("name", "Rob");

Note that the button contains some HTML (in this case, the “Throw dice" string). This
is not a property of the button element, though it can be accessed in JavaScript using
the innerHTML property of the element. The statement below would set the inner-
HTML for the dice button to "Please click to throw the dice":

let diceButton = document.getElementById("diceButton");

diceButton.innerHTML = "Please click to throw the dice"

Note that this is a potential security risk. If the innerHTML of an element is entered
into the webpage, an attacker could enter malicious HTML into the document. The
following code shows how this could happen. The function doReadName reads a name
from an input element and then displays the name in a paragraph called helloPar by
setting the innerHTML of that paragraph. If visitors to the web page enter HTML code
as their name, they can cause new HTML elements to appear on the page. To set the
text on an element on a page, you should use the innerText property instead.

4	 Glossary

function doReadName() {

 let nameInput = document.getElementById("nameInput");

 let name = nameInput.value;

 console.log(name);

 let helloPar = document.getElementById("helloPar");

 helloPar.innerHTML = name;

}

I’ve provided a sample application you can use to experiment with this in the Attri-
butes folder in the glossary samples at https://begintocodecloud.com/glossary.html.
See https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML for more
details on innerHTML.

Block
A block of code in JavaScript is a number of statements that have been lumped
together and treated as a whole. You create a block by enclosing statements in braces
(curly brackets). You put code into a block so you can use a single conditional state-
ment to control several actions.

The following code logs a message if the age is greater than 70. It also sets the value
of age to 70. Both statements are controlled by the condition testing the value of age.
You also put code into a block when you create the function body.

if (age>70) {

 console.log("Age too large. Using 70");

 age = 70;

}

Class
There are two kinds of classes. The first is the one you find on an HTML page. This
class is applied to an element to make it pick up a particular style. The statement
below is from the clock program we wrote in Chapter 2.

<p id="timePar" class="clock">0:0:0</p>

It says the element displaying the clock value has been assigned the clock class. The
clock class is defined in a stylesheet, which makes the clock text large and centered
on the page.

	 Glossary	 5

.clock {

 font-size: 10em;

 font-family: 'Courier New', Courier, monospace;

 text-align: center;

}

Classes are very useful for separating the design of a page from the elements them-
selves. A given element can be assigned to multiple classes. Container elements can
be assigned a class that will be applied to all items in the container, forming the basis
of cascading stylesheets (CSS). (Note, class settings applied to individual items will
override those in parent classes.)

The second kind of class appears in JavaScript code, bringing together data and
behaviors to create an object. The following code creates a class called Vehicle, which
we could use to store the color and make of a vehicle. The Vehicle class contains two
methods—a constructor and a method called logDetails. These methods work with
two properties stored in the class: color and make.

class Vehicle {

 constructor (newValue){

 this.color = newValue.color;

 this.make = newValue.make;

 }

 logDetails(){

 console.log("Color is:"+this.color+" make is:"+this.make);

 }

}

The Vehicle class is a design for an object. When we create a new class instance, we
only get the object. In the context of the methods inside the Vehicle class, the key-
word this is resolved as a reference to the object being manipulated by the method:

	● Within the constructor method, this contains a reference to the object being
created.

	● Within the logDetails method, this contains a reference to the object on which
the method is being called.

The following code creates two instances of Vehicle—referred to by the v1 and v2
references—and then logs their details.

6	 Glossary

let v1 = new Vehicle({color:"white",make:"Nissan"});

let v2 = new Vehicle({color:"blue",make:"Ford"});

v1.logDetails();

v2.logDetails();

In the first logDetails call, the value of this will be a reference to v1. In the second
call, it is set to v2. So, the first call will output "Color is:white make is:Nissan". If
you think about it, the this reference enables what you want to happen when the
methods run. We want the first logDetails call to output the contents of v1.

Classes can contain many methods and data properties. Note that the function key-
word does not precede a method declaration in a class. Classes can be used to create
class hierarchies, where a class is extended by a child class that adds behaviors and
properties based on the parent.

Cloud
The term “The Cloud” refers to a network of remote servers hosted on the Internet
and used for storing, managing, and processing data. These servers are typically
owned and operated by third-party providers who allow customers to run applica-
tions or store and share data.

Closure
Closures can be used to create private variables in a JavaScript program. Consider the
function below. The function contains a single variable that contains a string message:

function outerFunc(){

 let outerVar = "I'm a var in the outer function";

}

If the function is called, the variable outerVar is created, and then, because it is
declared using let, it is deleted when the function completes. Now, let’s put a func-
tion inside the outer function and make the outer function return that function:

 function outerFunc(){

 let outerVar = "I'm a var in the outer function";

 function innerFunc(){

 console.log(outerVar);

 }

 return innerFunc;

}

	 Glossary	 7

We can declare functions inside functions, and a function running inside a function
can access all the variables declared in the enclosing function. So, innerFunc can log
the value of outerVar. Now, let’s call outerFunc and assign the result to a variable. The
statement below creates a variable called funcRef that refers to the result of calling
outerFunc:

let funcRef = outerFunc();

So, if you are still following this, funcRef refers to innerFunc. If I call funcRef, it will
log the value of outerVar on the console. This is the part of the process we can call
the “closure.” The value of outerVar has been retained. Normally, JavaScript destroys
variables that go out of scope, but in this case, the compiler has determined that the
value of outerVar is still required, so it has been retained. The statement below calls
the function to which funcRef refers (innerFunc), then displays, "I'm a var in the
outer function" on the console:

funcRef ();

This can be a bit confusing but very powerful. The outerVar variable is not visible
to any other part of the program. It is truly private. Let’s see how we could use this.
Suppose we want a counter that only counts up. We want to be sure that there is
no way that a naughty programmer could change the counter value. The function
countUp—shown below—will do this for us. The countUp function contains a local
count value, which is incremented and returned by the nextCount function declared
inside countUp. This forms a closure.

function countUp(){

 let count = 0;

 function nextCount(){

 count = count + 1;

 return count;

 }

 return nextCount;

}

Now, I can call countUp to make me a counting behavior, as shown below:

let myCounter = countUp();

console.log(myCounter());

8	 Glossary

The myCounter variable refers to the nextCount function, which increments the count
value and then returns it. The first time myCounter is called, it will return 1, then 2, and
so on. There is no way for this count to be reset. Note that if I make a second counter,
as shown below, it will have its own copy of the count variable. In other words, each
countUp call makes a new local variable that is then implemented as a closure.

let newCounter = countUp();

console.log(newCounter());

Code
The word “code” is generally thought to mean the same as “program.” However, the
original meaning of “code” was the very low-level instructions the computer hardware
runs to implement a program. A program might contain a statement that adds 1 to
the value of a variable. The code for this might end up being a sequence of instruc-
tions to fetch the variable, add 1, and then store it back into random access memory
(RAM). The phrase “machine code” refers to the code implemented by a particular
type of hardware.

Condition
A condition is used to control the flow of the program. The condition is controlled by
a value that can be either “truthy” or “falsey.” Some conditions are obvious. The code
below checks the age value, capping it at 70:

if (age>70) {

 console.log("Age too large. Using 70");

 age = 70;

}

Some conditions are less obvious. JavaScript has “built-in” values to represent values
such as Infinity, undefined, NaN (not a number), and objects such as an empty array
or a null reference. Which of these are truthy and which are falsey? The answer is that
everything is truthy except

	● false

	● The value 0

	● An empty string

	● A null reference

	 Glossary	 9

	● undefined

	● NaN

Console
This word has two general meanings. The first refers to the act of trying to make
someone feel better by expressing sorrow, such as, “I’m sorry that your program
doesn’t work properly.” The second refers to a user interface provided by a keyboard
and screen. Generally, you type commands into the user interface and get responses.
However, there might be some tools, such as text editors, where you use the arrow
keys to move the cursor around the screen and interact with the display. The environ-
ment in which you type your console commands is called a “shell.” Windows Power-
Shell is a cross-platform shell that provides a comprehensive set of commands and
the ability to create and run scripts to automate operations. You can find out more at
https://learn.microsoft.com/en-us/powershell.

Context
Everything we do takes place in a particular context. You behave one way in a church
and another in a football stadium. JavaScript establishes the context of an operation
by looking at the type of operands it is working on. For example, the + operator will
perform numeric addition if applied to two numbers but concatenate if applied to
two strings.

Compiler
A compiler is a program that takes in program text and converts it into machine code
that can run directly on a computer. The compilation process takes place before the
program runs. Actually, this is a bit of an oversimplification. Sometimes, a compiler
doesn’t make machine code; sometimes, it makes intermediate code, which is per-
formed or compiled when the code runs. However, all languages have a compilation
process that happens before a program is allowed to run.

Different programming languages have compilers that apply different levels of rigor
to the program code they are looking at. The JavaScript compiler is on the relaxed
side. It will accept programs that contain syntax discrepancies that would be rejected
in other languages. This can result in a JavaScript program running without error but
delivering incorrect results, so we must be mindful of this.

10	 Glossary

Computer
A computer is a collection of hardware that can run programs. On its own, a com-
puter is of no use to you. It must have software to make it useful. Some computers
run only one program. Others allow the user to select programs and add new ones. A
computer is frequently part of another device, such as a mobile phone. Some devices
also contain computers running “embedded” software to make them work, such as a
remote-controlled light bulb.

Const
JavaScript variables can be declared using the const keyword, as shown below:

const maxAge = 70;

A variable declared as const must be given an initial value, which cannot be changed.
You can protect variables from being changed by declaring them as const.

Cursor
In a console, a graphical cursor element—perhaps an underline or a block, which
might or might not flash—indicates where text will be entered. In a windowed
environment, such as on a Windows or macOS computer, it might appear as a mouse
pointer. (Also, a cursor is someone who has just discovered that their program doesn’t
do what they want it to.)

Data
Data is the stuff that computers work with. It ends up as patterns of bits that are com-
bined to make other patterns of bits that might be presented to humans who decide
whether it is information (something that means something).

Declaration
Declaration of a variable tells JavaScript that the variable exists.

let x;

The above statement tells JavaScript of the existence of an x variable. It doesn’t give
any information about the type of x or its initial contents. A declared variable con-
tains the value of undefined. You might be wondering why we declare variables like

	 Glossary	 11

this when JavaScript will automatically declare variables for us. We declare a variable
because we want to set the scope of the declared variable.

Define
When we define a variable, we tell JavaScript all about it.

let age = 21;

The statement above defines a variable called age. JavaScript can infer that the age
variable is a number and that the initial value of the variable will be 21.

Delimiter
A delimiter is something that defines the limits of something. In English, a capital
letter and a full stop are used as sentence delimiters. JavaScript programs and HTML
documents use delimiters in several different contexts. Blocks of JavaScript code are
delimited by braces: { and }. Strings of text are delimited by single ('), double ("), or
back (') quotes. HTML elements are delimited by their names, such as <par> and
</par>.

Document Object Model (DOM)
You can think of program input and output as a program reading what you typed in
and then printing a result. This is how a console application works. It is also how we
started using computers once we had got rid of punched cards.

A browser-based application does not perform input and output in this way. Instead,
the browser uses the HTML from the web page to build a Document Object Model
(DOM) that represents the page. The model contains a set of linked software objects
representing the page’s elements. A program can obtain inputs from element proper-
ties set by the browser. If the user types something into an input element, the ele-
ment’s value property will contain what was typed. A program can display output by
changing and adding properties to the objects.

The browser renders these changes to change the page’s appearance. Objects in the
DOM can also generate events, such as when a web page button is clicked. A Java
Script function can be bound to an event so that when the event occurs, the function
runs. This allows pages to be responsive to user input.

12	 Glossary

Element
HTML pages can contain elements. Each element has a particular type (for example,
paragraph or heading) and a particular attribute set. An element can contain other
elements to allow nesting.

Event
Some software components generate events. An event is a trigger that causes code
to run. A JavaScript program will “handle” an event by assigning a function to run
when the event occurs. The function can be a named function, or it can be an arrow
function.

Exception
An exception is an object that describes something bad that has just happened.
Exceptions are used in try–catch constructions. See Try–Catch, later in this glossary,
for more details.

Exploit
An exploit uses knowledge of the internal workings of software to get the software to
do things it is not supposed to do. For example, you might discover that entering an
empty username and password causes a badly written authentication system to allow
you to log in. We can reduce the chance of exploits by properly testing and validating
our code.

Function
A function is an object containing a “body” made up of JavaScript statements per-
formed when the function is called. A function also contains a name property that
gives the name of that function. Functions can be called by name, at which point, the
program execution is transferred into the statements that make up the function body.
When the function completes, the execution returns to the statement after the one
that called the function. Functions can accept values to work on, and a function can
return a result value. The doAddition function below accepts two parameters and
displays an alert showing the result of adding their values.

function doAddition(p1, p2) {

 let result = p1 + p2;

 alert("Result:" + result);

}

	 Glossary	 13

Functions reduce program size. Rather than repeat a sequence of statements each
time a particular behavior is required, you can create a function to be called each time
the behavior is needed. Functions make programs easier to maintain because a fault
in a function only needs to be fixed once. Functions can also make programs easier to
understand and work on. A task can be performed by several different functions. Each
function can be written and tested independently of the others, and the functions can
be combined to make the finished solution.

Global
The global context exists outside all others. Items declared at the global level will be
visible (can be viewed and—more importantly—changed) by any code in the system.
Global status should be reserved for data values that absolutely need to be visible to
all.

Glossary
Thanks for looking up the word glossary. A glossary is a kind of “dictionary for books.”
A dictionary contains definitions of words. A glossary contains definitions of words for
a particular context—in our case, learning how to create cloud-based applications.

Hash
Hashing is widely used during Internet transactions to validate data before it is
used. We first saw hash functions in Chapter 8 when we started using the Bootstrap
stylesheet. Below is the HTML used to add the Bootstrap stylesheet files to a web
page:

<link rel="stylesheet"

href=https://cdn.jsdelivr.net/npm/bootstrap@4.3.1/dist/css/bootstrap.min.css

integrity="sha384-ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T">

The integrity attribute of the link is the hash code for the stylesheet file. It is there so
that the browser can ensure that the stylesheet’s contents have not been tampered
with. The value of the integrity attribute has been calculated using SHA-3 (Secure
Hash Algorithm 3). This takes the file’s content and produces the random-looking
sequence of characters you can see above. The “hash algorithm” has been designed to
produce a unique output for a particular input. The browser uses the SHA-3 algorithm
to calculate the hash value of the stylesheet file it receives from the Internet and com-
pares it with the one given in the HTML. If the two values are the same, the stylesheet
is valid. Any tampering with the contents of the stylesheet would cause it to have a
different “hash code.”

14	 Glossary

https://cdn.jsdelivr.net/npm/bootstrap@4.3.1/dist/css/bootstrap.min.css

Hypertext Transfer Protocol (HTTP)
HTTP is a text-based protocol used by browsers. When a web address is entered into
a browser, the browser sends a message starting with GET. When a browser wants to
send a message to the server (perhaps the contents of a form the user has completed),
it sends a message starting with POST. HTTP defines headers that add extra detail
to the message. In a GET request, the header indicates whether the page was found
correctly and the data format of the response. If we wanted to create a web server
from scratch, we would have to learn the format of all the messages and responses.
Fortunately, there are libraries for JavaScript and node.js that can be used to assem-
ble and respond to HTTP-formatted messages.

Identifier
An identifier is a name created by the programmer to refer to something a pro-
gram needs to keep track of. JavaScript has rules that determine how the identifier is
constructed:

	● The identifier must start with a letter (A-Z or a-z), a dollar sign ($), or an under-
score (_) character.

	● The identifier can contain letters, digits (0-9), a dollar sign ($), or an underscore (_)
character.

It is best if your identifiers describe the thing they are connected to. An identifier
called a is not very useful, but one called age would be more useful, and one called
ageInYears would be very useful. If you want to use multiple words in an identi-
fier, the JavaScript convention is to capitalize the first letter of each word inside the
identifier. This is called “camel case” because the capital letters stick up like the humps
on a camel’s back. Note that the identifier’s letter case is significant. JavaScript would
regard AgeInYears and ageInYears as different identifiers. If a program fails with a
complaint that it can’t find something, make sure that the identifier you are using is
correct.

If you are choosing an identifier for a function or method, using a verb-noun structure
is a good idea. The displayMenu identifier would work well for a function that dis-
played a menu.

If you choose a class name, the identifier should start with a capital letter.

Infinity
The range of JavaScript numbers includes the value of Infinity. A variable will be set
to Infinity if the calculation results generate that value.

var x = 1/0;

	 Glossary	 15

The above statement sets the value of x to Infinity. If the value of x is printed, it will
display the Infinity value. The implementation of Infinity works how you might
expect:

	● If you add 1 to Infinity, you get Infinity.

	● If you divide Infinity by any value, the quotient retains the value of Infinity.

	● If you divide any number by Infinity you get the result of 0.

	● If you divide Infinity by Infinity, you receive NaN (Not a Number).

	● A program can set a variable to the value of Infinity value and can test for the
value:

if(x==Infinity) console.log("result too large");

Internet
The Internet is based on a set of open standards called TCP/IP (Transport Control Pro-
tocol/Internet Protocol). TCP/IP was created by the Defense Advanced Research Proj-
ects Agency (DARPA), a United States Department of Defense division. TCP/IP sets out
how to build and connect local networks to create a “network of networks” that can
span the globe. The standards provide an addressing scheme for each physical device
on the network and a resource naming scheme allowing users to identify services by
names rather than their physical addresses. The Internet is not the only network that
uses TCP/IP. You can create your own TCP/IP network in your bedroom if you like.

You might think of an Internet connection as a cable between two machines. How-
ever, this is not how it works. The sender breaks the data into small packets, which are
sent individually. It is a bit like me sending you a loaf of bread by mailing each slice in
a different letter. Software in the receiver takes the packets, puts them in the correct
order, and passes them up to the application using the connection. The application
using the connection (for example, a browser loading a web page) is completely
unaware of all this packing and unpacking. It just receives the data and does some-
thing with it.

The Internet was designed to provide communications at a time when nuclear war
looked distinctly possible. It uses a mesh of systems called “servers,” each of which
maintains a “map” of the network and passes incoming packets of data across the
network to its destination. If one of the servers suddenly becomes unavailable, the
servers automatically route packets around it. Client machines connect to the servers
to send and receive packets of data.

16	 Glossary

The Department of Defense decided that the best way to get lots of network con-
nectivity worldwide was to make the TCP/IP standard public and give away all the
software they wrote to make it work. This made it much easier for hardware manu-
facturers (and even hobbyists) to connect their machines. The Internet became very
popular very quickly. It provides something that was revolutionary at the time it was
introduced. The Internet transfers packets of data anywhere in the world at the same
cost—which is zero once you are connected. This was a genuine game-changer for
computing. Before the Internet, you had to lay your cables or rent them from the
telephone company if you wanted to connect computers. And international commu-
nications were extremely expensive.

However, once you have connected a machine to the Internet, you can send packets
and expect them to arrive at their destination irrespective of where they’re going. A
packet might take longer to arrive at a more distant destination as it is passed from
system to system on its journey, but longer journeys don’t cost more. Two successive
packets to the same destination might travel by completely different routes, but they
both would get there. The Internet’s job is to hide all this complexity and give users
the impression that they are directly connected to a machine, even though it is on
the other side of the planet. The Internet can function across many forms of physical
media, including telephone lines, wired connections, wireless networks, and mobile
phones.

You can think of the Internet as a system of rails that connect places, but just like a
railway, the Internet is not interesting until you start to move things around on it.
Just as trains make a railway interesting, applications make the Internet interesting.
Electronic mail (email) was one of the first “killer applications” for the Internet. A user
connects to their Internet-connected mail server, which accepts messages and stores
them for the user to read. The mail server also sends mail messages to other mail
servers. However, the application that did the most to get users onto the Internet was
the World Wide Web.

IP address
Every computer on the Internet has a unique address. This is called an Internet Pro-
tocol or IP address. You can think of it as the computer’s phone number. When you
want to call someone on your phone, you must enter their number. When a program
wants to call a program on a distant machine, it uses the IP address of that machine.
Of course, you hardly ever enter a phone number in real life. The actual numbers are
stored behind names in an address book. The Internet does something similar, too,
using the Domain Name System (DNS) process that converts names (for example,
robmiles.com) into IP addresses. If you point your browser at www.robmiles.com, the
browser will first use DNS to discover the server’s IP address that hosts my blog and
then send HTTP requests to that server.

	 Glossary	 17

Most of the addressing on the Internet uses 32-bit integers to hold IP values. This
addressing scheme is called IPv4 and allows for over 4 billion different addresses,
which seemed plenty when it was introduced. However, the number of connected
devices has increased to the point that we are running out of addresses. A more
advanced addressing scheme, IPv6, is being introduced that uses 128-bit integers,
allowing for many more connected devices. IPv4 and IPv6 are designed to coexist and
will both be around for a while.

An IPv4 address is expressed as four eight-bit values, separated by dots—for example,
158.252.73.252. You can find out the IP address of your machine by searching for “IP
address” in your browser.

JSON
JavaScript Object Notation, or JSON, is a textual description of the data contents of
a JavaScript object. A JSON document can contain arrays and objects as a series of
named value pairs. JSON documents cannot contain references to objects; instead,
the contents of the referred object are inserted in the place of the reference. JSON
documents can contain numeric values, text strings, and true or false. Many languages
contain native support for JSON, which means it can be used to transfer data between
different devices and programs. Visit https://www.json.org/json-en.html for a defini-
tion of the standard.

Let
Programs use variables to hold values that the program wants to work on. A pro-
gram can declare a variable by using the keyword let. The useful thing about vari-
ables declared using let is that they are discarded when program execution leaves
the block in which they are declared. We say that such variables have “block scope.”

{

 let personName = "Rob";

 // do things with the variable personName

}

// at this point in the code the variable personName no longer exists

Consider the code above. The personName variable is declared inside a block of state-
ments. The personName variable can be used within that block, but when the program
reaches the end of the statements in the block and leaves it, the personName variable
is discarded. This means there is no chance of the name variable being confused with
other variables called personName, which might be used in other parts of the program.

18	 Glossary

Note that if the enclosing block contains a variable called personName (it would be
declared outside the block shown above), the outer personName variable would not be
accessible inside the block. But the outer personName variable would become accessi-
ble when the program leaves the block above.

Once you have learned about let, you should look at the glossary entries for var and
global, which are also used in JavaScript to manage where variables can be used.

Local
A local variable has a restricted scope. A local variable declared using let is local to a
particular block of statements. A local variable declared using var is local to the func-
tion or method in which it was declared.

Localhost
A device connected to the Internet has an IP address used to locate it. A program will
enter the IP address of that machine to send messages to it. A program can also send
messages to a localhost address, which is the address of the machine itself. We use
the localhost address to test a network service on a machine. In other words, I can run
a program that implements a web server on my machine and then put the local-
host address into the browser to connect to that server. The IPV4 (see the IP address
entry earlier in this glossary for more) localhost address is 127.0.0.1. You can also use
localhost as this address. If you wanted to host a website on your computer and then
use your computer’s browser to connect to that website, you would use the localhost
address.

Logical
This term is used in two ways in computing. First, computer programs use logical
expressions to make decisions. For example, if a program needed to express, “If you
are less than five years old, you can’t go on this fairground ride,” it would use a logical
expression, perhaps using the < logical operator to make the decision. In this con-
text, we are talking about elements of a programming environment that allow us to
express how decisions are made.

Secondly, the term logical also means a way of viewing things. For example, we talk
about networks that use “logical” addresses. In this context, logical means a thing that
might or might not map to a physical device. For example, a logical address might be
mapped onto a physical computer. However, a logical address might also be mapped
to a process running on a computer that supports many such processes. The idea of
“logical” entities is a big part of how we can talk about components in the “cloud.” We
give the component a logical address, and then the underlying system can determine
the actual location when it is used.

	 Glossary	 19

Machine code
The computer’s processor processes instructions encoded as “machine code,” express-
ing the actions to be performed in a very low-level form the hardware can under-
stand. Machine code programs have a structure and content specific to a particular
hardware architecture. Programs written in higher-level languages (such as C++) must
be converted into machine code before running on a device. JavaScript programs are
not usually converted into machine code before being run. Instead, an interpreter
program runs on the hardware. The interpreter works out what each JavaScript state-
ment does and then performs it. Of course, life is not quite as simple as this. In reality,
a JavaScript interpreter might convert some JavaScript code into machine code just
before it runs it (this is called Just-in-Time compilation).

Metadata
Metadata is “data about data.” The metadata for a photograph file might contain the
date and time the picture was taken, the type of camera used, and so on. If we repre-
sent the photograph as a JavaScript object, each metadata item would be an object
property.

Method
Methods are members of a class and are used in exactly the same way as functions.
They can accept parameters and can return results. Within a method, the keyword
this behaves as a reference to the object the method is running within. Below, you
can see the definition of a class called Vehicle. This class contains two methods:
constructor and logDetails.

class Vehicle {

 constructor (newValue){

 this.color = newValue.color;

 this.make = newValue.make;

 }

 logDetails(){

 console.log("Color is:"+this.color+" make is:"+this.make);

 }

}

If we create a class instance, we get an object with behaviors provided by the methods
in it. The constructor method is used to create an instance of the class. When the
statement below is performed, the Vehicle constructor is called with an argument,
which is an object literal containing the information to initialize the object.

let v1 = new Vehicle({color:"white",make:"Nissan"});

20	 Glossary

The logDetails method can be called to display the data held in an instance of
Vehicle.

v1.logDetails();

Within the logDetails method, the keyword this refers to v1, the object on which
logDetails has been called.

Nesting
In JavaScript, we nest one construction inside another. In the code below, the state-
ments logging a message and setting the age to 70 are said to be nested inside the if
construction that controls whether they run.

if (age>70) {

 console.log("Age too large. Using 70");

 age = 70;

}

Network
Once we had many computers, we started linking them to form networks. Networks
make two things possible. Firstly, a network connection gives you remote access to
the processing power of a distant computer. You can run your programs on a distant
machine. But secondly, networks let you move data between systems. A program run-
ning on one machine can access data stored on another. Data can be centralized and
made available to connected clients. A service can be provided by several cooperating
systems rather than by a process running on a single machine.

The first computer networks were “proprietary.” Machines made by company A could
not talk to machines made by company B, making it much harder for customers of
company A to switch to company B (which the computer companies rather liked).
But then, someone made a network that was so compelling that everyone wanted to
connect their machines to it—the Internet.

Not a Number (NaN)
JavaScript uses the value Not a Number (NaN) to mean that the result of an operation
has not generated a numeric result. Consider the following:

var x = 1/"fred";

	 Glossary	 21

This statement sets the value of x to the result of dividing the value 1 by the "fred"
string. This is a meaningless calculation. In some programming languages, attempting
to divide a number by a string would be rejected when the program was compiled
or would produce an error when the program runs. In JavaScript, when a numeric
expression cannot be evaluated, the program keeps running, but the value of the
result of the expression is set to NaN. You can check to see if a variable contains NaN
but not in the way you might think.

The if statement below doesn’t work. NaN is not a value as such, so it isn’t really mean-
ingful to compare it with anything. But we do know that the value of NaN is not equal
to anything, including itself.

if (x==NaN) console.log("x is not a number");

The if statement below checks to see if x is equal to itself. If this test fails, the value
of x is NaN. Note that JavaScript expression evaluation is also aware of the concept of
infinity. So, perhaps you might like to read the Infinity entry in this glossary next.

if (x!=x) console.log("x is not a number");

Null
JavaScript programs can contain variables that act as references to objects or func-
tions. The null value is used in a program to express the situation where a reference
variable does not refer to any object. For example, if you called a function to find
something and that something could not be found, the function could return null to
indicate this. A program can check if a value is null, and the value null itself is falsey
(meaning a direct test on a value containing a null reference would return false). You
can find out more about truthy and falsey earlier in this glossary, under Condition.

Obfuscation
Obfuscation is the process of making something hard to read. This can be useful if you
want to stop casual eavesdroppers from being able to look at the JavaScript sent to a
browser and work out how the code works before creating an exploit.

Object
A primitive data value, such as a number or a string, can only hold a single value. A
JavaScript object is a container that can hold a collection of data values. A value held
inside an object is called a property, and each property has a name. Objects can be

22	 Glossary

used to describe physical items with properties for each descriptive item. I could cre-
ate an object to describe my car properties by using code like this:

The following statement creates an object that contains two properties. The first
property is the car’s color; the second is the car’s make. A variable with the identifier
car is set to refer to the object that has been created.

 let car = {color: "white", make: "Nissan"};

A JavaScript program can access a property by adding a period (.) followed by a
property name to the variable’s name referring to the object. The following statement
would display the message white on the console because that is the value of the color
property of the car object.

console.log(car.color);

A program can update the contents of a property by assigning a new value to the
property. The statement below would set the color property of the car to the value
"blue".

car.color="blue";

A program can also add a new property to an object simply by assigning a value to a
new property name. The statement below adds a model property to the car object.
The car now has a model property set to the "Cube" string.

car.model="Cube";

Properties can be functions as well as values. The statement below adds a new prop-
erty to the car. The new property is a function called toString, and it returns a string
describing the object contents. The string contains the color and the car’s name and
model. Note that the keyword this is used in the function to get a reference to the
object the function is part of. We can now call the toString function on the object
referred to by car:

car.toString = function (){return this.color+" "+this.make+" "+this.model};

	 Glossary	 23

Once a function property has been added to an object, it can be called. The following
statement would log the blue Nissan Cube string (returned by toString) in the con-
sole (if the color property had been updated to blue from the original white).

console.log(car.toString());

You can create and manage an object by managing object properties like this, but you
can make your objects more cohesive using JavaScript classes. Objects are managed
by reference.

Open source
Open source code is made available to anyone to view. It is usually made available
according to terms set out in a license that specifies how the code can be modified,
redistributed, and perhaps (but not always) sold as part of a new product. Before you
start building something, you should look for an open-source implementation of the
thing you are about to make. GitHub is a great place to start such a search.

Organization
Within GitHub, you can create an organization containing related repositories. Orga-
nizations can have multiple managers and contributors, and each organization can
have a github.io repository that can host a web page for that organization. I created a
Building-Apps-and-Games-in-the-Cloud organization to host all the repositories for
this book at https://github.com/Building-Apps-and-Games-in-the-Cloud.

Parameter
A program can pass data into a function or method call by adding an argument to the
call.

Below, you can see a call of a function called doDisplay. The function has a single
argument—the "Hello" string. Within the definition of the function, the data item
supplied is called a parameter:

doDisplay("Hello");

Below is the doDisplay function. The parameter to the function is called message.
When the preceding function call preceding runs, the message value is set to the
"Hello" string. The function calls the alert function, which displays the message for
the user. Note that the parameter to a function is not given a type.

24	 Glossary

function doDisplay(message){

 alert(message);

}

The statement below calls doDisplay with an argument of 99, which is a number
rather than a string. However, the function would work correctly because the value 99
would be converted into a string when the alert function displayed it:

doDisplay(99);

The following version of doDisplay sets a default value for the message parameter. If
the argument is left off the doDisplay call, the parameter will be set to the "empty"
string:

function doDisplay(message="empty"){

 alert(message);

}

This would display the message “empty” in an alert.

doDisplay();

Physical
When working with computers, we can split things into the physical and the logical/
virtual. The physical element of a system is always the bit you have to plug in and
switch on.

Port
A single computer can support many connected clients. Some clients might want
to browse a website hosted on the machine; others might want to connect to a mail
server running on the machine. When an application creates a connection to the
Internet, it specifies a port number that it will use for network input and output. A web
server application will use port 80, and the mail server will use 587. Clients connecting
to the server know which port to use. Your browser will use port 80 to connect to a
server unless you specify a different port number in the URL.

	 Glossary	 25

The port number is a 16-bit value, giving 65,655 possible port numbers. The first 1,023
are reserved for well-known ports—for example, email and web. The range from
1,024 to 49,151 is available for registration by organizations wishing to set up specific
services of their own. Port numbers greater than 49,151 can be used for ad-hoc con-
nections. Note that this means that if I want to connect to a program on a computer, I
need to know the computer’s IP address (so I can connect to it) and the port number
that the program is sitting behind.

Primitive
The JavaScript language provides eight different data types for holding different
kinds of value. Seven of the types, including Number, Boolean, and String, are defined
as “primitive.” You can’t add properties to a primitive type; it just holds a single value.
You must use an object if you want a variable that holds multiple values, such as a
coordinate that contains x and y. Objects are managed by reference.

Procedure
A procedure is a function that doesn’t contain a return statement that returns a value
to the caller. The function doDisplay below displays a message but doesn’t return a
value:

function doDisplay(message="empty"){

 alert(message);

}

If a program tries to use the value returned from a procedure call, it will be given the
undefined value. The result of the statement below would be to set the value of res
to undefined.

let res = doDisplay("hello")

Program
A program is a sequence of instructions you give to a computer that tells it how to
perform a specific task. For example, you could write a program to add two numbers
and display the result.

26	 Glossary

Promise
In JavaScript, a Promise is an object describing the intention to perform an asynchro-
nous task. A promise can be kept or broken, and event handlers can be attached to
each outcome. It is also possible that a promise is never kept or broken. A Promise
object contains a then method that accepts a function reference called when the
Promise has been kept.

The Promise object also contains useful functions that work with promises. The
Promise.race function is given a list of promises and returns a Promise that will
complete when one of the Promise objects completes. You can combine multiple
promises into a single Promise by using Promise.resolve. This accepts a list of
promises and returns a single Promise that will be resolved when all the promises in
the list have been resolved.

Property
A JavaScript object can contain property values. (See the Object entry in this glossary
to learn how a JavaScript object is created and properties are added.) Consider that
we have an object that describes a car. It has color, model, and make properties. You
can delete a property from an object by using the delete operator:

delete car.model;

This statement would delete the model property from an object referred to by the
car variable. The statement above uses the “dot” notation to access a property of
an object. The property name is separated from the variable name using a “dot” or
period (.). Properties get a lot more interesting when we start to use the “brackets”
method of accessing them in an object. The statement below restores the "model"
property to the object referred to by car. In this case, the property name (model) has
been specified as a string enclosed in brackets:

car["model"] = "Cube"

The “dot” and the “brackets” mechanisms both generate the same property. You
can use the “brackets” mechanism to create properties that have names containing
spaces, as shown below:

car["number of seats"] = 5;

	 Glossary	 27

However, if you put spaces in your property name, you won’t be able to use the “dot”
mechanism to access this property; you will have to use brackets. The statement
below displays the number of seats in the car:

console.log("Passenger capacity: " + car["number of seats"]);

Proprietary
An organization or company owns and promotes a proprietary technology, usually to
maintain control of all or part of a market.

Recursion
See Recursion. (Sorry about this trite response.) Recursion happens when a function
calls itself directly (Fred calls Fred) or indirectly (Fred calls Jim, who calls Fred). It is
extremely useful when parsing grammar or traversing hierarchies.

Reference
A reference is a variable that refers to an object. Variables that are objects are man-
aged by reference, whereas values manage all other types of variables. A reference
can be set to the null value to explicitly indicate that it doesn’t refer to anything.

Render
Render takes something from the logical (structured data) to the more physical
(an image on a screen). This happens in games when data objects representing the
players and scenery are converted into images and in the browser when the docu-
ment object model is converted into a page. In most systems, the rendering process is
performed separately from the rest of the application.

Repository
A repository is a collection of resources that can be managed as a whole by GitHub.
It can contain text and binary files of any type. It has a name and can be owned by an
individual or organization.

Return
A JavaScript function or method uses the return keyword to return a value or just to
return early.

28	 Glossary

Sandbox
A system can host an application in a “sandbox” environment that strictly controls the
application’s access to the host machine.

Scope
In JavaScript, scope refers to that part of a program in which it is possible to access a
given variable. A variable declared with the let keyword has the scope of the code
block in which it is declared. A variable declared with the var keyword will have the
function scope in which it is declared. A variable declared automatically will have
global scope, meaning it will be visible to all the functions in the program. When
creating nested blocks, it is possible for a newly declared variable to “scope out” a
variable with the same name in an outer block. The code below creates two variables
called i. The first (outer) variable has the value 0. The second (inner) variable has the
value 99. Code running inside the inner block cannot access the outer version of i
because any references to i will resolve to the inner variable.

let i = 0;

{

 let i = 99;

}

Statement
Actions to be performed in a JavaScript program are expressed as statements. A state-
ment performs a single action (call a function, perform an assignment, and so on).
Statements on the same line must be separated by semicolon characters. Semicolons
might be omitted if the statements are separated by a line break or in a block on their
own. A statement will generate a value. In the case of an assignment, the result of the
statement is the value being assigned.

String
The string type in JavaScript can hold a string of Unicode characters. A JavaScript
string can be extremely long—longer than the entire storage space in your computer.
A program can create a string-type variable by assigning a string literal to a variable.
Strings can be compared for equality. Comparing strings in respect of greater than/less
than will result in an alphabetic ordering. Applying the + operator between two strings
will concatenate them. For a full description of strings and their behaviors, see https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String.

	 Glossary	 29

Synchronous
A synchronous operation is something you have to wait for. If a program calls a func-
tion to do something, and that function works synchronously, the program will be
paused until the action is complete and the function returns. We should avoid using
synchronous functions where possible because they can slow down the systems that
use them. The alternative to synchronous operation is asynchronous.

System software
System software is software that provides a service to other software. The most obvi-
ous piece of system software you own is probably your computer’s operating system.
Other system software pieces include drivers for your graphics card or printer.

this
The behavior of this keyword can be confusing because it all depends on the context
in which this is used. In the following examples, we’ll examine a few contexts and
discuss what this means in each. Note that this is a brief overview. Find more detail at
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this.

this inside a method
A method is a block of code inside an object providing a behavior that an object can
provide. The Vehicle class below contains two methods:

	● constructor for the class

	● logDetails

Both methods use the this keyword, which in this context, means “a reference to the
object within which this method is running.”

class Vehicle {

 constructor (newValue){

 this.color = newValue.color;

 this.make = newValue.make;

 }

 logDetails(){

 console.log("Color is:"+this.color+" make is:"+this.make);

 }

}

30	 Glossary

The this keyword allows the method call to manipulate the object’s properties. In the
code below, the logDetails method will run with the value of this set to v1:

let v1 = new Vehicle({color:"white",make:"Nissan"});

v1.logDetails();

this inside a function
In JavaScript, a function is implemented as an object that can contain properties.
Within the body of a function, the this reference refers to the function object. The
code below shows a function that contains two statements:

	● The first statement displays a property called name.

	● The second sets the name to "fred".

function thisDemo(){

 console.log(this.name);

 this.name="fred";

}

The first time we call the thisDemo function, the undefined message is displayed
because the function doesn’t have a name property. The "fred" value is displayed
when we call the function because the thisDemo function’s name property has been
set to "fred".

this inside an arrow function (=>)
We have seen that within the code body of a function, the this reference refers to
the function object. However, this behavior is different if the function is declared as
an arrow function, which is declared using the => construction. Arrow functions are
frequently created as anonymous functions bound to JavaScript events. Consider the
code above (in the “this inside a function section”), which creates a button element in
an HTML page. When the button is clicked, a count value is updated and displayed in
the console:

function makeCountButton() {

 this.count = 0;

 let container = document.getElementById("mainPar");

 let newButton = document.createElement("button");

 newButton.textContent = "Increment Count";

	 Glossary	 31

 newButton.addEventListener("click", (e) => {

 console.log(this.count);

 this.count = this.count + 1;

 });

 container.appendChild(newButton);

}

The count value is stored within the makeCountButton function. When the button is
clicked, the value of count is incremented. This code works because the event handler
function bound to the button’s click event is declared using arrow notation, which
means any this references in the event handler refer to the enclosing object (in this
case, the makeCountButton function containing the count value). If the event handler
was written as below (as a function), the count value in makeCountButton would not
be incremented because this.count refers to a variable in the event handler method:

newButton.addEventListener("click", function (e) {

 console.log(this.count);

 this.count = this.count + 1;

 });

Throw
When a program reaches a point where it cannot meaningfully continue, it can throw
an exception to transfer control to code that will attempt to return things to a known
good state. Examples of things that could be used to trigger exceptions include a tim-
eout on an operation or an invalid or missing parameter to a function or method call.
The exception object that is thrown can contain a description of what went wrong.
The statement below throws an exception that contains a string message.

throw("Something bad happened");

Take a look at the try–catch definition to find out more.

Try–catch–finally
Code that might throw an exception can be enclosed in a try–catch-finally con-
struction. The code that might throw an exception is placed in the try block. The code
to handle the exception is placed in the catch block. Code that will run irrespective
of whether the exception is thrown is placed in the finally block. The code below—
which attempts to fetch something from a URL—shows how this works. The fetch

32	 Glossary

function provided by JavaScript performs this operation. The fetch function will throw
an exception if the resource is not found. The code in the catch clause deals with the
error, and the code in the finally block will run regardless of whether the exception is
thrown:

try {

 // Attempt to fetch some data

 const response = await fetch('https://api.example.com/data');

 const data = await response.json();

 // Do something with the data

 console.log(data);

} catch (error) {

 // Handle the error

 console.error('Error fetching data:', error.message);

} finally {

 // Clean up any resources

 console.log('Cleaning up resources...');

}

Undeclared
An undeclared variable is one that you’ve not declared. It doesn’t exist in your pro-
gram. You could ask, “How can I make one?” but, of course, the answer is you don’t.
That’s the whole point. Undeclared variables are a problem because if JavaScript
encounters one, it will throw an exception, stopping that thread of execution. Con-
sider the following completely legal JavaScript code:

if(age>70) console.log("too old");

This code displays a message in the console if the age variable value is greater than
70. However, if the variable age has not been declared, a ReferenceError exception
will be thrown, stopping the program. undeclared sounds a lot like undefined (see
below), but it is actually quite different. An undeclared variable doesn’t exist. An
undefined variable exists, but it is set to the value undefined, which means that it has
not been given a value.

	 Glossary	 33

Undefined
If you create a variable but don’t put anything in it, that value is set to "undefined".

var x;

console.log(x);

If you perform the above statements in the Developer Tools console, the "unde-
fined" value is displayed. JavaScript regards undefined as a value that you can assign
and test for.

x = undefined;

if(x==undefined) console.log("x has not been defined")

If you want to mark something as explicitly not set with a value, you can assign unde-
fined to it. A function can test parameters to make sure that they are not undefined.
If a program attempts to use an undefined value in a numeric expression, the result of
the expression is the special value “not a number” or NaN.

Var
A program can declare a variable by using the var keyword. A variable declared using
var within a function will exist for the duration of the function body in which it was
declared. The variable v in the varDemo function shown below exists throughout the
function body, even though it is declared inside an inner block. This means that the
console will display the value 99.

function varDemo(){

 {

 // inner block

 var v = 99;

 }

 console.log(v);

}

A variable declared using var outside any function will have global scope.

34	 Glossary

Variable
A variable in a JavaScript program can hold a value. It is given an identifier by which
it is referred. A variable can hold a single “primitive” value (for example, a number) or
act as a reference to an object. Variables have a type, but JavaScript infers this from
their assignment. The code below creates a variable called a that first contains a string
and then an integer:

let a = "Rob";

a = 99;

Virtual
We can use software and computers to create “virtual” versions of things in the real
world. Computers can contain virtual files, folders, and even avatars representing
human users.

Visibility
The “visibility” of a variable is that part of the program code where the variable can be
used in code. See the Scope entry earlier in this glossary.

	 Glossary	 35

	_Hlk130440845
	_Hlk108249425
	_Hlk130444479
	_Hlk112138269
	_Hlk130449646
	_Hlk112137927
	_Hlk128323656

